Strong Comultiplication Modules

H. Ansari-Toroghy* and F. Farshadifar

Department of Mathematics, Faculty of Science, University of Guilan, P. O. Box 1914, Rasht, Iran

*Corresponding author. E-mail: <u>ansari@guilan.ac.ir</u>

ABSTRACT

In this paper, we introduced the concepts of strong comultiplication modules and copure submodules and some related results more obtained.

Key Words: Comultiplication modules, Strong comultiplication modules, Copure submodules

INTRODUCTION

Throughout this paper, R will denote a commutative ring with identity and \Box will denote the ring of integers. The dual notion of multiplication modules was introduced by Ansari-Toroghy and Farshadifar (2007) and the first properties of this class of modules had been considered. We recall that M is a comultiplication module (Ansari-Toroghy and Farshadifar, 2007) if for every submodule N of M there exists an ideal I of R such that $N = (0:_{M} I)$. Also, it is shown that (Ansari-Toroghy and Farshadifar, 2007, 3.7) M is a comultiplication module if and only if for each submodule N of M, N = $(0_M Ann_R(N))$. Let M be an R-module. In Section 3 of this paper, we will introduce the concepts of strong comultiplication modules and copure submodules. M is said to be a strong comultiplication module if M is a comultiplication R-module which satisfies the double annihilator conditions (see 1.1 (d)). Furthermore, a submodule N of M is said to be *copure* if $(N_M I) = N + (0_M I)$ for each ideal I of R. Now let *M* be an *R*-module and let *N* be a submodule of *M*. Among the other results, it is shown (see 2.5) that whenever M is a strong comultiplication module, M / N is a comultiplication R-module if and only if Ann_R (N) Ann_R (K / N) = Ann_R (K) for each submodule K of M with $N \subseteq K$ Moreover, it is shown (see 2.12) that pure and copure submodules of M are the same over a principal ideal domain. Also it is proved (see 2.13) that whenever M is a strong comultiplication module, N is a copure submodule of M if and only if Ann_R (N) is a pure ideal of R. Moreover, it is shown (see 2.13) that if N is a copure submodule of a strong comultiplication module M, then $(N_R M) = Ann_R Ann_R (N)$ and $Ann_R (N)$ is the intersection of all ideals I of R such that $N = (N_M I)$. Finally, it is proved (see 2.15) that if M is a comultiplication (resp. multiplication) module such that Soc(M) (resp. Rad(M)) is a pure (resp. copure) submodule of M, then M = Soc(M) (resp. Rad(M)=0).

1 Auxiliary results

Definition 1.1.

(a) An *R* -module *M* is said to be a *multiplication module* if for every submodule *N* of *M* there exists an ideal *I* of *R* such that N = IM.

(b) An *R*-module *M* is said to be a *comultiplication module* (Ansari-Toroghy and Farshadifar, 2007) if for every submodule *N* of *M* there exists an ideal *I* of *R* such that $N = (0:_M I)$.

(c) A submodule N of an R -module M is said to be *pure* (Anderson and Fuller, 1974) if $IN = IM \cap N$ for every ideal I of R.

(d) An *R* -module *M* satisfies *the double annihilator conditions* (*DAC* for short) (Faith (1995)) if for each ideal *I* of *R*, we have $I = Ann_R (0:_M I)$.

(e) An *R* -module *L* is said to be *cocyclic* (Yassemi, 1998) if *L* is isomorphic to a submodule of E(R / P) for some maximal ideal *P* of *R*.

(f) An endomorphism f of an R -module M is said to be *trivial* (Choi and Smith, 1994) if there exists $a \in R$ such that f(m) = am for all $m \in M$.

(g) A submodule N of an R -module M is said to be *large* (resp. *small*) if for every submodule L of M, $N \cap K \neq 0$ (resp. N + L = M implies that L = M (Anderson and Fuller, 1974).

(h) A non-zero submodule N of an R -module M is said to be a second submodule of M (Yassemi, 2001) if for each $a \in R$, the homothety $N \xrightarrow[a]{} N$ is either surjective or zero. Also M is said to be a second module if M is a second submodule of itself.

