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ABSTRACT
 In this study, the ranked set sampling (RSS) is applied to the three nonparametric control 

charts: the Mann-Whitney statistics (U-chart), the Wilcoxon rank sum test (W-chart) and the 
Hodges-Lehmann estimator (HL-chart) in order to reduce bias in sampling procedure. The 
data are generated from normal distribution, uniform distribution and 11 shapes of  Weibull 
distributions with the process mean shift in δ times of  standard deviation (δ = 0.50, 1, 1.5, 2, 
2.5 and 3). The results show that the in control average run length (ARL) of  the three control 
charts with RSS are higher than the Shewhart X bar chart at +/-3 standard deviation control 
limits. When the shift occurs, the out of  control ARL of  HL-chart is the lowest in every mean 
shift. 

Keywords: ranked set sampling, nonparametric control charts, wilcoxon rank sum test, mann-
whitney statistics, hodges-lehmann estimator

1. INTRODUCTION
Quality control charts are extensively used 

in observing and testing a production process. 
The control via the charts involves monitoring 
process changes and identifying abnormalities in 
the process. This makes possible the diagnosis 
for some problems in the production, losses 
reduction and, substantial improvements in 
product quality. However, quality control 
charts literally are based on simple random 
sampling (SRS) in quality control which may 
not be satisfied since it gives samples with 
high variation resulting in wide control limits, 
thereby low quality control efficiency.

In addition to SRS, quality control charts 
has also been developed by using ranked set 
sampling. Ranked set sampling (RSS) was proposed 
by McIntyre in 1952[1]. The development of  

RSS is believed to be able to solve the problem 
of  high cost in sampling or taking long time 
in measuring the true. In 1966, Hall and Dell 
[2] observed that using RSS the samples can 
be ranking more efficient than using SRS 
when they are measured at the actual sample 
size in the same situation. Besides, the quality 
control charts with RSS yields higher efficiency 
compared with the actual measure under the 
same sample size because the control limits 
are narrower that are leading to better quality 
control. Muttlak and Al-Sabah [3] developed 
quality control charts for finding the mean of  
population by comparing the mean numbers 
where the values fall within the control limits 
before falling out of  average run length (ARL) 
between perfect RSS, imperfect RSS and SRS. 
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Using RSS, Pongpullponsak and Sontisamran[4] 
created a quality control charts model for high 
variance statistical process, in order to filter 
and reduce the variation of  product’s quality. 
In that report, the variety of  product quality 
was ranked by using multiple characteristics.

Most of  the methods that have been reported 
in many literatures are often assumed to have 
behaviors following to normal distribution. 
This brought into some limitations in these 
methodologies. The most serious limitation is 
that the methods have been constructed based 
on asymptotic properties where it is not true 
when item sizes are large. A more practical 
approach was introduced by Chen and Bai [5] 
in parametric settings who considered that 
unbalanced RSS would fix the problem. In this 
kind of  situation, development and application 
of  control charts are not depended on normality 
and that is why nonparametric control charts 
can serve this purpose.

The main advantage of  nonparametric 
control charts is flexibility. They have been 
derived from the idea that parametric probability 
distribution for the underlying process does 
not need to be considered; at least as far as 
establishing and implementing the charts are 
concerned. Obviously, this is very beneficial in 
the field of  process control, particularly start-up 
situations where not much data is available for a 
parametric (such as normal theory) procedure. 
Also, the nonparametric charts are likely to share 
the robustness properties of  nonparametric 
tests at confidence intervals and are, therefore, 
far more likely to be less impacted by outliers.

There is increasing knowledge about 
nonparametric control charts in statistical 
process control and monitoring. In 1979, Bakir 
and Reynolds [6] proposed the cumulative sum 
chart (CUSUM), which was established on the 
basis of  the Wilcoxon signed-rank statistic. 
McDonald [7] considered a CUSUM procedure 
for individual observations, which was further 
adapted from the statistic called sequential ranks. 

