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ABSTRACT

In this paper, we introduced the concepts of strong comultiplication
modules and copure submodules and some related results more obtained.
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INTRODUCTION

Throughout this paper, R will denote a commutative ring with iden-
tity and [J will denote the ring of integers. The dual notion of multiplica-
tion modules was introduced by Ansari-Toroghy and Farshadifar (2007)
and the first properties of this class of modules had been considered. We
recall that M is a comultiplication module (Ansari-Toroghy and Farshadifar,
2007) if for every submodule N of M there exists an ideal / of R such that
N = (0:,, I). Also, it is shown that (Ansari-Toroghy and Farshadifar, 2007, 3.7)
M is a comultiplication module if and only if for each submodule N of M, N =
(0 4, Anny(N)). Let M be an R-module. In Section 3 of this paper, we will introduce
the concepts of strong comultiplication modules and copure submodules. M is said
to be a strong comultiplication module if M is a comultiplication R-module which
satisfies the double annihilator conditions (see 1.1 (d)). Furthermore, a submodule
N of M is said to be copure if (N:},I) = N + (0:,, I) for each ideal / of R. Now let
M be an R-module and let N be a submodule of M. Among the other results, it is
shown (see 2.5) that whenever M is a strong comultiplication module, M / N is a
comultiplication R-module if and only if Ann, (N) Ann, (K / N) = Anny (K) for
each submodule K of M with N © K Moreover, it is shown (see 2.12) that pure
and copure submodules of M are the same over a principal ideal domain. Also it
is proved (see 2.13) that whenever M is a strong comultiplication module, N is a
copure submodule of M if and only if Ann, (N) is a pure ideal of R. Moreover, it
is shown (see 2.13) that if N is a copure submodule of a strong comultiplication
module M, then (N:, M) = Anny Annj (N) and Anny (N) is the intersection of all
ideals / of R such that N = (N:,, I). Finally, it is proved (see 2.15) that if M is a
comultiplication (resp. multiplication) module such that Soc(M) (resp. Rad(M))
is a pure (resp. copure) submodule of M, then M = Soc(M) (resp. Rad(M)=0).
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1 Auxiliary results

Definition 1.1.

(a) An R -module M is said to be a multiplication module if for every sub-
module N of M there exists an ideal / of R such that N = IM.

(b) An R -module M is said to be a comultiplication module (Ansari-Toroghy
and Farshadifar, 2007) if for every submodule N of M there exists an ideal / of
R such that N = (0:,, 1).

(c) A submodule N of an R -module M is said to be pure (Anderson and
Fuller, 1974) if IN = IM N N for every ideal / of R.

(d)An R -module M satisfies the double annihilator conditions (DAC for
short) (Faith (1995)) if for each ideal / of R, we have I = Anny (0:), I).

(e) An R -module L is said to be cocyclic (Yassemi, 1998) if L is isomorphic
to a submodule of E(R / P) for some maximal ideal P of R.

(f) An endomorphism f of an R -module M is said to be #ivial (Choi and
Smith, 1994) if there exists @ € R such that f{m) = am for all m € M.

(g) A submodule N of an R -module M is said to be large (resp. small) if
for every submodule L of M, N N K # 0 (resp. N + L = M implies that L = M
(Anderson and Fuller, 1974).

(h) A non-zero submodule N of an R -module M is said to be a second
submodule of M (Yassemi, 2001) if for each @ € R, the homothety N —— N is
either surjective or zero. Also M is said to be a second module if M is a second
submodule of itself.

(i) A proper submodule N of an R -module M is said to be prime if for
each a € R, the homothety M / N —— M/ N is either injective or zero. Also
M is said to be a prime module if the zero submodule of M is prime.

Remark 1.2 (Ansari-Toroghy and Farshadifar, 2008a). Let M be a
comultiplication R -module. Then every non-zero submodule of M contains a
minimal submodule of M. Moreover, every minimal submodule of M is of the
form (0:,, P) where P is a maximal ideal of R.

2 Main results

Definition 2.1. We say that an R -module M is a strong comultiplication
module if M is a comultiplication R -module and satisfies the DAC conditions.

Example 2.2. By (Sharpe and Vamos, 1972), E(R / m) satisfies the DAC
conditions, where (R,m) is a local ring. Hence by (Ansari-Toroghy and Farshadi-
far, 2007), E(R/m) where (R,m) is a complete Noetherian local ring is a strong
comultiplication R -module.

Example 2.3. Let p be a prime number and » be a positive integer. Then
0 o and LI  are comultiplication [ -modules but they are not strong comulti-
plication 7] -modules.
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Proposition 2.4. Let M be an R -module. Then we have the following.