(i) A proper submodule N of an R -module M is said to be *prime* if for each $a \in R$, the homothety $M / N \xrightarrow[a]{} M / N$ is either injective or zero. Also M is said to be a *prime module* if the zero submodule of M is prime.

Remark 1.2 (Ansari-Toroghy and Farshadifar, 2008a). Let M be a comultiplication R -module. Then every non-zero submodule of M contains a minimal submodule of M. Moreover, every minimal submodule of M is of the form $(0:_M P)$ where P is a maximal ideal of R.

2 Main results

Definition 2.1. We say that an R -module M is a strong comultiplication module if M is a comultiplication R -module and satisfies the DAC conditions.

Example 2.2. By (Sharpe and Vamos, 1972), E(R / m) satisfies the *DAC* conditions, where (R,m) is a local ring. Hence by (Ansari-Toroghy and Farshadi-far, 2007), E(R/m) where (R,m) is a complete Noetherian local ring is a strong comultiplication R -module.

Example 2.3. Let *p* be a prime number and *n* be a positive integer. Then $\square_{p^{\infty}}$ and \square_{n} are comultiplication \square -modules but they are not strong comultiplication \square -modules.

Proposition 2.4. Let *M* be an *R* -module. Then we have the following.

(a) Let *M* be a faithful cogenerator for *R* and let $S = End_R$ (*M*). If every $f \in S$ is trivial, then *M* is a strong comultiplication *R* -module.

 (\bullet)

(b) If R is a Noetherian ring and M is a strong comultiplication R -module, then M is an injective R -module.

Proof. (a) Let *N* be a submodule of *M*. By (Faith, 1995, Theorem 7), $N = (0:_M Ann_S(N))$, and $I = Ann_R (0:_M I)$. Now since *M* is faithful and every $f \in S$ is trivial, $(0:_M Ann_R (N)) = (0:_M Ann_S(N))$. Therefore, *M* is a strong comultiplication *R* -module.

(b)By (Ansari-Toroghy and Farshadifar, 2008b, 3.3), for a collection $\{M_{\lambda}\}_{\lambda \in \Lambda}$ of submodules of M, we have

$$(0:_{M}\bigcap_{\lambda\in\Lambda}Ann_{R}(M_{\lambda}))=\sum_{\lambda\in\Lambda}(0:_{M}Ann_{R}(M_{\lambda})).$$

Now the result follows by (Faith, 1976, 23.22) and the fact that for each ideal *I*, we have $I = Ann_R(0:_M I)$.

Theorem 2.5. Let M be a strong comultiplication R -module and let I be an ideal of R. Let N be a submodule of M.

(a) M / N is a comultiplication R -module if and only if $Ann_R(N)Ann_R(K / N) = Ann_R(K)$ for each submodule K of M with $N \subseteq K$.

(b) If M / N is a comultiplication R -module, then $Ann_R(N)$ is a multiplication ideal of R.

(c) If $M/(0:_M I)$ is a comultiplication R -module, then I is a multiplication ideal of R.

Proof. (a) Suppose that M / N is a comultiplication R -module and K is a submodule of M with $N \subseteq K$. Then

 $K / N = (0:_{M/N} Ann_R(K / N)) = (0:_M Ann_R(N)Ann_R(K / N)) / N$

Hence $K = (0:_M Ann_R(N)Ann_R(K / N))$. It follows that

$$Ann_{R}(K) = Ann_{R}(N)Ann_{R}(K/N)$$

because M is a strong comultiplication R -module. Conversely, suppose that K / N is a submodule of M / N. Then $N \subseteq K$ and by hypothesis, $Ann_R(N)Ann_R(K / N)) = Ann_R(K)$. Thus

$$(0:_{M/N} Ann_{R}(K / N)) = (0:_{M} Ann_{R}(N)Ann_{R}(K / N)) / N$$
$$= (0:_{M} Ann_{R}(K)) / N = K / N$$

as desired.

(b) Let *I* be an ideal of *R* contained in $Ann_R(N)$. Then IN = 0. Hence $N \subseteq (0:_M I)$. Thus by part (a),

$$Ann_{R}(N)Ann_{R}((0:_{M} I)/N) = Ann_{R}(0:_{M} I).$$

Since *M* satisfies the *DAC* conditions, $Ann_R(N)Ann_R((0:_M I) / N) = I$ as desired.