Another nonparametric control chart type is 
exponentially-weighted moving average (EWMA) 
chart for individual observations. Hackel and 
Ledolter[8] constructed the standardized ranks 
of  observations and defined by the in-control 
distributions. In utilization of  the EWMA 
chart, if  there is no data available, the authors 
recommended to employ the ranking on 
previously collected reference data. However, 
the in-control average run length or IC ARL 
could be substantially large if  the unknown 
in-control parameters must be estimated. 
Later, Woodall and Montgomery [9] foresaw 
an increasing role for nonparametric methods 
in control charts application. Chakraborti et 
al. [10] gave an overview and discussed the 
advantages of  several nonparametric control 
charts over their normal theory counterparts.In 
the same year, Bakir [11] complied and classified 
several nonparametric control charts according 
to the driving nonparametric idea behind each 
one of  them. In 2004, Chakraborti and Van 
de Wiel [12] developed new nonparametric 
control charts based on the well-known Mann–
Whitney (U-Test) statistic. It was proposed for 
process location that maintains its in-control 
properties and thus could be justifiably used 
for any continuous process distribution. 
Also, control limits of  the proposed charts 
are provided for practical implementation. 
Comparisons of  some performance criteria 
related to the run length distribution show that 
while the proposed chart has clearly superior 
and stable in-control run length properties, the 
chart is nearly as effective in detecting shifts 
as the Shewhart X  chart when the process is 
normal, but is more effective than the Shewhart
X  chart for a heavy-tailed distribution such as 
the Laplace and for a skewed distribution such 
as the Gamma (2,2). The 5th percentile of  the 
(conditional) ARL0(X) distribution can be a 
useful chart design criterion, in addition to the 
traditional (unconditional) ARL0. 
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Many statisticians considered the U-test, 
established by Gibbons and Chakraborti [13], 
as the best nonparametric test for location of  
process. The U-test is a direct competitor to 
the normal theory based on two-independent-
sample t-tests. Remarkably, even when the 
underlying distributions are normal, the U-test 
is about 96% as efficient as t-test for moderately 
large sample sizes and yet, unlike the t-test, 
it does not require normality to be valid. 
Moreover, for some heavy-tailed distributions 
such as the Laplace (double exponential), the 
logistic distribution, or skewed distributions 
such as the exponential, the U-test is known 
to be more efficient than the t-test. In short, 
the U-test is the practitioners’ choice when 
not much is known about the shape of  the 
underlying distributions. In 2014, Jayathavaj and 
Pongpullponsak[14] compared performances of  
the three dual-scheme variable parameters (VP) 
nonparametric (NP) control charts: the Sign 
Test (ST), the Mann-Whitney Test (MW) and 
the Hodges-Lehmann estimator (HL) using the 
Markov chain approach. The results show that 
among the three VP (n1 = 10, n2 = 10, 11, …, 
20), ST has more variation in the average run 
lengths (ARL) than MW and HL. In each NP 
control chart, the average number of  samples to 
signal lies between the ARL of  their individual 
schemes, ST has highest variation while MW 
and HL have varied in a smaller band and HL 
has better performances than MW in almost 
every sample size. 

For this study, we establish three non-
parametric control charts based on RSS viz. 
the Wilcoxon rank sum charts (W-Chart ), 
the Mann–Whitney chart (U-Chart ) and the 
Hodges–Lehmann estimator chart (HL-Chart ). 
The data are generated from normal distribution 
and uniform distribution and 11 shapes of  
Weibull distributions with the process shift 
in δ times of  standard deviation (δ=0.50, 1.0, 
1.5, 2.0, 2.5 and 3.0) are selected for using in 
the study.

The paper is organized as follows; 
Section 2 industrial application, Section 3 
three non- parametric control charts based on 
RSS, Section 4 performance comparisons from 
simulation results and Section 5 conclusions.

2. INDUSTRIAL APPLICATION OF CONTROL 
CHARTS BASED ON RANKED SET SAMPLING 
AND NON-PARAMETRIC CONTROL CHARTS

Industrial processes are generally monitored 
by using Statistical Process Control (SPC). 
Generally, SPC monitors a process to determine 
whether it is operated under statistical control or 
not. The good example is evaluation of  average 
dried weight of  leaves by Ridout[15]. Since it is 
very difficult to measure the precise dry weight of  
leaves, Ridout suggested that the spray deposits 
of  water on both sides and the upper and lower 
surfaces of  leaves, can be used in estimation. 
Also, Ridout [15] employed characteristics of  
interest in RSS from the products containing 
multiple characteristics in order to reduce 
error from ranking and increase efficiency of  
sampling. In his report, it was found that RSS is 
not appropriate for controlling production of  
goods with multiple characteristics. However, in 
2013 we (Pongpullponsak and Sontisamran [4]) 
constructed statistical quality control based on 
ranked set sampling for multiple characteristics 
(RSSMC). Importantly, when compared with 
RSS, SRS, MRSS and ERSS approaches, our 
control chart using RSSMC demonstrated more 
efficient and satisfy than those of  control charts. 
Alloway and Raghavachari[16] successfully 
applied their technique to primer thickness data 
that was taken from Ford Motor Company. 
Albers et al. [17] showed an application of  
nonparametric control chart for thickness 
of  electric shaver razor head produced by an 
electrochemical process. Hackl and Ledolter[8] 
applied their procedure on weights of  tomato 
cans. Pyzdek[18] revealed that the thickness of  
alloy layers which was produced by a hot deep 
galvanizing process do not follow a normal 
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distribution. Therefore, application of  SPC 
technique assumed to follow normal distribution 
can lead to a misleading conclusion. For the 
sake of  industrial situation, it is essential to 
check the normality of  the data whether it 
is following the typical bell-shaped normal 
distribution or not, if  not, one should not go 
for conventional Shewhart-type control chart. 
The beauty of  a non-parametric control chart 
is that it does not require any distributional 
assumption. In fact, through simulation study 
we have revealed that non-parametric control 
charts are also useful for normal distribution.

