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Abstract

In this paper, a new framework for generating lifetime distributions is introduced, called the Topp-Leone generated
(TLG) family of distributions. The generator of the TLG family is the Topp-Leone distribution, which was proposed by Topp
and Leone in 1955. Some various properties of the TLG distribution are discussed, e.g., survival function, hazard function,
moments and generating function. In addition, the TLG family is capable of improving fitted results and tail behavior of
existing distributions. We present the Topp-Leone generalized exponential (TLGE) distribution as an example of the TLG
distribution. Some graphical representations related to the probability density function and hazard function of the TLGE
distribution are provided. In application study, the goodness of fit test based on the TLGE, the generalized exponential (GE),
and exponentiated generalized exponential (EGE) distributions are compared. The results emphasize that the TLGE distribu-
tion can be considered as a competitive distribution for the GE and EGE distributions.
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1. Introduction

Lifetime data plays an important role in a wide range
of  applications  such  as  medicine,  engineering,  biological
science, management, and public health. Statistical distribu-
tions are used to model the life of an item in order to study its
important properties. Proper distribution may provide useful
information that result in sound conclusions and decisions.
When there is a need for more flexible distributions, many
researchers are about to use the new one with more generali-
zation. An excellent review of Lee et al. (2013) has provided
thorough  knowledge  of  several  methods  for  generating
families of continuous univariate distributions. According to
their work, there are some general methods introduced prior
to 1980, which were developed by the strategies based on
differential  equation,  transformation  and  quantile  function.
In  addition,  they  also  put  emphasis  on  the  movement  of

those  methods  proposed  since  1980s,  which  changed  the
momentum by adding extra parameters or combining existing
distributions.

The  beta  generated  (BG)  family  of  distributions
belongs to a parameter-adding method (Lee et al., 2013). Some
existing distributions incorporated with the BG family will
have two additional parameters, which are the parameters of
the  beta  distribution.  For  an  arbitrary  distribution  with  a
cumulative distribution function (cdf) ( )G   and a probability
density  function  (pdf)  ( )g  ,  this  method  generates  it  by
letting 1( )X G B  where B has the beta distribution with
parameters a and b, Beta( , )B a b  (Alexander et al, 2012).
According to the work of Eugene et al. (2002), a random
variable X is considered as having the BG distribution, a cdf
and a pdf of which can be characterized by

( ) 1 1
BG 0

1
( ) (1 ) dt,  0,   0

( , )
G x a bF x t t a b

B a b
    

and

1 1
BG

1
( ) ( ) ( ) (1 ( )) ,

( , )
a bf x g x G x G x

B a b
  
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respectively, where ( , ) ( ) ( ) / ( )B a b a b a b      is the
beta function, ( )   is the gamma function.

Based on the discussion of Jones (2004) and the work
of Alzaatreh et al. (2013), the distribution with ( )BGF x  and

( )BGf x  has ( )G   and the beta distribution, respectively, as
its parent distribution and its generator. Moreover, the work
of Eugene et al. (2002) motivated many researchers to raise
various novel distributions by using other parent distribu-
tions. Some examples include the beta Gumbel distribution
(Nadarajah and Kotz, 2004), the beta exponential distribution
(Nadarajaha and Kotz, 2006), the beta-Weibull distribution
(Lee et al., 2007), the beta-Pareto distribution (Akinsete et al.,
2008), the beta generalized exponential distribution (Barreto-
Souza et al., 2010), the beta generalized Weibull distribution
(Singla et al., 2012), the beta exponentiated Weibull distribu-
tion (Cordeiro et al., 2013b), the beta generalized Rayleigh
distribution (Cordeiro et al., 2013a), and the beta exponen-
tiated Weibull Poisson distribution (Insuk et al., 2015).

Recently,  applying  new  generators  for  continuous
distributions became more interesting. This methodology can
improve on the goodness of fit and determine tail properties.
These features have been established by the results of many
generators such as beta distribution (Eugene et al., 2002;
Jones, 2004), Kumaraswamy distribution (Jones, 2009), gener-
alized beta distribution (Alexander et al., 2012), McDonald
distribution  (Cordeiro  et  al.,  2014a),  gamma  distribution
(Zografos and Balakrishnan, 2009), Kummer beta distribution
(Pescim et al., 2012), Transformed Transformer distribution
(Alzaatreh et al., 2013), Log gamma distribution (Amini et al.,
2014), Weibull distribution (Bourguignon et al., 2014), Lomax
distribution  (Cordeiro  et  al.,  2014b),  Lindley  distribution
(Bhati et al., 2015), Kumaraswamy Marshal-Olkin distribution
(Alizadeh et al., 2015), and odd generalized exponential dis-
tribution (Tahir et al., 2015). Although the generator seems
to be a more complex function, some experts still prefer to use
the more  simplified generator. In other words, the generator
with both closed form of cdf and a few number of parameters
make deriving inference part easily accessible.