(a) Let M be a faithful cogenerator for R and let S = End, (M). If every
f € Sis trivial, then M is a strong comultiplication R -module.

(b)If R is a Noetherian ring and M is a strong comultiplication R -module,
then M is an injective R -module.

Proof. (a) Let N be a submodule of M. By (Faith, 1995, Theorem 7), N =
(0:), AnnyN)), and I = Anny, (0:,, I). Now since M is faithful and every f € S is
trivial, (0:,, Anny (N)) = (0:,, Ann(N)). Therefore, M is a strong comultiplication
R -module.

(b)By (Ansari-Toroghy and Farshadifar, 2008b, 3.3), for a collection
{M, },c, of submodules of M, we have

(02 [Ny A (M) = (0, Anny (M),

Now the result follows by (Faith, 1976, 23.22) and the fact that for each
ideal 7, we have I = Anny(0:,, I).

Theorem 2.5. Let M be a strong comultiplication R -module and let / be
an ideal of R. Let N be a submodule of M.

(a)M / N is a comultiplication R -module if and only if Anny(N)Ann,
(K /' N) = Anny(K) for each submodule K of M with N C K.

(b)If M/ N is a comultiplication R -module, then Anny(N) is a multiplica-
tion ideal of R.

(c)If M /(0:,, I) is a comultiplication R -module, then / is a multiplication
ideal of R.

Proof. (a) Suppose that M / N is a comultiplication R -module and K is a
submodule of M with N C K. Then

K/N=(0:,,, Ann,(K/N))=(0:,, Ann,(N)Ann,(K/N))/ N
Hence K = (0:,, Anny(N)Anny(K / N)). It follows that
Ann,(K) = Ann,(N)Ann, (K / N)

because M is a strong comultiplication R -module. Conversely, suppose that
K/ N is a submodule of M / N. Then N C K and by hypothesis, Anny(N)Ann,
(K / N)) = Anny(K). Thus

(0:,,,y Anny(K/ N))=(0:,, Ann,(N)Ann,(K/N))/ N
=(0:,, Anny(K))/N=K/N
as desired.

(b) Let 7 be an ideal of R contained in Anny(N). Then IN = 0. Hence N C
(0:), D). Thus by part (a),

Ann,(N)Ann,((0:,, I)/ N)= Ann,(0:,, I).

Since M satisfies the DAC conditions, Anny(N)Anng((0:,, ) / N) = I as
desired.
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(c) Since M satisfies the DAC conditions, the result follows by part (b).

Example 2.6. Let 4 = K[x, y] be the polynomial ring over a field K in
two indeterminates x, y. Then 4 = 4 / (x? , y?) is a strong comultiplication
A -module. But 4 / Axy is not a comultiplication 4 -module by (Faith, 1976,
24 .4). Furthermore, this example shows that every homomorphic image of a strong
comultiplication module is not a comultiplication module in general.

Definition 2.7. We say that a submodule N of an R -module M is copure
if (NV:, 1) = N + (0:, ]) for each ideal / of R.

Example 2.8. Every submodule of [I  (as a [1 -module) is copure, where
n is square-free.

Theorem 2.9. Let M be an R -module and let N and K be submodules of
M such that N& K C M.
(a)If K is a copure submodule of M and N is a copure submodule of K,
then N is a copure submodule of M.
(b)If N is a copure submodule of M, then N is a copure submodule of K.
(c)If K is a copure submodule of M, then K / N is a copure submodule of
M/ N.
(d)If N is a copure submodule of M and K / N is a copure submodule of
M / N, then K is a copure submodule of M.
(e) If N is a copure submodule of M, then there is a bijection between the
copure submodules of M containing N and the copure submodules of M / N.
Proof. (a) Let / be an ideal of R. Then since K is a copure submodule of
M,
(N:, )=(NNK:, I)=(N:, DN(K:, I)=
(N:, DIWK +(0:), I))=(N: I)+(0:,, I).

Now since N is a copure submodule of K, we have
(N:yy D=N+(0:, )+ (0:,, )=N+(0:,, I).

(b)Let [ be an ideal of R. Then
(N:ig D=KN(N:, D=K(N+(0:, )=
KAN+KN(O:, I)=N+(0:, I).

(c)Let / be an ideal of R. Then

(KIN:y,wD=(K:, I)/N=(K:, N+KN(N:, 1)/ N

(K+(0:, N+ KN(N:,, I))/N=K/N+((N:, DN(K +(0:, 1))/ N
K/N+(N:, DN(K:, 1))/N=K/N+(N:, I)/N =
K/N+(0:,,, ).
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(d)Let / be an ideal of R. Since N is a copure submodule of M,
O:,yD=WN:, H)/N=(0:,)+N)/N.