3. NONPARAMETRIC CONTROL CHARTS 
BASED ON RANKED SET SAMPLING
3.1 Ranked Set Sampling Method

Ranked set sampling (RSS) has been proposed 
by McIntyre [1]. The samples obtained by this 
method will be ranked using other variables that 
relate to the variable of  interest or the variable 
to be actual measurement. The steps in random 
ranked set sampling are described as below;

Step 1: Randomly select n2 sample units 
from the population

Step 2: Allocate the n2 selected units as 
randomly as possible into m sets, each of  size n

Step 3: Without yet knowing any values 
for the variable of  interest, rank the units 
within each set based on a perception of  
relative values for this variable, which may 
be based on personal judgment or done with 
measurements of  a covariate that is correlated 
with the variable of  interest

Step 4: Choose a sample for actual analysis 
by including the smallest ranked unit in the first 
set, then the second smallest ranked unit in the 
second set, continuing in this fashion until the 
largest ranked unit is selected in the last set

Step 5: Repeat steps 1 through 4 for r 
cycles until the desired sample size, N = nr, is 
obtained for analysis

To explain more for this method, assuming 
that 3 sample sets are random sampling to collect 

3 samples/set and the sampling are repeated 4 
cycles 4r = . This can be concluded as shown 
in Figures 1-2; 

 Cycle 1
X(1:3)1 ≤ X(2:3)1≤ X(3:3)1 → X(1:3)1

X(1:3)1 ≤ X(2:3)1≤ X(3:3)1 → X(2:3)1

X(1:3)1 ≤ X(2:3)1≤ X(3:3)1 → X(3:3)1

 Cycle 2
X(1:3)2 ≤ X(2:3)2≤ X(3:3)2 → X(1:3)2

X(1:3)2 ≤ X(2:3)1≤ X(3:3)2 → X(2:3)2

X(1:3)2 ≤ X(2:3)1≤ X(3:3)2 → X(3:3)2

… … … … … … …
 Cycle r

X(1:3)r ≤ X(2:3)r≤ X(3:3)r → X(1:3)r

X(1:3)r ≤ X(2:3)r≤ X(3:3)r → X(2:3)r

X(1:3)r ≤ X(2:3)r≤ X(3:3)r → X(3:3)r

Figure 2. Ranked sample units for RSS.
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Figure 1. Sample units for RSS. 
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Since U  is defined as a linear combination 
of  these mn random variables, the mean and 
variance of  U  can be written as following

( ) ( )

( )
( )

= =

= =

+
=

∑∑
1 1

2

1
var

12

m n

ij

i j

mn
E U E D

mn N
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3.3 The Wilcoxon Rank Sum Test (W-test) 
The Wilcoxon rank sum test is a 

nonparametric alternative to the two sample 
t-test which is based solely on the order in which 
the observations from the two samples fall. It 
does not need to concern whether populations 
have normal distribution or not. Suppose, that 
we have samples of  observations from each 
of  two populations X and Y containing nX 
and nY observations, respectively. And both 
populations contain two conditions which have 
equal variances and are independence of  random 
samples. The two population distributions are 
assumed to be identical under the null hypothesis, 
in which independent random samples from 
the two populations should be similar if  the 
null hypothesis is true.

Because we are now allowing the population 
distributions to non-normal, the rank sum 
procedure must deal with the possibility of  
extreme observations in data. We combined 
samples from both populations, one way to 
samples containing extreme values is to replace 
each data value with its rank from lowest to 
highest. The smallest value in the combined 
sample is assigned the rank of  1 and the largest 
value is assigned the rank of  N = nX + nY. 

The calculation of  the rank sum statistic 
consists of  the following step.

Step 1: List the data values for both samples 
from smallest to largest

Step 2: Assign the numbers 1 to N to the 
data values with 1 to the smallest value and N 
to the largest values, which are the ranks of  
the observations

From Figure 1, a ranked set sample design 
with set size n = 3 and number of  sampling 
cycles r = 4 is demonstrated. Although 36 sample 
units have been selected from the population, 
only 12 circled units are actually included 
in the final sample for quantitative analysis. 
For n = 3, the cycle then repeats r times, the 
sampling procedure is illustrated in Figure 2.

Let X(i:n)j denote the ith order statistic from 
the ith sample of  size n in the jth cycle, then the 
unbiased estimator for the population mean, 
see Takahasi and Wakimoto[19], is defined as

( ), :
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1 r n

rss j i n j
j i
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2

, :
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σ
=
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( ) ( ) ( )( ) 22
: : :i n i n i nE X E Xσ = −    is the population 

variance of  the ith order statistic.

3.2 The Mann-Whitney Statistic (U-test)
The Mann-Whitney test is the most popular 

nonparametric in the statistical practice. This 
test is defined as the number of  times that a 
Y = (Y1, Y2, …, Yn) and X = (X1, X2, …, Xm) are 
preceded in the combined ordered arrangement 
of  two independent random samples and the 
same distribution. We denoted by Y = (Y1, Y2, 
…, Yn) is available from an in-control process 
sample of  size n and X = (X1, X2, …, Xm) denotes 
an independent random tested sample of  size 
m. Into a single sequence of + =m n N , so the 
possibility of  =i jX Y  for some ( ),i j  does not 
need to be considered. If  the mn  indicator 
random variables are defined as 

1 1,2,...,

0 1,2,...,

i j

ij
i j

if X Y for all j n
D

if X Y for all i m

< =
= > =

then, a symbolic representation of  the Mann-
Whitney U statistic is presented by
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Step 3: If  there are ties, duplicated values, 
in the combined data set, the ranks for the 
observations in a tie will be taken to be the 
average of  the ranks for those observations.