The  Topp-Leone  distribution  (TL)  is  one  of  the
continuous  distributions  that  is  attractive  as  a  generator.
This distribution was proposed by Topp and Leone (1955).
It provides closed forms of the cdf and pdf. According to the
number of parameters, the estimation part for the TL distribu-
tion is not complicated. However, the TL distribution had not
received  much  attention  until  Nadarajah  and  Kotz  (2003)
discovered it. In addition, they studied some properties of the
TL distribution and provided its moments, central moments
and  characteristic  function.  Furthermore,  there  were
numerous authors who were interested in this distribution.
For example, Ghitany et al. (2005) provided some reliability
measures of the TL distribution, a discussion on kurtosis of
the TL distribution was reported by Kotz and Seier (2007),
Vicaria et al. (2008) introduced two-sided generalized Topp
and Leone distributions, and Al-Zahrani (2012) derived good-
ness of fit tests for the TL distribution. Evidently, a number

of works reveal significant impact of the TL distribution on
lifetime data analysis. Accordingly, in this paper, we introduce
TL distribution as a generator for continuous distributions.

The aim of this paper is to propose the Topp-Leone
generated (TLG) family of distributions. We also study its
properties and derive associated inferences. The rest of this
paper is outlined as follows. In the preliminaries section,
we provide fundamental properties of the TL distribution.
In Section 3, the TLG family of distributions is introduced
together with main properties, corresponding order statistics,
moments,  and  moment  generating  function.  In  Section  4,
we discuss one of its special cases called the TLGE distribu-
tion and provide some properties. The parameter estimation
based  on  the  maximum  likelihood  method  is  derived  in
Section  5.  Moreover,  applications  with  real  data  are  also
demonstrated.

2. Preliminaries

In 1955, Topp and Leone constructed the distribution
for empirical data with J-shaped histogram such as powered
band tool failures, and automatic calculating machine failure.
If a random variable T  belongs to the TL distribution, it can
have  either  finite  (0 )t b    or  infinite  (0 )t b   
support. In this paper, we focus primarily on the TL distribu-
tion with b = 1 to avoid any additional function for creating
a  new  generated  family  of  distributions  (Zografos  and
Balakrishnan, 2009; Lee et al., 2013; Alzaatreh et al., 2013).
In order to pave the way for the TLG family of distributions,
some properties of the TL distribution are provided.

A random variable T is distributed as the TL with pa-
rameter  denoted by ( )T TL  , with a cdf

 TL ( ) 2F t t t  

where 0 1t   and 0  . The corresponding pdf is
1 1

TL ( ) 2 (1 )(2 ) .f t t t t     
Other important characteristics of lifetime data analysis are
the survival and hazard functions. Those functions of the TL
distribution are respectively

 ( ) 1 2 ,TLs t t t   
and

 

1 12 (1 )(2 )
( ) .

1 2
TL

t t t
h t

t t

 



   


 

Furthermore,  Nadarajah  and  Kotz  (2003)  pointed  out  that
the TL distribution provides bathtub shape of the hazard
function when 0 1  . In addition, if 1   the TL dis-
tribution has a non-increasing hazard function. Finally, the
quantile function of the TL distribution is

1 1/( ) 1 1 ,TLt F u u     (1)

where u is distributed as the uniform on the interval (0,1).
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3. The Topp-Leone generated family of distributions

Creating a new family of distribution requires two prin-
cipal components, which are a generator and a parent distri-
bution (Jones, 2004; Alzaatreh et al., 2013). Indeed, the pdf of
a generator is transformed into a new pdf through the cdf

( )G   of a parent distribution. Alzaatreh et al. (2013) presented
a method for generating a new family of distributions with
the following definition for a random variable [ , ],T a b

,a b      and any random variable X with cdf G(x).
Let ( ( ))W G x  be a function of G(x) and satisfy the

conditions as follows:
a) ( ( )) [ , ]W G x a b

b) ( ( ))W G x  is differentiable and monotonically non-
decreasing

c) ( ( ))W G x a  as x   and ( ( ))W G x b
as x  .

