
CMU. J. Nat. Sci. (2009) Vol. 8(1)➔ 105

Strong Comultiplication Modules

H. Ansari-Toroghy* and F. Farshadifar

Department of Mathematics, Faculty of Science, University of Guilan, P. O. Box 
1914, Rasht, Iran

*Corresponding author. E-mail: ansari@guilan.ac.ir

ABSTRACT
	 In this paper, we introduced the concepts of strong comultiplication  
modules and copure submodules and some related results more obtained.
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INTRODUCTION
	 Throughout this paper, R will denote a commutative ring with iden-
tity and ٱ will denote the ring of integers. The dual notion of multiplica-
tion modules was introduced by Ansari-Toroghy and Farshadifar (2007) 
and the first properties of this class of modules had been considered. We 
recall that M is a comultiplication module (Ansari-Toroghy and Farshadifar, 
2007) if for every submodule N of M there exists an ideal I of  R such that  
N = (0:M I). Also, it is shown that (Ansari-Toroghy and Farshadifar, 2007, 3.7) 
M is a comultiplication module if and only if for each submodule N of M, N =  
(0 M AnnR(N)). Let M be an R-module. In Section 3 of this paper, we will introduce 
the concepts of strong comultiplication modules and copure submodules. M is said 
to be a strong comultiplication module if M is a comultiplication R-module which 
satisfies the double annihilator conditions (see 1.1 (d)). Furthermore, a submodule 
N of M is said to be copure if (N:M I) = N + (0:M I) for each ideal I of R. Now let 
M be an R-module and let N be a submodule of M. Among the other results, it is 
shown (see 2.5) that whenever M is a strong comultiplication module, M / N is a 
comultiplication R-module if and only if AnnR (N) AnnR (K / N) = AnnR (K) for 
each submodule K of M with N ⊆ K Moreover, it is shown (see 2.12) that pure 
and copure submodules of M are the same over a principal ideal domain. Also it 
is proved (see 2.13) that whenever M is a strong comultiplication module, N is a 
copure submodule of M if and only if AnnR (N) is a pure ideal of R. Moreover, it 
is shown (see 2.13) that if N is a copure submodule of a strong comultiplication 
module M, then (N:R M) = AnnR AnnR (N) and AnnR (N) is the intersection of all 
ideals I of R such that N = (N:M I). Finally, it is proved (see 2.15) that if M is a 
comultiplication (resp. multiplication) module such that  Soc(M) (resp. Rad(M)) 
is a pure (resp. copure) submodule of M, then M = Soc(M) (resp. Rad(M)=0). 
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1 Auxiliary results

Definition 1.1.
	 (a)	An R -module M is said to be a multiplication module if for every sub-
module N of M there exists an ideal I of R such that N = IM.
	 (b)	An R -module M is said to be a comultiplication module (Ansari-Toroghy 
and Farshadifar, 2007) if for every submodule N of M there exists an ideal I of 
R such that N = (0:M I). 
	 (c)	A submodule N of an R -module M is said to be pure (Anderson and 
Fuller, 1974) if IN = IM ∩ N for every ideal I of R.
	 (d)	An R -module M satisfies the double annihilator conditions (DAC for 
short) (Faith (1995)) if for each ideal I of R, we have I = AnnR (0:M I).
	 (e)	An R -module L is said to be cocyclic (Yassemi, 1998) if L is isomorphic 
to a submodule of E(R / P) for some maximal ideal P of R.
	 (f)	An endomorphism f of an R -module M is said to be trivial (Choi and 
Smith, 1994) if there exists a ∈ R such that f(m) = am for all m ∈ M.
	 (g)	A submodule N of an R -module M is said to be large (resp. small) if 
for every submodule L of M, N ∩ K ≠ 0 (resp. N + L = M implies that L = M 
(Anderson and Fuller, 1974).
	 (h)	A non-zero submodule N of an R -module M is said to be a second 
submodule of M (Yassemi, 2001) if for each a ∈ R, the homothety N  N is 
either surjective or zero. Also M is said to be a second module if M is a second 
submodule of itself.
	 (i)	A proper submodule N of an R -module M is said to be prime if for 
each a ∈ R, the homothety M / N  M / N is either injective or zero. Also  
M is said to be a prime module if the zero submodule of M is prime.

	 Remark 1.2 (Ansari-Toroghy and Farshadifar, 2008a). Let M be a  
comultiplication R -module. Then every non-zero submodule of M contains a 
minimal submodule of M. Moreover, every minimal submodule of M is of the 
form (0:M P) where P is a maximal ideal of R.