Step 4: Let W denote the sum of  the ranks 
for the observations form population X.

Under the null hypothesis, the sampling 
distribution of  W has mean and variance can 
be given by
 ( )µ

+ +
=

1

2

X X Y
w

n n n

 
and

( )σ
+ +

=
1

12

X Y X Y
W

n n n n

The hypothesis of  wilcoxon rank sum test is
H0: The two populations are identical.
H1: 1. Population X is shifted to the right 

of  population Y.
2. Population X is shifted to the left 

of  population Y.
3. Population X and Y are shifted 

from each other.
Case 1: nX ≤ 10, nY ≤ 10 and W is the sum of  
ranks in sample X. For α = 0.05, the table of  
wilcoxon will be used to find critical values 
for Wu and Wl;

1. Reject H0 if  W> Wu

2. Reject H0 if  W<Wl

3. Reject H0 if  W> Wu or W<Wl

Case 2: nX>10, nY>10 W is Normal approximation 
for larger samples, we can treat the distribution 
of  WX as if  it is/are normal ( )µ σ,X X , where 

µ
σ
−

= X X

X

w
z  and z = Normal (0, 1).

1. Reject H0 if  z ≥zα

2. Reject H0 if  z ≤-zα

3. Reject H0 if  ≥ zα/2

3.4 The Hodges-Lehmann Estimator 
In 1963, Hodges and Lehmann [20] 

proposed Hodges-Lehmann Estimator (HL.E.) 
as an estimator for the point of  symmetryθ  
of  a continuous and symmetric distribution. 

Initially, the HL.E. is a nonparametric estimator 
based on the Wilcoxon signed-rank statistic. 
However, Lehmann [21] showed later that 
this estimator belongs to the class of  robust 
R-estimators. 

The computations of  the HL.E. follow 
four steps.

Step 1: Let Y1, Y2, ...,Yn be a random 
sample obtained from some distributions, 
which is continuous and symmetrical about 
θ . Then, compute

( 1)

2

n n
M

+
=

Step 2: Compute the Walsh averages,

2

i j
r

Y Y
W

+
=

where r = 1, 2, ...,M and i≤  j = 1, 2, ..., n
Step 3: Reorder the Walsh averages in 

ascending order, that is W(1)≤W(2)≤ ... ≤  W(M)

Step 4: The HL.E. for the point of  symmetry 
θ  of  a continuous and symmetric distribution 
is defined as:
HL.E. = median { W(1),W(2), ...,W(M)}
or

( )+

+

= +


1

1. .

2

k

k k

W if M is odd

HL E W W
if M is even

where

k =
−




( 1) / 2

/ 2

M if M is odd

M if M is even

In addition to the above computations of  
the HL.E., the main properties of  this estimator 
are given below:

(i) The asymptotic relative efficiency 
of  the HL.E. relative to the sample mean is 
0.955, if  the underlying distribution is Normal 
(Gaussion). However, the asymptotic relative 
efficiency of  the HL.E. is often greater than 
unity, if  the underlying distribution is non-
normal. Alloway and Raghavachari [16] stated 
that the asymptotic properties of  the HL.E. 
are impressive,
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(ii) The asymptotic relative efficiency 
for the HL.E. is the same as the Wilcoxon 
is signed 1 rank test and it is asymptotically 
normally distributed. Besides, it is robust 
against gross errors.

(iii) The HL.E. is unbiased and translation 
invariant. Also, it gives reasonable results for 
distributions in the neighborhood of  the 
Normal (Gaussion) distribution. Additionally, 
Alloway and Raghavachari [16] mentioned that 
the performances of  robust estimators are 
often better than traditional measures for heavy 
tailed distributions and the HL.E. properties 
are reasonable and easy to explain to users. 

3.5 Control Charts for Mean Using Mann 
Whitney Statistic (U-test) Based on RSS

Tapang W. and Pongpullponsak A. [22] 
proposed a Mann-Whitney control chart base 
on RSS. 

Step 1: Random reference sample of  size m 
by RSS, denoted by ( )= ,1 ,2, ,, ...,rss rss rss mX X X X , 
is available in an in-control process. 

Step 2: Random test sample of  size n by 
RSS, denoted by

 ( )= ,1 ,2, ,, ...,rss rss rss nY Y Y Y
is available in an in-control process.

Step 3: The superscript t is used to denote 
the tth test sample, ( )= ,1 ,2, ,, ...,

t
rss rss rss nY Y Y Y , 

t = 1,2,...
Assume that the test samples are themselves 

independent and are independent of  the 
reference sample.