(c) Since *M* satisfies the *DAC* conditions, the result follows by part (b).

Example 2.6. Let A = K[x, y] be the polynomial ring over a field K in two indeterminates x, y. Then $\overline{A} = A / (x^2, y^2)$ is a strong comultiplication \overline{A} -module. But $\overline{A} / \overline{Axy}$ is not a comultiplication \overline{A} -module by (Faith, 1976, 24.4). Furthermore, this example shows that every homomorphic image of a strong comultiplication module is not a comultiplication module in general.

Definition 2.7. We say that a submodule N of an R -module M is copure if $(N:_M I) = N + (0:_M I)$ for each ideal I of R.

Example 2.8. Every submodule of \Box_n (as a \Box -module) is copure, where *n* is square-free.

Theorem 2.9. Let *M* be an *R* -module and let *N* and *K* be submodules of *M* such that $N \subseteq K \subseteq M$.

(a) If K is a copure submodule of M and N is a copure submodule of K, then N is a copure submodule of M.

(b) If N is a copure submodule of M, then N is a copure submodule of K.

(c) If K is a copure submodule of M, then K / N is a copure submodule of M / N.

(d) If N is a copure submodule of M and K / N is a copure submodule of M / N, then K is a copure submodule of M.

(e) If N is a copure submodule of M, then there is a bijection between the copure submodules of M containing N and the copure submodules of M / N.

Proof. (a) Let I be an ideal of R. Then since K is a copure submodule of M,

$$(N:_{M} I) = (N \cap K:_{M} I) = (N:_{M} I) \cap (K:_{M} I) = (N:_{M} I) \cap (K :_{M} I) = (N:_{M} I) \cap (K + (0:_{M} I)) = (N:_{K} I) + (0:_{M} I).$$

Now since N is a copure submodule of K, we have

$$(N:_{M} I) = N + (0:_{K} I) + (0:_{M} I) = N + (0:_{M} I).$$

(b) Let *I* be an ideal of *R*. Then

$$(N:_{K} I) = K \cap (N:_{M} I) = K \cap (N + (0:_{M} I)) = K \cap (N + K \cap (0:_{M} I)) = N + (0:_{M} I).$$

(c) Let I be an ideal of R. Then

 $(K / N:_{M/N} I) = (K:_{M} I) / N = ((K:_{M} I) + K \cap (N:_{M} I)) / N$ $(K + (0:_{M} I) + K \cap (N:_{M} I)) / N = K / N + ((N:_{M} I) \cap (K + (0:_{M} I)) / N$ $K / N + ((N:_{M} I) \cap (K:_{M} I)) / N = K / N + (N:_{M} I) / N =$ $K / N + (0:_{M/N} I).$

Book Journal 2009 V8/1.indb 108

(d) Let I be an ideal of R. Since N is a copure submodule of M,

$$(0:_{M/N} I) = (N:_{M} I) / N = ((0:_{M} I) + N) / N.$$

Now since K / N is a copure submodule of M / N, it follows that

$$(K:_{M} I) / N = (K / N:_{M/N} I) = K / N + (0:_{M/N} I) = K / N + ((0:_{M} I) + N) / N = (K + (0:_{M} I)) / N.$$

Thus $(K_{M}I) = K + (0_{M}I)$ as desired.

(e) This follows from part (c) and (d) and the proof is completed.

Theorem 2.10. Let

 $0 \longrightarrow N \xrightarrow{\psi} L \xrightarrow{\varphi} K \longrightarrow 0$

be an exact sequence of R -modules and R -homomorphisms. Then the following assertions are equivalent.

(a) ψ (N) is a copure submodule of L.