2 Main results

	 Definition 2.1. We say that an R -module M is a strong comultiplication 
module if M is a comultiplication R -module and satisfies the DAC conditions.
	 Example 2.2. By (Sharpe and Vamos, 1972), E(R / m) satisfies the DAC 
conditions, where (R,m) is a local ring. Hence by (Ansari-Toroghy and Farshadi-
far, 2007), E(R/m) where (R,m) is a complete Noetherian local ring is a strong 
comultiplication R -module.
	 Example 2.3. Let p be a prime number and n be a positive integer. Then  
-modules but they are not strong comulti- ٱ n are comultiplication ٱ p∞ and ٱ
plication ٱ -modules. 

a

a
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	 Proposition 2.4. Let M be an R -module. Then we have the following.
	 (a)	Let M be a faithful cogenerator for R and let S = EndR (M). If every  
f ∈ S is trivial, then M is a strong comultiplication R -module.
	 (b)	If R is a Noetherian ring and M is a strong comultiplication R -module, 
then M is an injective R -module.
	 Proof. (a) Let N be a submodule of M. By (Faith, 1995, Theorem 7), N = 
(0:M AnnS(N)), and I = AnnR (0:M I). Now since M is faithful and every f ∈ S is 
trivial, (0:M AnnR (N)) = (0:M AnnS(N)). Therefore, M is a strong comultiplication 
R -module.
	 (b)	By (Ansari-Toroghy and Farshadifar, 2008b, 3.3), for a collection  
             of submodules of M, we have

	 Now the result follows by (Faith, 1976, 23.22) and the fact that for each 
ideal I, we have I = AnnR(0:M I). 

	 Theorem 2.5. Let M be a strong comultiplication R -module and let I be 
an ideal of R. Let N be a submodule of M.
	 (a)	M / N is a comultiplication R -module if and only if AnnR(N)AnnR 
(K / N) = AnnR(K) for each submodule K of M with N ⊆ K.
 	 (b)	If M / N is a comultiplication R -module, then AnnR(N) is a multiplica-
tion ideal of R.
	 (c)	If M /(0:M I) is a comultiplication R -module, then I is a multiplication 
ideal of R.
	 Proof. (a) Suppose that M / N is a comultiplication R -module and K is a 
submodule of M with N ⊆ K. Then     

Hence K = (0:M AnnR(N)AnnR(K / N)). It follows that

because M is a strong comultiplication R -module. Conversely, suppose that  
K / N is a submodule of M / N. Then N ⊆ K  and by hypothesis, AnnR(N)AnnR 
(K / N)) = AnnR(K). Thus

as desired.
	 (b) Let I be an ideal of R contained in AnnR(N). Then IN = 0. Hence N  ⊆  
(0:M I). Thus by part (a),

	 Since M satisfies the DAC conditions, AnnR(N)AnnR((0:M I) / N) = I as 
desired.
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	 (c)	Since M satisfies the DAC conditions, the result follows by part (b).

	 Example 2.6. Let A = K[x, y] be the polynomial ring over a field K in 
two indeterminates x, y. Then A = A / (x2 , y2) is a strong comultiplication  
A -module. But A / Axy is not a comultiplication A -module by (Faith, 1976,  
24.4). Furthermore, this example shows that every homomorphic image of a strong 
comultiplication module is not a comultiplication module in general. 

	 Definition 2.7. We say that a submodule N of an R -module M is copure 
if (N:M I) = N + (0:M I) for each ideal I of R.

	 Example 2.8. Every submodule of ٱ n (as a ٱ -module) is copure, where  
n is square-free.

	 Theorem 2.9. Let M be an R -module and let N and K be submodules of 
M such that N ⊆  K ⊆ M.
	 (a)	If K is a copure submodule of M and N is a copure submodule of K, 
then N is a copure submodule of M.
	 (b)	If N is a copure submodule of M, then N is a copure submodule of K.
	 (c)	If K is a copure submodule of M, then K / N is a copure submodule of 
M / N.  
	 (d)	If N is a copure submodule of M and K / N is a copure submodule of 
M / N, then K is a copure submodule of M.
	 (e)	If N is a copure submodule of M, then there is a bijection between the 
copure submodules of M containing N and the copure submodules of M / N.
	 Proof. (a) Let I be an ideal of R. Then since K is a copure submodule of 
M,

 

	 Now since N is a copure submodule of K, we have

	 (b)	Let I be an ideal of R. Then

 	 (c)	Let I be an ideal of R. Then
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	 (d)	Let I be an ideal of R. Since N is a copure submodule of M,

	
	 Now since K / N is a copure submodule of M / N, it follows that

	 Thus (K:M I) = K + (0:M I) as desired.
	 (e) This follows from part (c) and (d) and the proof is completed.

