On Graded Prime Submodules

Shahabaddin E. Atani

Department of Mathematics, University of Guilan, P.O. Box 1914 Rasht Iran
E-mail : ebrahimi@guilan.ac.ir
Received: 18 August 2005
Accepted: 17 October 2005

Abstract

Let G be a monoid with identity e, and let R be a G-graded commutative ring. Here we study the graded prime submodules of a G-graded R-module. A number of results concerning of these class of submodules are given.

Keywords: graded prime submodules, graded rings.

1. Introduction

Several authors have extended the notion of prime ideals to modules (see [1] and [2], for example). Let R be a G-graded commutative ring and M a graded R-module. In this paper we introduce the concepts of graded prime submodules of M and give some of their basic properties. However, the prime and graded prime are different concepts.

Before we state some results, let us introduce some notations and terminologies. Let G be an arbitrary monoid with identity e. By a G-graded commutative ring we mean a commutative ring R with non-zero identity together with a direct sum decomposition (as an additive group) $R=\oplus_{g \in G} R_{g}$ with the property that $R_{g} R_{h} \subseteq R_{g h}$ for all $g, h \in G$. We denote this by $G(R)$. Also, we write $h(R)=\bigcup_{g \in G} R_{g}$. The summands R_{g} are called homogeneous components and elements of these summands are called homogeneous elements. If $a \in R$, then a can be written uniquely as $\sum_{g \in G} a_{g}$ where a_{g} is the component of a in R_{g}. In this case, R_{e} is a subring of R and $1_{R} \in R_{e}$.

Let R be a graded ring and M an R module. We say that M is a G-graded R module if there exists a family of subgroups $\left\{M_{g}\right\}_{g \in G}$ of M such that $M=\oplus_{g \in G} M_{g}$ (as
abelian groups), and $R_{g} M_{h} \subseteq M_{g h}$ for all $g, h \in G$, here $R_{g} M_{h}$ denotes the additive subgroup of M consisting of all finite sums of elements $r_{g} s_{h}$ with $r_{g} \in R_{g}$ and $s_{h} \in M_{h}$. Also, we write $h(M)=\bigcup_{g \in G} M_{g}$. If $M=\bigoplus_{g \in G} M_{g}$ is a graded module, then, M_{g} is an R_{e}-module for all $g \in G$. Let $M=\oplus_{g \in G} M_{g}$ be a graded R-module and N a submodule of M. For g $\in G$, let $N_{g}=N \bigcap M_{g}$. Then N is a graded submodule of M if $N=\oplus_{g \in G} N_{g}$. In this case, N_{g} is called the g-component of N for $g \in G$. Moreover, M / N becomes a G-graded module with g-component $(M / N)_{g}=$ $\left(M_{g}+N\right) / N$ for $g \in G$. Clearly, 0 is a graded submodule of M. An ideal I of $G(R)$ is said to be graded prime ideal if $I \neq R$ and whenever $a b \in I$, we have $a \in I$ or $b \in I$, where $a, b \in$ $h(R)$.

2. The Results

Our starting point is the following lemma:
Lemma 2.1. Let R be a G-graded ring, and M, N be graded R -modules. Then $\left(\mathrm{N}:{ }_{\mathrm{R}} M\right)=\{r \in \mathrm{R}$: $r M \subseteq N\}$ is a graded ideal of $G(\mathrm{R})$.

Proof. Since $\oplus_{h \in G}\left(N:_{R} M\right)_{h} \subseteq\left(N:_{R} M\right)$ is trivial, we will prove the reverse inclusion. Let $a=\sum_{h \in G} a_{h} \in\left(N:_{R} M\right)$. It is enough to show that
$a_{h} M \subseteq N$ for all $b \in G$. Without loss of generality we may assume that $a=\sum_{i=1}^{m} a_{b_{i}}$ where $a_{h_{i}} \neq 0$ for all $i=1,2, \ldots, m$ and $a_{h}=0$ for all $h \notin\left\{h_{1}, \ldots, h_{m}\right\}$. As $a \in\left(N:_{R} M\right)$, we obtain $\sum_{i=1}^{m} a_{h_{i}} M \subseteq N$. It suffices to show that for each $i, a_{h_{i}} m \in N$ for any $m \in M$. Since M is a graded module, we can assume that $m=\sum_{j=1}^{n} m_{g_{j}}$ with $m_{g_{j}} \neq 0$ for all j. Now we show that $a_{h_{i}} m_{g_{j}} \in N$ for all j. Since for each j, $a m_{g_{j}} \in N$ and N is a graded module, we obtain $\quad a_{h_{i}} m_{g_{j}} \in N \bigcap M_{h_{i} g_{j}} \subseteq N$. Thus $a_{h_{i}} M \subseteq N$ for all $i=1,2, \ldots, m$, as required. •