Definition 1:
Let T  be a random variable of a generator distribution

with pdf r(t) defined on [a, b]. Let X be a continuous random
variable with cdf G(x). Thus, the cdf of a new family
of distributions is given by

( ( ))

0
t. ( ) ( )d

W G x
F x r t 

The corresponding pdf is

  ( ) { ( ( )) ) . } ( ( )
d

f x r W G x W G x
dx



Consequently, the cdf and pdf of the TLG distribution
are obtained with the use of Definition 1. as follows.

Proposition 1:
If a random variable T is distributed as the TL and

bounded on [0, 1]. Let X  be a continuous random variable
with cdf G(x). The TLG distribution has cdf written by

 TLG ( ) ( ) (2 ( )) ,F x G x G x  

where 0   is a shape parameter. The associated pdf is
1 1

TLG ( ) 2 ( )(1 ( )) ( ) (2 ( )) ,f x g x G x G x G x     

where ( ) ( ) / .g x dG x dx

Proof:
According to Definition 1, let ( ),T TL   then

 1 1( ) 2 (1 )(2 ) ,r t t t t     

where  [a 0, b 1]t   .  Therefore,  the  conditions  of
( ( ))W G x  defined by Alzaatreh et al. (2013) become basic

properties of cdf ( )G x  of any random variable X. Suppose
( ( )) ( ),W G x G x  then the cdf of the TLG distribution is

TLG ( ) ( ) (2 ( )) ,F x G x G x  
By differentiating, we get the pdf

1 1
TLG ( ) 2 ( )(1 ( )) ( ) (2 ( )) .f x g x G x G x G x     

In addition, the TL random variable with finite support
has the same bounds as the cdf ( )G x  of any other random
variable. Therefore, the relation of a random variable X  having
the TLG distribution and a random variable T  having the TL
distribution is

1( )X G T  with ~ TL( )T 
As mentioned by Alzaatreh et al. (2013), when a random vari-
able T is bounded on [0,1], a term ( ( ))W G x  can be ( )G x  or

( )aG x , that belongs to the exponentiated family of distribu-
tions (AL-Hussaini and Ahsanullah, 2015). Moreover, the
fact that several works deal with new modifications of the
distribution makes it beneficial to alter ( ( ))W G x  in Defini-
tion  1.  Some  interesting  examples  include  (x)1 aGe   by
Gurvich et al. (1997), ( ) ( (1 ) ( ))G x a a G x   by Marshall
and Olkin (1997), and 2(1 ) ( ) ( )a G x aG x   by Shaw and
Buckley (2007).

3.1 Main properties

If a random variable X  is distributed as the TLG, the
survival and hazard functions are respectively

TLG ( ) 1 ( ) (2 ( )) ,s x G x G x   
and

1 1

TLG

2 ( )(1 ( )) ( ) (2 ( ))
( ) .

1 ( ) (2 ( ))
g x G x G x G x

h x
G x G x

 

 

   


 

When ( )GQ   is the quantile function of a parent distribution,
we can simulate the TLG random variate from

1/(1 1 )Gx Q u    (2)

where 1/1 1 u    is the quantile function of the TL distri-
bution in Eq. (1).

3.2 A general expansion of the density function

Many  well-known  families  of  distributions  can  be
written as infinite or finite weighted series of their parent
distributions (Eugene et al., 2002; Jones, 2009; Cordeiro et
al., 2014a). This also means that the properties and inferences
can be obtained from the same measures of its parent distri-
bution.  Therefore,  it  is  useful  to  derive  expansion  of  the
density  function.  The  following  series  allow  us  to  get  an
expansion for the density function

 
0

(2 ) ( 1) 2j j j

j

x x
j

 




  
 
 
 


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For  a  real  non-integer ,  we  apply  the  binomial  series  to

(2 ( ))G x 

0

(2 ( )) ( 1) 2 ( )j j j

j

G x G x
j

 




  
 
 
 

 (3)

Therefore,

 
0

( ) ( ) ( ) j
TLG j

j

F x b G x 







where

( ) ( 1) 2j j
jb

j


  
 