(b) For every ideal I of R the following sequence is exact.

$$0 \longrightarrow Hom_{R}(R/I, N) \xrightarrow{\Psi} Hom_{R}(R/I, L) \xrightarrow{\varphi} Hom_{R}(R/I, K) \longrightarrow 0.$$

Proof. (a) \Rightarrow (b) Let I be an ideal of R. Since $Hom_R(R \mid I, -)$ is a left exact functor, it is enough to show that $\overline{\phi} : Hom_R(R \mid I, L) \longrightarrow Hom_R(R \mid I, K)$ is epic. To see this let $f: R \mid I \longrightarrow K$ be an R -homomorphism. Then since ϕ is epic, there exists $x \in L$ such that $\phi(x) = f(1+I)$. Thus $Ix \subseteq Ker(\phi) = Im(\psi)$. Therefore by assumption, $x \psi(n) + y$ for some $y \in (0:_L I)$ and $n \subseteq N$. Thus we can define g: $R \mid I \longrightarrow L$ given by $r + I \mapsto ry$ for each $r \in R$. Therefore, $\overline{\phi}(g) = \phi g = f$ as desired. (b) \Rightarrow (a). Let I be an ideal of R. Clearly $\psi(N) + (0:_L I) \subseteq (\psi(N):_L I)$. Now let $x \in (\psi(N):_L I)$. If $r_1 - r_2 \in I$, then $r_I\phi(x) = r_2\phi(x)$. Hence we can define an R -homomorphism $f: R \mid I \longrightarrow K$ given by $r + I \mapsto r\phi(x)$, where $r \in R$. By assumption, $\overline{\phi}: Hom_R(R \mid I, L) \longrightarrow Hom_R(R \mid I, K)$ is epic. Thus there exists $g \in Hom_R(R \mid I, L)$ such that $\overline{\phi}(g) = \phi g = f$. This implies that $g(1 + I) - x \in Im(\psi)$. Hence $\psi(n) = g(1 + I) - x$ for some $n \in N$. It follows that $x \in \psi(N) + (0:_L I)$ as desired.

Proposition 2.11. Let *M* be an *R* -module.

(a) If M is a multiplication module and N is a small copure submodule of M, then N = 0.

(b) If M is a comultiplication module and N is a large pure submodule of M, then N = M.

(c) If N and K are submodules of M such that $N \cap K$ and N + K are copure submodules of M. Then N is a copure submodule of M.

(d) If $\{M_{\lambda}\}_{\Lambda}$ is a family of submodules of M with copure submodules $N_{\lambda} \subseteq M_{\lambda}$, then $\sum_{\lambda \in \Lambda} N_{\lambda}$ is a copure submodule of $\sum_{\lambda \in \Lambda} M_{\lambda}$.

Proof. (a) Since N is copure,

 $M = (N:_{M} (N:_{R} M)) = N + (0:_{M} (N:_{R} M)).$

Thus $M = (0:_M (N:_R M))$ because N is small. Now since M is a multiplication module, N = 0.

(b) Since N is pure,

$$0 = Ann_{R}(N)N = Ann_{R}(N)M \cap N.$$

Thus $Ann_R(N)M = 0$ because N is large. Now since M is a comultiplication module, N = M.

(c) Let *I* be an ideal of *R*. Clearly $(N:_M I) \supseteq N + (0:_M I)$. Now let $m \in (N:_M I)$. Then $Im \subseteq N + K$. Since K + N is copure m = x + y + t for some $x \in N$, $y \in K$ and $t \in (0:_M I)$. Thus mI = xI + yI. This implies that $yI \subseteq N \cap K$. Since $N \cap K$ is copure, y = x' + t' for some $x' \in N \cap K$ and $t' \in (0:_M I)$. It follows that $m \in N + (0:_M I)$ as desired.

(d) This is straightforward.

Theorem 2.12. Let R be a principal ideal domain and let M be an R -module.(a) Every submodule of M is a pure submodule of M if and only if it is a copure submodule of M.

(b) If M is a second module, then every pure submodule of M is a second submodule of M.

(c) If M is a prime module, then every copure submodule of M is a prime submodule of M.

Proof. (a) First suppose that N is a pure submodule of M and $r \in R$. Let $m \in M$ and $rm \in N$. Then rm = rn, where $n \in N$. Thus $m = (m - n) + n \in (0:_M r) + N$. This shows that N is copure because the reverse inclusion is clear. Now suppose that N is a copure submodule of M and $r \in R$. Let $m \in M$ and $rm \in N$. Then $m = n_1 + m_1$, where $n_1 \in N$ and $rm_1 = 0$. Thus $rm = rn_1 \in rN$. This shows that N is pure because the reverse inclusion is clear.