Definition 2.2. Let R be a G-graded ring, M a graded R -module, N a graded submodule of M and $g \in G$.
(i) We say that M_{g} is a g-torsion-free R_{e} module whenever $a \in \mathrm{R}_{e}$ and $m \in M_{g}$ with am $=0$ implies that either $m=0$ or $a={ }^{g} 0$.
(ii) We say that M is a graded torsionfree R-module whenever $a \in h(R)$ and $m \in$ M with $a m=0$ implies that either $m=0$ or a $=0$.
(iii) We say that N_{g} is a g-pure submodule of the R_{e}-module M_{g}^{g} if for each $a \in \mathrm{R}_{e}$, $a N_{g}=N_{g} \bigcap a M_{g}$.
(iv) We say that N is a graded pure submodule of M if for each $a \in h(R)$, $a N=N \bigcap a M$.
(v) We say that N_{g} is a g-prime submodule of the R_{e}-module if $N_{g}^{g} \neq M_{g}$; and whenever a $\in R_{e}$ and $m \in M_{g}$ with $a m \in{ }^{g} N_{g}$, then either m $\in N_{g}^{e}$ or $a \in\left(N_{g}^{g}:_{R_{e}} M_{g}\right)$.
(vi) We say that N is a graded prime submodule of M if $N \neq M$ and whenever a $\in b(R)$ and $m \in b(M)$ with $a m \in N$, then either $m \in N$ or $a \in\left(N:{ }_{\mathrm{R}} M\right)$.

Lemma 2.3. Let R be a G-graded ring, M a graded R-module and N a graded submodule of M.
(i) If N is a graded prime submodule of M, then N_{g} is a g-prime submodule of M_{g} for every $g \in$ G.
(ii) If M is a graded torsion-free R -module, then M_{g} is a g-torsion-free R_{e}-module for every $g \in G$.
(iii) If N is a graded pure submodule of a graded torsion-free R-module M, then N_{g} is a g-pure submodule of M_{g} for every $g \in G$.

Proof. (i) Suppose that N is a graded prime submodule of M. For $g \in G$, assume that am $\in N_{g} \subseteq N$ where $a \in R_{e}$ and $m \in M_{g}$. Since N is graded prime it gives either $m \in N$ or $a \in$ $\left(N:{ }_{\mathrm{R}} M\right)$. If $m \in N$, then $m \in N_{g}$ If $a \in(N:$ $\left.{ }_{\mathrm{R}} M\right)$, then $a M_{g} \subseteq a M \subseteq N$. Hence $a \in\left(N_{g}:_{R_{e}} M_{g}\right)$. So N_{g} is a prime submodule of M_{g}
(ii) This part is obvious.
(iii) Assume that N is a graded pure submodule of M and let $a \in \mathrm{R}_{e}$ and $g \in G$. Since $a N_{g} \subseteq N_{g} \bigcap a M_{g}$ is trivial, we will prove the reverse inclusion. Take any $a m \in N_{g} \bigcap a M_{g}$ where $m \in M_{\text {. }}$. We can assume that $a m \neq 0$. Then $a m \in N \bigcap a M=a N$ since N is a graded pure submodule. Therefore, am = at for some $t \in N_{g}$; hence m $=t$ since M_{g} is g-torsion-free by (ii). Thus am $\in a N_{g}$, as required.

Proposition 2.4. Let R be a G-graded ring, M a graded torsion-free R-module and N a proper graded submodule of M. Then N is a graded pure submodule of M if and only if, it is graded prime in M with (N $\left.\therefore{ }_{\mathrm{R}} M\right)=0$.

Proof. Assume that N is a graded pure submodule of M and let $r m \in N$ with $r \notin$ $\left(N:_{R} M\right)$, where $r \in b(R)$ and $m \in h(M)$. Then $r m \in N \bigcap r M=r N$, so $r m=r n$ for some homogeneous element n of N. It follows that $m=n \in N$ since M is graded torsion-free. Suppose that $a \in\left(N:{ }_{\mathrm{R}} M\right)$ with $a \neq 0$. Without loss of generality assume $a=\sum_{i=1}^{n} a_{g_{i}}$ where $a_{g_{i}} \neq 0$ for all $i=1,2, \ldots, n$ and $a_{g=0}$ for all $g \notin$ $\left\{g_{1}, \cdots, g_{n}\right\}$. As $N \neq M$, there is a homogeneous element m_{s} of M such that $m_{s} \notin N$ and $a_{g_{i}} m_{s} \in N$ for all $i=1,2, \ldots, n$ since N is a graded submodule. Since for every i, $a_{g_{i}} m_{s} \in N \bigcap a_{g_{i}} M=a_{g_{i}} N$, there exists a homogeneous element b of N such that $a_{g_{i}} m_{s}=a_{g_{i}} b$. Thus $m_{s}=b \in N$ since M is graded torsion-free, which is a contradiction. So $\left(N:{ }_{R} M\right)=0$.