	 Theorem 2.10. Let

	 be an exact sequence of R -modules and R -homomorphisms. Then the 
following  assertions are equivalent.
	 (a)	ψ (N) is a copure submodule of L.
	 (b)	For every ideal I of R the following sequence is exact.

	 Proof. (a) ⇒ (b) Let I be an ideal of R. Since HomR(R / I,–) is a left exact 
functor, it is enough to show that φ : HomR(R / I, L)  HomR(R / I, K) is epic. 
To see this let f: R / I  K be an R -homomorphism. Then since φ is epic, 
there exists x ∈ L such that φ(x) = f(1+I). Thus Ix ⊆ Ker(φ) = Im(ψ). Therefore 
by assumption, x ψ(n) + y for some y ∈ (0:L I) and n ⊆ N.Thus we can define  g 
: R / I  L given by r + I  ry for each r ∈ R.Therefore, φ(g) = φg = f as 
desired. (b) ⇒ (a). Let I be an ideal of R. Clearly ψ(N) + (0:L I) ⊆ (ψ(N):L I). 
Now let x ∈ (ψ(N):L I). If r1 – r2 ∈ I, then r1φ(x) = r2φ(x). Hence we can define 
an R -homomorphism f : R / I  K given by r + I  rφ(x), where r ∈ R. By 
assumption, φ: HomR(R / I, L)   HomR(R / I, K) is epic. Thus there exists g 
∈ HomR(R / I, L) such that φ(g) = φg = f. This implies that g(1 + I) – x ∈ Im(ψ). 
Hence ψ(n) = g(1 + I) – x for some n ∈ N. It follows that x ∈ ψ (N) + (0:L I) as 
desired.

	 Proposition 2.11. Let M be an R -module.
	 (a)	If M is a multiplication module and N is a small copure submodule of 
M, then N = 0.
	 (b)	If M is a comultiplication module and N is a large pure submodule of 
M, then N = M.
	 (c)	If N and K are submodules of M such that N ∩ K and N + K are copure 
submodules of M. Then N is a copure submodule of M.
	 (d)	If          is a family of submodules of M with copure submodules  
Nλ ⊆ Mλ, then            is a copure submodule of 
	
	 Proof. (a) Since N is copure,
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	 Thus M = (0:M (N:R M)) because N is small. Now since M is a multiplica-
tion module, N = 0.
	 (b) Since N is pure, 

	 Thus AnnR(N)M = 0 because N is large. Now since M is a comultiplication 
module, N = M.
	 (c) Let I be an ideal of R. Clearly (N:M I) ⊇ N + (0:M I). Now let m ∈  
(N:M I). Then Im ⊆ N + K. Since K + N is copure m = x + y + t for some x ∈ N, 
y ∈ K and t ∈ (0:M I). Thus mI = xI + yI. This implies that yI ⊆ N ∩ K. Since  
N ∩ K is copure, y = x' + t' for some x' ∈ N ∩ K and t' ∈ (0:M I). It follows that 
m ∈ N + (0:M I) as desired.
	 (d)	This is straightforward.

	 Theorem 2.12. Let R be a principal ideal domain and let M be an R -module.
	 (a)	Every submodule of M is a pure submodule of M if and only if it is a 
copure submodule of M.
	 (b)	If M is a second module, then every pure submodule of M is a second 
submodule of M.
	 (c)	If M is a prime module, then every copure submodule of M is a prime 
submodule of M.
	 Proof. (a) First suppose that N is a pure submodule of M and r ∈ R. Let  
m ∈ M and rm ∈ N. Then rm = rn, where n ∈ N. Thus m = (m – n) + n ∈  
(0:M r) + N. This shows that N is copure because the reverse inclusion is clear. 
Now suppose that N is a copure submodule of M and r ∈ R. Let m ∈ M and rm 
∈ N.    Then m = n1 + m1, where n1 ∈ N and rm1 = 0. Thus rm = rn1 ∈ rN. This 
shows that N is pure because the reverse inclusion is clear.
	 (b)	Let N be a pure submodule of M and r ∈ R. Then rN = rM ∩ N. 
Since M is a second module, rM = M or rM = 0. Therefore, rN = M ∩ N=N or  
rN = 0 ∩ N = 0 as desired.
	 (c)	Let N be a copure submodule of M and rm ∈ N, where r ∈ R and  
m ∈ M. Since N is a copure, (N:M r) = N + (0:M r). But (0:M r) = 0 or r ∈ AnnR(M) 
because M is a prime module. Therefore, rm ∈ N implies that m ∈(N:M r) = N 
or r ∈(N:R M) as desired.