 
 

(4)

As   is a real non-integer, ( ) jG x    can be written as

0

( ) (1 (1 ( ))) ( 1) (1 ( ))j j k k

k

j
G x G x G x

k
  
 




     

 
 
 



0 0

0

( ) ( 1) ( )

( , )          (   )

k
j k r r

k r

r
r

k

j k
G x G x

k r

q j k G x

 




 

 








 


  
  
  




where

0

( , ) ( 1)
k

k r
r

r

j k
q j k

k r


 




  

  
  
  

 (5)

If  is a real non-integer, the expansion of the cdf is

 , ,
, 0 0

( ) ( )
k

r
TLG j k r

j k r

F x G x


 

 
where

, , ( 1) 2j k r j
j k r

j k
j k r

 
   

 
   
   
   

(6)

By differentiation of  we have

1
, ,

, 0 0

( ) ( ) ( )
k

r
TLG j k r

j k r

f x g x r G x




 

  (7)

On the other hand, when  is an integer, the index j in Eq.
(3) stops at . By the same manner established above, the
expansion of the cdf and pdf with integer  can be written as

 
0

( ) ( ) ( ) j
TLG j

j

F x b G x


 




and

1

0

( ) ( ) ( ) ( ) ( ) j
TLG j

j

f x g x j b G x


   



  (8)

where the coefficient ( )jb   is defined in Eq. (4).
In fact, the TLG distribution can be considered as an

infinite weighted sum of ( ) ,rG x  which could be either the
power of the parent distribution or one with a new expression
of parameters. When  is an integer, the TLG distribution is
a finite weighted sum of ( ) .jG x    Moreover, the associated
properties of the TLG distribution are mainly discussed based
on Eqs. (7) and (8).

3.3 Order statistics

Let  1 2, , , nX X X   be  a  random  sample  of  size  n
from the TLG distribution. Then the pdf of the i th, 1 i n  ,
order statistic, :i nX , can be obtained  as follows

     1
:

( )
( ) ( ) {1 ( )}

( , 1)
i n iTLG

i n TLG TLG

f x
f x F x F x

B i n i
  

 
(9)

Using the series expansion for {1 ( )}n i
TLGF x  , we get

1
:

0

( )
( ) ( 1) ( )

( , 1)

n i
l i lTLG

i n TLG
l

n if x
f x F x

lB i n i


 




 

 
 
 
 


Referring  to  cdf  of  the  TLG  distribution  in  Proposition 1,

1( )i j
TLGF x    becomes

1 ( 1) ( 1)( ) ( ) (2 ( ))i j i j i j
TLGF x G x G x       

Adjust the expansion of (2 ( ))G x   in Eq. (3) to be the
expansion of ( 1)(2 ( )) i jG x    , then

1 ( 1)

0 0

( ) ( ( 1)) ( ( 1), ) ( )i j i j h
TLG h v

h m

F x b i j q i l m G x  
 

    

 

    
(10)

where ( ( 1))hb i j    and ( ( 1), )vq i l m    are easily
obtained from Eqs. (4) and (5), respectively.

Substituting ( )TLGf x  in Eq. (7) and 1( )i j
TLGF x    in

Eq. (10) into : ( )i nf x  in Eq. (9), and changing indices then
we have

1
: , , ,

0 0 , 0

( )
( ) ( 1) ( )

( , 1)

n i
l r v

i n j k r h v
j l h m

n ig x
f x r G x

lB i n i
 

  
 

  


 

 
 
 
 

 
(11)

where

( 1)
,

0

( 1) ( 1)
( 1) 2 .

m
h m v i l h

h v
v

i l i l h m
h m v

 
     



    
 

   
   
   



In the case of integer ,

     
( 1)

1 ( 1)

0

( ) ( ( 1)) ( )
i j

i j i j
TLG h

h

F x b i j G x



 

   



   (12)

Substituting ( )TLGf x  in Eq. (8) and 1( )i j
TLGF x    in Eq. (12)

into Eq. (9), then we get
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( 1)
( ) 1

: ,
0 0 0

( )
( ) ( 1) ( ) ( )

( , 1)

i ln i
l i l j

i n j h
j l h

n ig x
f x j G x

lB i n i


 

 
  

  


  

 
 
 
 

 

(13)
where

( 1)

0 0

( 1) ( ) ( ) ( ( 1)).
i ln i

l
j j h

l h

n i
j b b i j

l



   
 