Conversely, assume that N is graded prime in M with $\left(N:{ }_{\mathrm{R}} M\right)=0$ and let $a \in h(\mathrm{R})$. It is enough to show that $a M \bigcap N \subseteq a N$. Let $a x \in a M \bigcap N$ where $x \in M$. We can assume
that $a x \neq 0$. There are non-zero homogeneous elements $x_{h_{1}}, \ldots, x_{h_{t}}$ of M such that $a x_{h_{1}}, \ldots, a x_{h_{t}} \in N$ since N is graded submodule. So N graded prime and $a \neq 0$ gives $x_{h_{1}}, \ldots, x_{h_{t}} \in N$. Hence $x \in N$, which is required.

Let R be a G-graded ring and M a graded R-module. We say that R is a graded integral domain whenever $a, b \in h(\mathrm{R})$ with $a b=0$ implies that either $a=0$ or $b=0$. If R is a graded ring and M is a graded R -module, the subset $T(M)$ of M is defined by $T(M)=\{m \in$ $M: r m=0$ for some $0 \neq r \in h(\mathrm{R})\}$

Clearly, R is an integral domain if and only if R is a graded integral domain, so if R is a graded integral domain, then $T(M)$ is a submodule of M.

Proposition 2.5. Let R be a G-graded ring, M a graded R -module and P a graded ideal of $G(R)$. Then the following hold:
(i) If R is a graded integral domain, then $T(M)$ is a graded submodule of M.
(ii) If R is a graded integral domain and $T(M)$ $\neq M$, then $T(M)$ is a graded prime submodule of M.
(iii) Let R be an overring of S such that S is a G-graded ring. Then every graded prime ideal P of R is a graded prime submodule of S -module R with $\left(P:{ }_{s} R\right)=P \cap S$.
(iv) R / P is a graded integral domain if and only if P is a graded prime ideal of $G(R)$.

Proof.

(i) It is enough to show that $T(M)=$ $\oplus_{g \in G}\left(T(M) \cap M_{g}\right) . \quad$ Clearly, $\quad \oplus_{g \in G}(T(M)$ $\left.\bigcap M_{g}\right) \subseteq T(M)$. Let $m=\sum_{g \in G} m_{g} \in T(M)$. Our goal is to show that $m_{g} \in T(M)$ for all $g \in$ G. Without loss of generality assume $m=\sum_{i=1}^{n} m_{g_{i}}$ where $m_{g_{i}} \neq 0$ for all $i=1, \ldots, n$ and $m_{g}=0$ for all $g \notin\left\{g_{1}, \ldots g_{n}\right\}$. Since $m \in$ $T(M)$, there exists a non-zero element $r \in h(R)$ such that $r m=0$, so we get $r m_{g_{1}}=\ldots=r m_{g_{n}}$ $=0$. Hence $m_{g_{i}} \in T(M)$ for all i, as needed.
(ii) Let $a m \in T(M)$ with $a \notin\left(T(M):_{R} M\right)$, where $a \in h(R)$ and $m \in h(M)$. Then $a \in \mathrm{R}_{g}$ and $m \in M_{b}$ for some $g, b \in G$. Since $a m \in$ $T(M)$, there exists a non-zero element b of $b(\mathrm{R})$, say $b \in R_{p}$, such that $a b m=0$. If $a m=0$,
then $m \in T(M)$. So suppose that $a m \neq 0$. As R is a graded integral domain, we get $0 \neq a b \in$ $\mathrm{R}_{g t} \subseteq h(\mathrm{R})$. Hence $m \in T(M)$. Thus $T(M)$ is graded prime.
(iii) Let $a b \in P$ where $a \in b(S)$ and $b \in$ $b(R)$. Then either $a \in P$ or $b \in P$ since P is a graded prime ideal of $G(R)$. If $a \in P$, then a $\in\left(P:{ }_{R} R\right)$. Otherwise, $b \in P$. Hence P is a prime submodule. Finally, the equality $\left(P:{ }_{S} R\right)$ $=P \cap S$ is clear.
(iv) The proof is completely straightforward.

Lemma 2.6. Let R be a G-graded ring, M a graded R-module, N a graded submodule of M and g $\in G$. Then the following assertions are equivalent.
(i) N_{g} is a prime submodule of M_{g};
(ii) If whenever $I B \subseteq N_{g}$ with I an ideal of R_{e} and B a submodule of M_{g} implies that $I \subseteq\left(N_{g}:_{R_{e}} M_{g}\right)$ or $B \subseteq N_{g}$.