Step 4: The U-test is constructed from 
using the total number of  X –Y pairs where 
the Y observation is larger than that of  the X. 
This can be written as 

 
= =

=∑∑
1 1

m n

ij

i j

U D where

< =
=

> =





,
,

,
,

1 1, 2, ...,

0 1, 2, ...,
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ij
rss i

rss j

if X Y for all j n

D
if X Y for all i m

At this stage, it can be assumed that the Wilcoxon 
rank-sum test is equivalent to the U-test by the 
relationship below;

( )1

2
n

n n
U W

+
= −

where 
=

=∑
1

n

n j

j

W R  and R1,…, Rn are the rank 

of  the n observations ,1 ,2, ,, ...,rss rss rss nY Y Y  in 
the complete sample of  m + n observations.

Step 5: Calculation of  the ( ) ( )E U and Var U  
is carried out as following.

When the process is in control, the 
expectation and variance of  U are given by

( ) ( )
( )+ +

= =
1

2 12

mn mn m n
E U and Var U

But in this study, the sample numbers are large 
so the standardized U-Test is defined by

( )

( )

−
=

U E U
Z

Var U

Step 6: The control chart based on Z 
following the usual Shewhart scheme is designed. 
The control limits are given by

  
=

=

=−

3

0

3

UCL

CL

LCL
Step 7: The Z values is plotted in the 

control chart. If  any point goes beyond the 
limit it will indicate that the process is out of  
control with respect to variability. For each 
pair of  consecutive samples of  size m + n, the 
realization z of  the test statistic Z is calculated. 
If  z < -3 or z> 3, an alarm will be triggered 
and a search for an assignable cause will be 
undertaken.

3.6 Construction of  the Wilcoxon Rank Sum 
Test (W-test) Control Chart Based on RSS

Step 1: Random reference sample of  size m 
by RSS, denoted by ( )= ,1 ,2, ,, ...,rss rss rss mB X X X , 
is available in an in-control process. 
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Step 2: Random test sample of  size n by 
RSS, denoted by ( )= ,1 ,2, ,, ...,rss rss rss nA Y Y Y is 
available in an in-control process.

Step 3: The superscript t is used to denote 
the tth test sample, ( )= ,1 ,2, ,, ...,

t
rss rss rss nA Y Y Y , 

t = 1,2,...
Assume that the test samples are themselves 

independent and are independent of  the 
reference sample.

Step 4: The W-test is constructed from 
using the total number of  X +Y where the Y 
observation is larger than that of  the X. This 
can be written as 

  

( )1

2
n

n n
W W

+
= −

where 
=

=∑
1

n

n i

i

W R  and R1,…,Rn are the rank 

of  the n observations ,1 ,2, ,, ...,rss rss rss nY Y Y  in 
the complete sample of  m + n observations.

Step 5: Calculation of  the ( ) ( )E W and Var W
is carried out as below. 

When the process is in control, the 
expectation and variance of  W are given by

( )
( )

( )
( )+ + + +

= =
1 1

2 12

n n m mn m n
E W and Var W

But in this study, the sample numbers are large 
so the standardized W-test is defined by

( )

( )

−
=

W E W
Z

Var W

Step 6: The control chart based on Z 
following the usual Shewhart scheme is designed. 
The control limits are given by

  
=

=

=−

3

0

3

UCL

CL

LCL
Step 7: The Z values is plotted in the 

control chart. If  any point goes beyond the 
limit, it will indicate that the process is out of  
control with respect to variability.

For each pair of  consecutive samples of  
size m + n, the realization z of  the test statistic 

Z is calculated. If  z< -3 or z > 3, an alarm will 
be triggered and a search for an assignable 
cause will be undertaken.

3.7 Control Chart for Mean Using Hodges-
Lehmann Estimators (HL) Based on RSS

Step 1: Randomly reference sample of  size m 
by RSS, denoted by ( )= ,1 ,2, ,, ...,rss rss rss mY X X X , 
in which a minimum size of  10 is required to 
achieve a significance level equal to 3 where 
sigma limits are traditionally used

Step 2: Use the table of  positions of  the 
two ordered Walsh averages to determine 
the subgroup control limit values, which will 
subsequently yield the upper and lower control 
values of  Walsh averages

Step 3: Compute the Hodges–Lehmann 
estimator, when 

- The center line for the control chart, 
the center line for the control chart will be the 
average of  the Hodges–Lehmann estimators 
from each subgroup from step (3)

- The upper and lower control limits, the 
upper and lower control limits will be the median 
of  the upper and lower values from step (2) 
above for all subgroups, where these are the 
upper control limit and the lower control limit 

4. PERFORMANCE OF W-CHART, U-CHART 
AND HL- CHART BY SIMULATION

In evaluating the ARL performance of  the 
three nonparametric control charts, the 30,000 
runs ARL simulation from the Uniform, the 
standard Normal and the Weibull distributions 
with sample sizes n =10, 15 and 20 and the 
mean shift in δ time of  standard deviation 
from 0.0 to 3.0 steps by 0.5 are used. All the 
programs are written in R.