	 Theorem 2.13. Let M be a strong comultiplication R-module.
	 (a)	N is a copure submodule of M if and only if AnnR(N) is a pure ideal of 
R.
	 (b)	An ideal I of R is pure if and only if (0:M I) is a copure submodule of 
M.
	 (c)	If N is a copure submodule of M, then for every non-empty collection          
         of ideals of R, we have
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	 (d)	If N is a copure submodule of M, then AnnR(N) is the intersection of all       
ideals I of R such that N=(N:M I).
	 (e)	If N is a copure submodule of M, then (N:R M)=AnnRAnnR(N)
	 Proof. (a) Let N be a copure submodule of M and let I be an ideal of R. 
Then since M is comultiplication R -module, 

	 It follows that AnnR(N)I = AnnR(N) ∩ I because M is a strong comultiplica-
tion module. Therefore, AnnR(N) is a pure ideal of R. Conversely, assume that N 
is a submodule of M such that AnnR(N) is a pure ideal of R. Then for each ideal 
I of R, we have

as desired.
	 (b)	Let I be a pure ideal of R. Since M satisfis the DAC conditions, I = 
AnnR(0:M I)Thus the result follows by part (a).
	 (c)	Let            be any collection of ideals of R. Then 

as desired.
	 (d)	Let S be the collection of all ideals I of R with the property that N = 
(N:M I). Then by part (c),

Thus

	 Therefore, AnnR(N) ⊆  I∈S I. On the other hand, since N is pure and M 
is a comultiplication R -module, (N:MAnnR(N))=N. Thus I∈S I ⊆ AnnR(N).
	 (e)	Since N is copure,  

Thus
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	 Hence AnnR(N)(N:R M) = 0. Thus 

	 Conversely, if r ∈ AnnRAnnR(N), then AnnR(N)rM = 0. Hence rM ⊆ (0:M 
AnnR(N))=N. Therefore, R ∈ (N:R M) as desired.

	 The following example shows that in Theorem 2.13 (e) the condition M is 
a strong comultiplication module cannot be omitted.

	 Example 2.14. The ڤ -module                       is not a strong comultipli-
cation ڤ -module. We have                  is a copure submodule of M. But (N:ڤ  
M) ≠ AnnڤAnnڤ (N).

	 Theorem 2.15. Let M be an R -module.
	 (a)	If M is a comultiplication module and Soc(M) is a pure submodule of 
M, then M=soc(M). In particular, if R is a local ring, then M is simple. (Here 
Soc(M) denotes the sum of all minimal submodules of M.)
	 (b)	If M is a multiplication module and Rad(M) is a copure submodule of 
M, then Rad(M)=0. In particular, if R is a local ring, then M is simple. (Here 
Rad(M) denotes the intersection of all maximal submodules of M.)
	 Proof. (a) Set I=AnnR(Soc(M)). Since Soc(M) is pure, IM ∩ Soc(M) = ISoc(M) 
= 0. Now if IM ≠  0, then by Remark 1.2, there exists a minimal submodule  
K of M such that K ⊆ IM. Thus K = K ∩ Soc(M) = 0, which is a contradiction. 
Therefore IM = 0.  Hence I ⊆ AnnR(M). Thus M = Soc(M) because M is a comul-
tiplication R -module. The last assertion follows from this and Remark 1.2.
	 (b)	Set I = (Rad(M):R M). Since Rad(M) is copure,

	 This implies that M = Rad(M)+(0:M I) Now if (0:M I) ≠ M, by (El-Bast and 
Smith (1988), 2.5), there exists a maximal submodule K of M such that (0:M I) 
⊆ K. Thus M = Rad(M) + K = K, which is a contradiction. Thus (0:M I) = M. It 
follows that Rad(M) = IM = 0 because M is a multiplication R -module. The last 
assertion follows from this and (El-Bast and Smith, 1988, 2.5).
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