 


    

 
 
 

 

3.4 Moments

The  moment of the TLG distribution can be computed
by probability weighted moments  order (s,r) of the parent
distribution. Let a random variable Y follow the parent distri-
bution ( )G Y , then (s,r) th probability weighted moment
(PWM) of  Y  (Greenwood et al., 1979)  is

, { ( ) } ( ) ( )ds r s r
s r E Y G Y y G y g x x




  

or
1

, 0
( ) ds r

s r GQ u u x  
Indeed, the  moment of the TLG distribution from Eq. (7) can
be obtained by

, 1
, 0 0

( ) ( 2 ,1)
k

s j k r j
s r

j k r

j k
E X r

j k r
 



  


 


 

   
   
   


and for integer  in Eq. (8)

, 1
1

( ) ( 1) 2 ( ) .s i i
s i

i

E X i
i







 

 


  
 
 
 


Moreover,  when  the  TLG  distribution  is  a  mixture  of  the
parent distribution with a new expression of parameter, then
the ordinary, central, inverse and factorial moments of the
TLG distribution can be derived directly from the correspond-
ing expression of the parent distributions.

3.5 Moment generating function

We show two representations for moment generating
function (mgf) ( )M t  of the TLG distribution. Firstly, it re-
quires the following series expansion

0

( )
.

!

s
tx

s

tx
e

s




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Thus, the mgf can be expressed in terms of the associated s
th moment ( )s
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Secondly, the quantile function of the parent distribution is
utilizable to get ( )M t .

Referring to the expansions of density function in
Eqs. (7) and (8), their  are

1 ( ) 1
, , 0

, 0 0

( ) ( ) d ,G

k
tQ u r

j k r G
j k r

M t r e Q u u x
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

 
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and

1 ( ) 1

0
0

( ) ( ) ( ) ( ) d ,GtQ u j
j G

j

M t j b e Q u u x


   



  
respectively.

4. The Topp-Leone Generalized Exponential Distribution

The results obtained in Section 3 can be applied to
an example of the TLG family of distributions. In this section,
we introduce an example called the Topp-Leone generalized
exponential (TLGE) distribution. Let ( )G x  be the generalized
exponential (GE) distribution (Gupta and Kundu, 1999) with
a cdf and a pdf as follows

( ) (1 ) ,xG x e    (14)
and

1( ) (1 ) .x xg x e e       (15)

where 0   is  a  shape  parameter  and 0   is  a  scale
parameter.

Moreover, the quantile function of the GE distribution
is

1/1
( ) log(1 ).GQ u u 


  (16)

Consequently, a random variable X of the TLGE distribution,
~ TLGE( , , )X    , has the cdf and pdf respectively

TLGE ( ) (1 ) (2 (1 ) ) ,x xF x e e        
and

1 1
TLGE ( ) 2 (1 (1 ) )(1 ) (2 (1 ) ) .x x x xf x e e e e                  

The behavior of the density function can be separated
into two cases as shown in Figure 1. One is a decreasing
function when 1   and 1,   and while the other is
unimodal and right tailed  for 1   and 1  .

The survival and hazard functions of the TLGE distri-
bution are

 ( ) 1 (1 ) (2 (1 ) ) ,x xs x e e         
and

1 12 (1 (1 ) )(1 ) (2 (1 ) )
( ) .

1 (1 ) (2 (1 ) )

x x x x

x x

e e e e
h x

e e

       

    

      

 

    


   

Some graphical representations of the hazard function are
also illustrated in Figure 1. As  is a scale parameter, the
shape of the hazard function only depend on  and . When

1   and 1,   the TLGE has decreasing hazard function,
otherwise it has constant or increasing hazard function.
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The quantile function is obtained by substituting Eq.
(16) for  in Eq. (2)

1/ 1/1
log(1 (1 1 ) ).x u  


    

We expand the density function of the TLGE distribu-
tion to demonstrate its genesis in relation to the GE distribu-
tion. Following density expansions in Eqs. (6) and (7), in the
case of real non-integer , the cdf and pdf of the TLGE dis-
tribution can be written as

, , ,
, 0 0

( ) ( )
k

TLGE j k r r
j k r

F x G x 


 

 
and

, , ,
, 0 0

( ) ( )
k

TLGE j k r r
j k r

f x g x 


 

  (18)

where , ( )rG x   and , ( )rg x   are, respectively,  the cdf and
pdf  of  the  GE  distribution  with  a  shape  parameter  r   and
scale parameter , defined as ( , )GE r  .