4.1 The Mann-Whitney Control Charts 
(U-Charts)

From the Mann-Whitney control charts 
with sample sizes from control group in which 
m = 10, 15, 20 and the treatment group at 
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n = 10, 15, 20 determined control limits with 
α is closed to 0.0027 (closed to ± 3σ control 
limits in Shewhart X  chart), denoted by –3 
and 3 for action limits and ARL of  selected 
schemes for standard normal data, uniform data 
and 11 shapes of  data are shown in Table 1.

The performance of  Mann-Whitney control 
chart (U-Chart) based on RSS for normal, 
uniform and Weibull distributions with the 
sample size = 10, 15 and 20 are compared as 
show in Table 1. The highest ARLs of  normal 
and uniform distributions are at 789.47 and 
697.67. The highest ARL for Weibull distribution 
is 769.23 at beta 3.2219 and n = 10. This show 
that at n = 10, the ARLs are around 700 which 
is about double the ARL of  chart at +/- 3 
standard deviation control limits (a = 0.0027, 
ARL = 370). We show graph of  the control 
charts at sample size of  10 in Figure 3 (a)-(c).

4.2 The Wilcoxon Rank Sum Test Control 
Chart W-Chart)

From the Wilcoxon rank sum test control 
charts with sample sizes from control group at 
m = 10, 15, 20 and the treatment group at n = 
10, 15, 20 determined control limits with α is 
closed to 0.0027 (closed to ±3σ control limits 
in Shewhart X  chart), denoted by –3 and 3 
for action limits and ARL of  selected schemes 
for standard normal data, uniform data and 11 
shapes of  Weibull data are shown in Table 2.

The performance of  Wilcoxon rank sum 
test control chart (W-Chart) based on RSS for 
normal, uniform and Weibull distributions with 
the sample size = 10, 15 and 20 are compared 
as show in Table 2. The highest ARLs of  
normal and uniform distributions are at 625.18 
and 731.71. The highest ARL for Weibull 
distribution is 769.23 at beta 0.6478 and n = 

Table 1. Average run length (ARL) of  the Mann-Whitney control chart (U-Chart) with Normal 
distribution, Uniform distribution and Weibull distribution.

Distribution Beta  10   15   20  

  ARL SD Median ARL SD Median ARL SD Median

Normal  789.47 0.42 0.14 422.54 0.39 0.05 491.8 0.34 0.03

Uniform  697.67 0.26 0.50 491.8 0.26 0.51 535.71 0.29 0.48

Weibull 3.2219 769.23 0.01 0.09 416.67 0.01 0.09 476.19 0.01 0.09

 2.211 555.56 0.06 0.43 400.00 0.09 0.39 384.62 0.09 0.43

 1.563 500.00 0.24 0.89 384.62 0.28 0.88 416.67 0.31 0.91

 1.00 633.33 0.67 1.98 666.67 1.02 2.31 454.55 0.90 1.43

 0.7686 543.07 0.49 0.73 588.24 0.56 1.07 500.00 0.45 0.87

 0.6478 709.09 0.78 1.25 555.56 0.78 1.25 500.00 0.67 0.99

 0.5737 588.24 1.12 1.11 555.56 1.12 1.56 526.32 1.30 0.93

 0.5237 633.33 2.23 1.72 454.55 3.16 0.88 384.62 3.16 0.88

 0.4873 588.24 1.31 1.91 343.78 1.46 1.39 400.00 2.15 1.59

 0.4596 479.26 0.90 1.66 476.19 1.73 1.32 526.32 1.18 1.31

 0.4376 555.56 3.48 1.74 656.67 2.58 1.67 588.24 2.08 1.67
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Figure 3. Graph of  three control charts established from data with Normal distribution, 
Uniform distribution and Weibull distribution at the sample size of  10.
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(a) U-Chart from Normal data.
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(b) U-Chart from Uniform data.
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(c) U-Chart from Weibull data at beta 3.2219.
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 (d) W-Chart from Normal data.
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 (e) W-Chart from Uniform data.
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(f ) W-Chart from Weibull data at beta 3.2219.
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Table 2. Average run length (ARL) of  the Wilcoxon rank sum test control chart (W-Chart) 
with Normal distribution, Uniform distribution and Weibull distribution.

Distribution Beta  10   15   20  

  ARL SD Median ARL SD Median ARL SD Median

Normal  652.18 0.55 -0.14 428.57 0.37 0.13 447.76 0.34 0.02

Uniform  731.71 0.10 0.50 517.24 0.08 0.52 545.45 0.09 0.54

Weibull 3.2219 588.24 0.11 0.91 416.67 0.11 0.87 454.55 0.13 0.84

 2.211 625.10 0.18 0.77 476.19 0.18 0.89 526.32 0.16 0.89

 1.563 714.28 0.28 0.81 454.55 0.22 0.85 588.24 0.24 0.83

 1.00 526.32 0.37 0.93 476.19 0.72 0.93 370.37 0.37 0.99

 0.7686 666.67 0.91 0.84 476.19 0.56 0.84 400.00 0.73 0.87

 0.6478 769.23 0.62 1.52 416.17 0.64 0.91 526.32 1.29 0.89

 0.5737 555.56 0.97 1.36 526.32 0.80 1.09 400.00 0.93 0.92

 0.5237 588.24 1.01 1.44 500.00 0.54 1.11 476.19 1.97 1.35

 0.4873 666.67 2.04 0.56 666.67 1.21 1.80 625.00 1.79 1.25

 0.4596 414.29 3.76 1.54 454.55 2.69 1.14 370.37 4.15 1.42

 0.4376 476.19 1.04 1.40 526.32 2.18 1.26 526.32 3.20 1.16

Figure 3. (Continued).