Now since K / N is a copure submodule of M / N, it follows that
(K:y )/ N=(K/N:,,, )=KI/N+(0:,,, )=
K/N+((0:,I)+N)/N=(K+(0:, I))/N.

Thus (K:,, I) = K + (0:,, ) as desired.

(e) This follows from part (c) and (d) and the proof is completed.

Theorem 2.10. Let

0 N——[L——K 0

be an exact sequence of R -modules and R -homomorphisms. Then the
following assertions are equivalent.

(a)y (N) is a copure submodule of L.

(b)For every ideal / of R the following sequence is exact.

0—— Hom (R /I, N)y—— Hom, (R / I, L)—%— Hom, (R / I, K)—>0.

Proof. (a) = (b) Let I be an ideal of R. Since Homy(R / 1,-) is a left exact
functor, it is enough to show that ¢ : Hom (R / I, L) —— Hom (R / I, K) is epic.
To see this let /i R / I —— K be an R -homomorphism. Then since ¢ is epic,
there exists x € L such that ¢(x) = f{1+]). Thus Ix C Ker(¢p) = Im(p). Therefore
by assumption, x Y(n) + y for some y € (0:; /) and n» C N.Thus we can define g
:R/I—— L given by r + I = ry for each r € R.Therefore, ¢(g) = dg = f as
desired. (b) = (a). Let I be an ideal of R. Clearly y(N) + (0:, 1) € (W(N):, ).
Now let x € (W(N):, ). If r, — r, € I, then r,¢(x) = r,¢(x). Hence we can define
an R -homomorphism f: R / [ —— K given by r + I = r¢(x), where » € R. By
assumption, ¢: Homp(R / I, L) —— Homy(R / I, K) is epic. Thus there exists g
€ Homy(R / I, L) such that ¢(g) = ¢g = f. This implies that g(1 + 1) — x € Im(y).
Hence y(n) = g(1 + I) — x for some n € N. It follows that x € ¢ (V) + (0:, ]) as
desired.

Proposition 2.11. Let M be an R -module.

(a)If M is a multiplication module and N is a small copure submodule of
M, then N = 0.

(b)If M is a comultiplication module and N is a large pure submodule of
M, then N = M.

(c)If N and K are submodules of M such that N N K and N + K are copure
submodules of M. Then N is a copure submodule of M.

(d)If {M,}, is a family of submodules of M with copure submodules
N, C M,, thenzka\ N, is a copure submodule of zka\ M;.

Proof. (a) Since N is copure,
M=(N:, (N M)=N+(0:, (N M)).
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Thus M = (0:,, (N:p M)) because N is small. Now since M is a multiplica-
tion module, N = 0.
(b) Since N is pure,

0= Ann,(N)N = Ann,(N)MN.

Thus Ann(N)M = 0 because N is large. Now since M is a comultiplication
module, N = M.

(c) Let 7 be an ideal of R. Clearly (N:;, 1) 2 N + (0:,, ). Now let m €
(N:y; D). Then Im C N + K. Since K + N is copure m = x + y + ¢ for some x € N,
y €K and t € (0:), ). Thus m/ = xI + yl. This implies that y/ C N N K. Since
N N K is copure, y = x"+ ' for some x' € N N K and ¢' € (0:,, ]). It follows that
m € N + (0:,, 1) as desired.

(d) This is straightforward.

Theorem 2.12. Let R be a principal ideal domain and let M be an R -module.

(a) Every submodule of M is a pure submodule of M if and only if it is a
copure submodule of M.

(b)If M is a second module, then every pure submodule of M is a second
submodule of M.

(c)If M is a prime module, then every copure submodule of M is a prime
submodule of M.

Proof. (a) First suppose that N is a pure submodule of M and r € R. Let
m € M and rm € N. Then rm = rn, where n € N. Thus m = (m —n) + n €
(0:), r) + N. This shows that N is copure because the reverse inclusion is clear.
Now suppose that N is a copure submodule of M and r € R. Let m € M and rm
€N. Thenm =n,+ m,;, where n, € N and rm; = 0. Thus rm = rn, € rN. This
shows that N is pure because the reverse inclusion is clear.

(b)Let N be a pure submodule of M and r € R. Then rN = rM N N.
Since M is a second module, »M = M or rM = 0. Therefore, YN = M N N=N or
rN =0 N N =0 as desired.

(c)Let N be a copure submodule of M and rm € N, where r € R and
m € M. Since N is a copure, (N:),r) =N+ (0:), 7). But (0:,7) = 0 or r € Ann (M)
because M is a prime module. Therefore, 7m € N implies that m €(N:, r) = N
or r €(N:, M) as desired.