On the other hand, if is an integer, the index i stops
at  b.

( ),
0

( ) ( ) ( )TLGE j j
j

F x b G x


   

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and

( ),
0

( ) ( ) ( )TLGE j j
j

f x b g x


   


 (19)

where ( ), ( )jG x    and ( ), ( )jg x    are the cdf and pdf of
the GE distribution with a shape parameter ( )j    and
scale parameter , denoted by ( ( ), )GE j   , respec-
tively. In summary, the TLGE distribution is infinite or finite
mixture of the GE distribution in relation to the value of .

We  can  calculate ( )M t  of  the  TLGE  distribution
with  the  use  of  the  same  measure  of ( , )GE r   and

( ( ), )GE j   . Without loss of genrality, we provide an
example based only on real non-integer . As a result, ( )M t
of the TLGE distribution in Eq. (18) is

, ,
, 0 0

( 1) (1 / )
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( / 1)
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  
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Therefore,

Figure 1.  Plots of the TLGE density function and hazard function

On the other hand, if
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The mean and variance of the TLGE distribution are (X)E
and 2 2(X) (X ) (X)Var E E   respectively..

5. Maximum Likelihood Estimation

In this section, we focus on estimation of unknown
parameter vector, ( , , )T   , based on the maximum
likelihood estimation. Suppose 1 2, , , nx x x  are an observed
sample from the TLGE distribution.

Consequently, the likelihood function can be expressed
as

1 1

1

( ) (2 ) (1 ) (2 ) ,i

n
xn

i i i
i
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where 1 ix
i e    .

The log-likelihood function is
( ) log(2) log( ) log( )n n n    
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By differentiating ( )   with respect to ,  ,   and ,  respec-
tively, the components of the unit score vector are
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Furthermore, a system of non-linear equations is derived by
setting ( ) ( )U U

 
    ( )U   0 . Then, we obtain the

maximum likelihood estimate ˆ ˆ ˆˆ( , , )T    of ( , , )T  
by solving the system of non-linear equations numerically
through the Newton-Raphson procedure. For interval esti-
mation and hypothesis tests on the model parameters, we
require  the  3 3   unit  observed  information  matrix  ( ).J 
Its elements are given in the Appendix.

6.  Applications

In this section, we model real datasets with the TLGE,
the GE, and the exponentiated generalized exponential (EGE)
distributions  (Cordeiro  et  al.,  2013c).  In  addition,  the  GE
distribution can be considered as special case of the TLGE
and EGE distributions. To verify which distribution fits better
to real datasets, the Kolmogorov-Smirnov test (KS test) will
be employed. Other criteria including the Akaike information
criterion  (AIC),  Bayesian  information  criterion  (BIC),  and
consistent Akaike information criterion (CAIC) are provided
for  the  purpose  of  model  selection.  Furthermore,  the
aforementioned values of the TLGE and the GE distributions
are  obtained  by  using  the  function  goodness.fit  in
AdequacyModel package (Diniz Marinho et al., 2013) of R
language  (R  Core  Team,  2014).  In  case  of  the  EGE  distri-
bution,  we  computed  those  values  by  function  meg  in
Newdistns package (Nadarajah and Rocha, 2015).

The first dataset consists of 101 observations with
maximum stress per cycle 31,000 psi (Birnbaum and Saunders,
1969), and the second dataset is breaking stress of carbon
fibers provided in AdequacyModel package, shown in Tables
1 and 2, respectively.

In Figure 2, the TTT-Transform plots are demonstrated
that the datasets have increasing hazard function. Futher-
more,  all  of  the  competitive  distributions,  which  have
increasing shaped of hazard function, would be appropriate
for analyzing these lifetime data.

Tables 3 and 4 show MLEs with the corresponding
standard errors in parentheses, KS test, AIC, BIC, and CAIC
for maximum stress data and carbon data.

For both of the datasets, the p-value of KS-test under
the TLGE distribution is  greater than any other distributions.
Additionally, AIC, BIC, and CAIC values of the TLGE distri-
bution are the smallest ones of the candidate models. Figures
3-4 display the closeness of the distributions to raw datasets,
which  also  suggest  the  use  of  the  TLGE  distribution.  For
these reasons, the TLGE distribution is more appropriate for
fitting these datasets than the GE and EGE distributions.