(g) HL-Chart from Normal data.
 

(h) HL-Chart from Uniform data.

 (i) HL-Chart from Weibull data at beta 3.2219.
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10. This show that at n = 10, the ARLs are 
around 700 which is about double the ARL 
of  chart at +/- 3 standard deviation control 
limits (a = 0.0027, ARL = 370).

We show graph of  the control charts at 
sample size of  10 in Figure 3 (d)-(f).

4.3 The Hodges-Lehmann Estimator Control 
Chart (HL-Chart)

The ARL performance by 30,000 run lengths 
simulation of  the Hodges-Lehmann estimator 
control chart for Normal data, Uniform data and 
Weibull data. The control limits are computed 
by the original method proposed by Alloway 
et al. [16] as shown in Table 3.

As can be seen in Table 3, at the sample size 
n=10, the Hodges-Lehmann control limit=(2,53) 
and probability α = 0.00390. At the sample 
size of  n=15, the control limit = (12,108) has 
probability α = 0.00336 and when the sample 
size n=20, the control limit = (29,181), then 
probability α = 0.00272.

The performance of  Hodges-Lehmann 
estimator control charts (HL-Chart) based 

on RSS for normal, uniform and Weibull 
distributions with the sample size = 10, 15 
and 20 are compared as show in Table 4. 
The highest ARL of  normal distributions is 
714.29 at n = 15. The highest ARL of  uniform 
distributions is 769.23 at n = 20. The highest 
ARL for Weibull distribution is 666.67 at beta 
3.2219 and 2.211 at n = 10. This show that the 
ARLs are around 700. 

We show graph of  the control charts at 
sample size of  10 in Figure 3 (g)-(i).

4.4 Comparisons of  Efficiency of  the 
U-Chart, W-Chart and HL- Chart Based 
on RSS when Sample Size is 10, 15, 20 and 
has Normal Distribution.

Figure 4 (a)-(c) shows ARL curve of  three 
different methods when the distribution is normal. 
When comparing the shift mean graph at the 
sample size of  10, it is seen that when the shift 
is 0.0 and 1.0, the U-chart is most performance 
whereas the W-chart is most performance at 
the shift of  0.5, 1.5, 2.0, 2.5 and 3.0 (Figure 4 
(a)). The Figure 4 (b) shows the performance 

Table 3. The control limit of  the HL-Chart denoted by lc and uc.

Distribution Beta  10   15   20  

  ARL uc lc ARL uc lc ARL uc lc

Normal  588.24 0.64 0.35 714.29 0.34 -0.37 625.00 0.28 -0.36

Uniform  588.24 0.63 0.33 384.62 0.60 0.40 769.23 0.58 0.40

Weibull 3.2219 666.67 0.10 0.07 357.14 1.02 0.77 476.19 0.99 0.80

 2.211 666.67 1.10 0.68 476.19 1.04 0.71 400.00 1.04 0.75

 1.563 454.55 1.18 0.60 434.78 1.11 0.66 500.00 1.10 0.71

 1.00 384.62 1.48 0.52 357.14 1.35 0.65 357.14 1.29 0.66

 0.7686 370.37 2.12 0.38 357.14 1.75 0.64 384.62 1.78 0.66

 0.6478 322.58 2.36 0.43 322.58 2.24 0.59 357.14 2.06 0.63

 0.5737 384.62 3.02 0.46 357.14 2.91 0.55 434.78 2.66 0.66

 0.5237 357.14 5.68 0.44 526.32 3.33 0.55 357.14 2.95 0.73

 0.4873 344.83 4.37 0.41 303.03 3.77 0.69 357.14 3.55 0.69

 0.4596 333.33 1.70 0.39 454.55 4.67 0.60 434.78 4.25 0.74

 0.4376 366.92 6.06 0.41 434.78 5.18 0.58 344.83 4.11 0.77
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of  the control charts at the sample size of  15. 
The graph demonstrates that at the shift of  0.0, 
the HL-chart is most performance whilst the 
W-chart is most performance when the shift 
is between 0.5 and 3.0. Showing in Figure 3 (c) 
is the performance at the sample size of  20. 
While the HL-chart is most performance at the 
shift of  0.0, the W-chart is most performance 
at the shift of  0.5 and the U-chart is most 
performance at the shift from 1.0 to 3.0.