(b) Let N be a pure submodule of M and $r \in R$. Then $rN = rM \cap N$. Since M is a second module, rM = M or rM = 0. Therefore, $rN = M \cap N = N$ or $rN = 0 \cap N = 0$ as desired.

(c) Let N be a copure submodule of M and $rm \in N$, where $r \in R$ and $m \in M$. Since N is a copure, $(N:_M r) = N + (0:_M r)$. But $(0:_M r) = 0$ or $r \in Ann_R(M)$ because M is a prime module. Therefore, $rm \in N$ implies that $m \in (N:_M r) = N$ or $r \in (N:_R M)$ as desired.

Theorem 2.13. Let *M* be a strong comultiplication *R*-module.

(a) N is a copure submodule of M if and only if $Ann_R(N)$ is a pure ideal of R.

(b) An ideal I of R is pure if and only if $(0:_M I)$ is a copure submodule of M.

(c) If N is a copure submodule of M, then for every non-empty collection $\{I_{\lambda}\}_{\lambda \in \Lambda}$ of ideals of R, we have

$$\sum_{\lambda \in \Lambda} (N :_M I_{\lambda}) = (N :_M \bigcap_{\lambda \in \Lambda} I_{\lambda}).$$

(d) If N is a copure submodule of M, then $Ann_R(N)$ is the intersection of all ideals I of R such that $N=(N:_M I)$.

(e) If N is a copure submodule of M, then $(N:_R M) = Ann_R Ann_R(N)$

()

Proof. (a) Let N be a copure submodule of M and let I be an ideal of R. Then since M is comultiplication R -module,

$$(0:_{M} Ann_{R}(N)I) = (N:_{M}I) = (0:_{M} Ann_{R}(N) \cap I).$$

It follows that $Ann_R(N)I = Ann_R(N) \cap I$ because *M* is a strong comultiplication module. Therefore, $Ann_R(N)$ is a pure ideal of *R*. Conversely, assume that *N* is a submodule of *M* such that $Ann_R(N)$ is a pure ideal of *R*. Then for each ideal *I* of *R*, we have

$$(N:_{M} I) = (0:_{M} Ann_{R}(N)I) = (0:_{M} Ann_{R}(N) \cap I)$$
$$= N + (0:_{M} I)$$

as desired.

(b)Let *I* be a pure ideal of *R*. Since *M* satisfis the *DAC* conditions, $I = Ann_R(0:_M I)$ Thus the result follows by part (a).

(c) Let $\{I_{\lambda}\}_{\lambda \in \Lambda}$ be any collection of ideals of R. Then

$$Ann_{R}(\sum_{\lambda \in \Lambda} (N :_{M} I_{\lambda})) = \bigcap_{\lambda \in \Lambda} Ann_{R}(N :_{M} I_{\lambda}) = \bigcap_{\lambda \in \Lambda} Ann_{R}((0 :_{M} Ann_{R}(N)) :_{M} I_{\lambda}) = \bigcap_{\lambda \in \Lambda} Ann_{R}(N)I_{\lambda} = Ann_{R}(N)(\bigcap_{\lambda \in \Lambda} I_{\lambda})$$

as desired.

(d) Let S be the collection of all ideals I of R with the property that N = (N:M I). Then by part (c),

$$N = \sum_{I \in S} (N :_M I) = (N :_M \bigcap_{I \in S} I).$$

Thus

$$Ann_{R}(N) = Ann_{R}(N :_{M} \bigcap_{I \in S} I) = Ann_{R}(0 :_{M} Ann_{R}(N)(\bigcap_{I \in S} I))$$
$$= Ann_{R}(N)(\bigcap_{I \in S} I).$$

Therefore, $Ann_R(N) \subseteq \bigcap_{I \in S} I$. On the other hand, since N is pure and M is a comultiplication R -module, $(N:MAnn_R(N))=N$. Thus $\bigcap_{I \in S} I \subseteq Ann_R(N)$.