7.  Conclusions

In this paper, we propose the TLG family of distribu-
tions.  The  method  for  generating  the  TLG  distribution  is
presented in Section 3. Some important properties of the the
TLG distribution are discussed.  This TLG family of distri-
butions has closed forms of cdf, pdf, survival function and
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Table 2. Breaking stress of carbon fibers

3.70 2.74 2.73 2.50 3.60 3.11 3.27 2.87 1.47 3.11 4.42 2.41
3.19 3.22 1.69 3.28 3.09 1.87 3.15 4.90 3.75 2.43 2.95 2.97
3.39 2.96 2.53 2.67 2.93 3.22 3.39 2.81 4.20 3.33 2.55 3.31
3.31 2.85 2.56 3.56 3.15 2.35 2.55 2.59 2.38 2.81 2.77 2.17
2.83 1.92 1.41 3.68 2.97 1.36 0.98 2.76 4.91 3.68 1.84 1.59
3.19 1.57 0.81 5.56 1.73 1.59 2.00 1.22 1.12 1.71 2.17 1.17
5.08 2.48 1.18 3.51 2.17 1.69 1.25 4.38 1.84 0.39 3.68 2.48
0.85 1.61 2.79 4.70 2.03 1.80 1.57 1.08 2.03 1.61 2.12 1.89
2.88 2.82 2.05 3.65

Table 3. Summary of fitting, goodness-of-fit testing results , AIC , BIC, and CAIC values for
maximum stress dataset

               MLEs KS test (p-value) AIC BIC CAIC

TLGE ̂ =  6.8607(5.5692) 0.0997(0.2735) 917.8901 925.7056 918.1401
̂ =  0.0275(0.0023)
̂ = 13.4886(9.1228)

GE ̂ =  0.0460(0.0032) 0.1068(0.2041 ) 921.2854 926.4958 921.4091
̂ = 281.8876(106.2584)

EGE ̂ =  0.2391(0.0185) 0.1229(0.0971) 929.6721 937.4876 929.9221
b̂ =  105.6216(27.4080)
̂ =  0.1593(0.0080)

Table 1. The maximum stress per cycle

70 90 96 97 99 100 103 104 104 105 107 108
108 108 109 109 112 112 113 114 114 114 116 119
120 120 120 121 121 123 124 124 124 124 124 128
128 129 129 130 130 130 131 131 131 131 131 132
132 132 133 134 134 134 134 136 136 137 138 138
138 139 139 141 141 142 142 142 142 142 142 144
144 145 146 148 148 149 151 151 152 155 156 157
157 157 157 158 159 162 163 163 164 166 166 168
170 174 201 212

       (a) maximum stress dataset           (b) carbon dataset

Figure 2.  TTT-Transform plots for both of the datasets
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Table 4. Summary of fitting, goodness-of-fit testing results , AIC , BIC, and CAIC values for
carbon dataset

               MLEs KS test (p-value) AIC BIC CAIC

TLGE ̂ =  0.2921(0.2903) 0.0919(0.3669) 292.0925 299.908 292.3425
̂  =  0.8101(0.1296)
̂ =  21.0731(23.0517)

GE ̂  =  1.0131(0.0875) 0.1077(0.1962) 296.3646 301.5749 296.4883
̂ =  7.7883(1.4962)

EGE ̂ =  0.8479(3.8201) 0.1076(0.1965) 298.3646 306.1801 298.6146
b̂  =  7.7953(1.4983)
̂  =  1.1953(5.3850)

Figure 3.  Empirical and fitted distributions of the TLGE, GE, and GEG distributions

hazard function. The moments can be derived from PWM’s
moments of the parent distribution. The special case of the
TLG family of distributions is presented, which is called the
TLGE distribution. Then, we apply the general properties to
the TLGE distribution. Parameter estimation and its observed
Fisher  information  matrix  of  the  TLGE  distribution  are
provided. In Section 6, the applications of the TLGE distribu-
tion are demonstrated, and then we compare the fitted results
with its parent distribution and EGE distribution. According
to  the  values  of  KS  test,  AIC,  BIC,  and  CAIC,  the  TLGE
distribution can be considered a competitive distribution for
the GE and EGE distributions.
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