4.5 Comparisons of  Efficiency of  the 
W-Chart, U-Chart and HL- Chart Based 
on RSS when Sample Size is 10, 15, 20 and 
has Uniform Distribution

Figure 4 (d)-(f) shows ARL curve of  three 
different methods when the distribution is 
uniform. Comparisons of  the shift mean graph 
of  ARL of  the U-chart, W-chart and HL-chart 
(Figure 4 (d)) reveals that when the sample 
size is 10, the W-chart is most performance 
at all shift (0.0 to 3.0). Likewise, in Figure 4 
(e), when the sample size is 15, the W-chart is 

most performance at all shift (from 0.0 to 3.0). 
Figure 4 (f), demonstrates the performance 
of  the control charts at the sample size of  
20. The graph shows that at the shift of  0.0, 
the HL-chart is most performance. And the 
U-chart is most performance when the shift 
is at 0.5, 1.0 and 1.5, whereas the W-chart is 
most performance when the shift is between 
2.0 and 3.0.

4.6 Comparisons of  Efficiency of  the 
W-Chart, U-Chart and HL- Chart Based 
on RSS when Sample Size is 10, 15, 20 has 
Weibull Distribution 

Figure 4 (g)-(i) shows ARL curve of  three 
different methods when the distribution is 
Weibull and the beta is 3.2219. We compare the 
three control chart from Weibull data at this 
beta because it’s close to Normal distribution. 
Comparisons of  the shift mean graph of  ARL 
of  the U-chart, W-chart and HL-chart (Figure 
4 (g) reveals that when the sample size is 10, 
the U-chart is most performance at the shift 

Table 4. Average run length of  the Hodges-Lehmann estimator control charts with normal 
distribution, uniform distribution and Weibull distribution.

Distribution Beta  10   15   20  

  ARL SD Median ARL SD Median ARL SD Median

Normal  588.24 0.14 0.00 714.29 0.11 0.00 625.00 0.10 0.00

Uniform  588.24 0.04 0.50 384.62 0.03 0.50 769.23 0.03 0.50

Weibull 3.2219 666.67 0.04 0.89 357.14 0.03 0.90 476.19 0.03 0.90

 2.211 666.67 0.06 0.88 476.19 0.05 0.88 400.00 0.04 0.88

 1.563 454.55 0.08 0.89 434.78 0.07 0.89 500.00 0.06 0.89

 1.00 384.62 0.14 0.96 357.14 0.12 0.96 357.14 0.10 0.96

 0.7686 370.37 0.22 1.07 357.14 0.18 1.07 384.62 0.15 1.07

 0.6478 322.58 0.31 1.19 322.58 0.24 1.20 357.14 0.21 1.20

 0.5737 384.62 0.40 1.32 357.14 0.32 1.33 434.78 0.28 1.33

 0.5237 357.14 0.82 1.81 526.32 0.40 1.46 357.14 0.34 1.46

 0.4873 344.83 0.62 1.57 303.03 0.49 1.58 357.14 0.41 1.59

 0.4596 333.33 0.72 4.17 454.55 0.57 1.71 434.78 0.49 1.70

 0.4376 366.92 0.85 1.80 434.78 0.66 1.83 344.83 0.56 1.84
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Figure 4. ARLs of  three control charts established from data with normal distribution, uniform 
distribution and Weibull distribution at the beta of  3.2219 and the sample size of  10, 15 and 20.
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of  0.0, 0.5 and 1.5 whilst the W-chart is most 
performance when the shift is at 1.0, 2.0, 2.5 
and 3.0. Figure 4 (h) shows the performance of  
the control charts at the sample size of  15. The 
W-chart is most performance when the shift is 
at 0.0, 1.0, 1.5, 2.0, 2.5 and 3.0. The U-chart is 
most performance at the shift of  0.5. Finally, 
in Figure 4 (i), the performance of  the control 
charts at the sample size of  20 is presented. 
The graph shows that at the shift of  0.0, the 
HL-chart is most performance. And while the 
U-chart is most performance at the shift of  
0.5 and 1.0, the W-chart is most performance 
at the shift ranging from 1.5 to 3.0.

5. CONCLUSIONS
In this study, we use RSS in developing 

non-parametric control charts for sample 
mean, the Mann-Whitney statistics (U-chart), 

the Wilcoxon rank sum test (W-chart) and the 
Hodges-Lehmann estimator (HL-chart). The 
data used in estimation are generated from 
normal distribution, uniform distribution and 
11 shapes of  Weibull distributions with the 
process shift in δ times of  standard deviation 
(δ=0.50, 1, 1.5, 2, 2.5 and 3) are selected for 
the study. A minimum size of  10 is required to 
achieve a significant level equal to ±3σ control 
limits which are traditionally used.

We finds that the ARL performance of  
the non-normal process distributions is higher 
than normal because the Rank Set Sampling 
(RSS) forms the new sample by choosing 
observations from the samples that arranged 
observations in ordered, this method bring out 
the real process characteristics better than Simple 
Random Sampling (SRS). The performance 
from simulation study with n=10, 15 and 20 

Figure 4. (continued).
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also confirmed that the ARLs of  non-normal 
distributions are higher than normal in every 
sample size.

When we compared these control charts 
with the control charts mentioned above, we 
observe that the W-chart is best performance 
at the sample

size of  10 and 15 whereas the U-chart 
is best performance at the sample size of  20.
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