Theorem 2.13. Let M be a strong comultiplication R-module.

(a) N is a copure submodule of M if and only if Anny(N) is a pure ideal of
R.

(b) An ideal 7 of R is pure if and only if (0:,, I) is a copure submodule of
M.

(c)If N is a copure submodule of M, then for every non-empty collection
L, },enof ideals of R, we have

Nty 1) =(N 2y, () 1).

EA AEA
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(d)If N is a copure submodule of M, then Anny(N) is the intersection of all
ideals 7 of R such that N=(N:,, I).

(e)If N is a copure submodule of M, then (N:, M)=AnnyAnn (N)

Proof. (a) Let N be a copure submodule of M and let / be an ideal of R.
Then since M is comultiplication R -module,

(0:,, Ann,(N)I)=(N:,, I)=(0:,, Ann,(N)NI).
It follows that Ann z(N)I = Ann,(N) N I because M is a strong comultiplica-
tion module. Therefore, Anny(N) is a pure ideal of R. Conversely, assume that N

is a submodule of M such that Anny(N) is a pure ideal of R. Then for each ideal
1 of R, we have

(N:, I)=(0:,, Ann,(N)I)=(0:,, Ann,(N)NI)
=N+(0:, 1)

as desired.

(b)Let / be a pure ideal of R. Since M satisfis the DAC conditions, I =
Anng(0:,, I)Thus the result follows by part (a).

(c)Let {7, },c, be any collection of ideals of R. Then

Ann,, (2 (N L) =), Amng(N 2y, 1) =

ﬂxeA Ann,((0:,, Anny(N)):,, I,) =
N, Ann (NI, = Ann, (N, _, 1)

as desired.
(d)Let S be the collection of all ideals / of R with the property that N =
(N:M I). Then by part (c),

N = E(N:M =Nz, ﬂlesl)'
Thus
Anny(N) = Anny(N 3, ﬂ1es 1) = Ann,(0:,, Ann, (N)(ﬂ[ES )

= Anny (N)() o D-

Therefore, Ann g (N) C m ies 1. On the other hand, since N is pure and M

is a comultiplication R -module, (N:MAnny(N))=N. Thus ﬂIES I € Anny(N).
(e) Since N is copure,

M=(N:, (N:y M))=N+(0:, (N:, M)).

Thus
0= Ann,(M) = Ann,(N)( Ann,(0:,, (N :;, M))

= Ann,(N)(N :, M).
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Hence Anng(N)(N:p M) = 0. Thus
(N, M) = Anny,Ann,(N).

Conversely, if r € AnnpAnng(N), then Anny(N)rM = 0. Hence tM C (0:,,
Anng(N))=N. Therefore, R € (N:, M) as desired.

The following example shows that in Theorem 2.13 (e) the condition M is
a strong comultiplication module cannot be omitted.

Example 2.14. The [] -module M =[] ~ @ e is not a strong comultipli-
cation [ ] -module. We have N =0®U -~ is a copure submodule of M. But (N:
M) = Ann_Ann_ (N).

Theorem 2.15. Let M be an R -module.

(a) If M is a comultiplication module and Soc(M) is a pure submodule of
M, then M=soc(M). In particular, if R is a local ring, then M is simple. (Here
Soc(M) denotes the sum of all minimal submodules of M.)

(b)If M is a multiplication module and Rad(M) is a copure submodule of
M, then Rad(M)=0. In particular, if R is a local ring, then M is simple. (Here
Rad(M) denotes the intersection of all maximal submodules of M.)

Proof. (a) Set I=Anny(Soc(M)). Since Soc(M) is pure, IM N Soc(M) = ISoc(M)
= 0. Now if IM = 0, then by Remark 1.2, there exists a minimal submodule
K of M such that K € IM. Thus K = K N Soc(M) = 0, which is a contradiction.
Therefore /M = 0. Hence I C Anny(M). Thus M = Soc(M) because M is a comul-
tiplication R -module. The last assertion follows from this and Remark 1.2.

(b)Set I = (Rad(M):, M). Since Rad(M) is copure,

(Rad(M):,, I) = Rad(M)+(0:,, I).

This implies that M = Rad(M)+(0:,, I) Now if (0:,, ) = M, by (El-Bast and
Smith (1988), 2.5), there exists a maximal submodule K of M such that (0:, /)
C K. Thus M = Rad(M) + K = K, which is a contradiction. Thus (0:,, /) = M. It
follows that Rad(M) = IM = 0 because M is a multiplication R -module. The last
assertion follows from this and (EI-Bast and Smith, 1988, 2.5).
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