(e) Since N is copure,

$$M = (N:_{M} (N:_{R} M)) = N + (0:_{M} (N:_{R} M)).$$

Thus

$$0 = Ann_R(M) = Ann_R(N) \cap Ann_R(0:_M(N:_R M))$$
$$= Ann_R(N) \cap (N:_R M).$$

()

Hence $Ann_R(N)(N:_R M) = 0$. Thus

$$N:_{R} M) = Ann_{R}Ann_{R}(N).$$

Conversely, if $r \in Ann_RAnn_R(N)$, then $Ann_R(N)rM = 0$. Hence $rM \subseteq (0:_M Ann_R(N))=N$. Therefore, $R \in (N:_R M)$ as desired.

The following example shows that in Theorem 2.13 (e) the condition M is a strong comultiplication module cannot be omitted.

Example 2.14. The \Box -module $M = \Box_{p^x} \oplus \Box_{p^x}$ is not a strong comultiplication \Box -module. We have $N = 0 \oplus \Box_{p^x}$ is a copure submodule of M. But (N: M) $\neq \text{Ann}_{\Box} \text{Ann}_{\Box}$ (N).

Theorem 2.15. Let M be an R -module.

(a) If M is a comultiplication module and Soc(M) is a pure submodule of M, then M=soc(M). In particular, if R is a local ring, then M is simple. (Here Soc(M) denotes the sum of all minimal submodules of M.)

(b) If *M* is a multiplication module and Rad(M) is a copure submodule of *M*, then Rad(M)=0. In particular, if *R* is a local ring, then *M* is simple. (Here Rad(M) denotes the intersection of all maximal submodules of *M*.)

Proof. (a) Set $I=Ann_R(Soc(M))$. Since Soc(M) is pure, $IM \cap Soc(M) = ISoc(M) = 0$. Now if $IM \neq 0$, then by Remark 1.2, there exists a minimal submodule K of M such that $K \subseteq IM$. Thus $K = K \cap Soc(M) = 0$, which is a contradiction. Therefore IM = 0. Hence $I \subseteq Ann_R(M)$. Thus M = Soc(M) because M is a comultiplication R-module. The last assertion follows from this and Remark 1.2.

(b) Set $I = (Rad(M):_R M)$. Since Rad(M) is copure,

 $(Rad(M):_{M} I) = Rad(M) + (0:_{M} I).$

This implies that $M = Rad(M) + (0:_M I)$ Now if $(0:_M I) \neq M$, by (El-Bast and Smith (1988), 2.5), there exists a maximal submodule K of M such that $(0:_M I) \subseteq K$. Thus M = Rad(M) + K = K, which is a contradiction. Thus $(0:_M I) = M$. It follows that Rad(M) = IM = 0 because M is a multiplication R -module. The last assertion follows from this and (El-Bast and Smith, 1988, 2.5).

REFERENCES

- Anderson, W., and K.R. Fuller. 1974. Rings and categories of modules. Springer Verlag, New York-Heidelberg-Berlin.
- Ansari-Toroghy, H., and F. Farshadifar. 2007. The dual notion of multiplication modules. Taiwanese Journal of Mathematics 11(4): 1189-1201.
- Ansari-Toroghy, H., and F. Farshadifar. 2008a. On comultiplication modules. Korean Ann. Math. 25(2): 57-66.
- Ansari-Toroghy, H., and F. Farshadifar. 2008b. Comultiplication modules and related results. Honam Mathematical J. 30(1): 91-99.

El-Bast, Z.A., and P.F. Smith. 1988. Multiplication modules. Comm. Algebra 16(4): 755-779.

()

- Choi, C. W., and P. F. Smith. 1994. On endomorphisms of multiplication modules. J. Korean Math. Soc. 31(1): 89-95.
- Faith, C. 1995. Rings whose modules have maximal submodules. Publ. Mat. 39: 201-214.
- Faith, C. 1976. Algebra II : Ring theory. Springer-Verlag, New York-Heidelberg Berlin.
- Sharpe, D.W., and P. Vamos. 1972. Injective modules, Cambridge University Press, London.
- Yassemi, S. 1998. The dual notion of the cyclic modules. Kobe. J. Math. 15:41-46.
- Yassemi, S. 2001. The dual notion of prime submodules. Arch. Math. (Brno), 37: 273-278.

۲

۲

none

۲

۲

۲