Proof. (i) \Rightarrow (ii) Suppose that N_{g} is a prime submodule of M_{g}. Let $I B \subseteq N_{g}$ with $x \in B$ N_{g}. We want to prove that $I \subseteq\left(N_{g}:_{R_{e}} M_{g}\right)$. Let $a \in I$. Then $a x \in N_{g}$, so $a \in\left(N_{g}:_{R_{e}} M_{g}\right)$ since is prime.
(ii) \Rightarrow (i) Suppose that $c y \in N_{g}$ where $c \in$ R_{e} and $y \in M_{g}$. Take $I=\mathrm{R}_{e}$ and $B \stackrel{g}{=} \mathrm{R}_{y} y$. Then $I B \subseteq N_{g}$, so either $B \subseteq N_{g}$ or $I \subseteq\left(N_{g}:_{R_{e}} M_{g}\right)$ by (ii). Hence either $y \in N_{g}^{g}$ or $c \in\left(N_{g}^{g}:_{R_{e}} M_{g}^{g}\right)$. So N_{g} is prime.

Proposition 2.7. Let R be a G-graded ring, M a graded R-module, N a graded prime submodule of M and $g \in G$. Then the following hold:
(i) $\left(N_{g}:_{R_{e}} M_{g}\right)$ is a prime ideal of $\mathrm{R}_{\dot{e}}$
(ii) $\left(N:{ }_{\mathrm{R}} M\right)$ is a graded prime ideal of $G(R)$.

Proof. (i) By Lemma 2.3, N_{g} is a prime submodule of M_{g}, so $\left(N_{g}:_{R_{e}} M_{g}\right) \neq R_{e}$. Let $a b \in\left(N_{g}:_{R_{e}} M_{g}\right)^{s}$ where $a, b \in R_{e}$. Then $a b M_{g}$ $\subseteq N_{g}$ If $b t \in N_{g}$ for every $t \in M_{g}$, then $b \in\left(N_{g}:_{R_{e}} M_{g}\right)$. So suppose that there is an element $n \in M_{g}$ such that $b n \notin N_{g}$. As abn \in N_{g} and $b n \notin N_{g}$, we get $a \in\left(N_{g}{\stackrel{g}{R_{e}}}^{:_{g}} M_{g}\right)$, as needed.
(ii) As N is a graded prime submodule of M, we get $\left(N:{ }_{R} M\right) \neq R$. Let $c d \in\left(N:{ }_{R} M\right)$
where $c, d \in b(\mathrm{R})$. Then $c d M \subseteq N$. If $d M \subseteq N$, then $d \in\left(N:{ }_{\mathrm{R}} M\right)$. So suppose that there exists $m \in M$ such that $d m \notin N$. As M is a graded Rmodule, there is an element $b \in G$ such that $d m_{b} \notin N$. Since $c d m \in N$ and N is a graded submodule, we have $c d m_{b} \in N$. Since N is graded prime gives $c \in\left(N:{ }_{\mathrm{R}} M\right)$ since $d m_{b} \notin$ N, as required.

Lemma 2.8. Let R be a G-graded ring and M a graded R -module. Assume that N and K are graded submodules of M with $K \subseteq N$. Then N is a graded prime submodule of M if and only if N / K is a graded prime submodule of the R -module M / K.

Proof. Let N be a graded prime submodule of M. Then $N / K \neq M / K$. To show that N / K is a prime submodule of M / K, let $a(m+K) \in$ N / K where $a \in b(\mathrm{R})$ and $m+K \in b(M / K)$, so $m \in b(M)$ and $a m \in N$. Since, N is graded prime it gives either $m+K \in(M / K)$ or $a \in$ $\left(N:{ }_{\mathrm{R}} M\right)=\left(N / K:{ }_{\mathrm{R}} M / K\right)$. Similarly, we can prove that if N / K is graded prime, then N is graded prime.

Theorem 2.9. Let R be a G-graded ring and M a graded R -module. Assume that A and B are graded submodules of M with $A+B \neq M$. Then $A+B$ is a graded prime submodule of M.

Proof. Since $(A+B) / B \cong B /(A \cap B)$, we obtain $A+B$ is a graded prime submodule of M by Lemma 2.8.

Theorem 2.10. Let R be a G -graded ring, Ma graded R -module and N a graded prime submodule of N with $\left(N:{ }_{R} M\right)=P$. Then there is a one-to-one correspondence between graded prime submodules of the R / P-module M / N and the graded prime submodules of M containing N.

Proof. Let K be a graded prime submodule of M containing N. Since $K \neq M$ and $P=(N$ $\left.:{ }_{\mathrm{R}} M\right) \subseteq\left(K:{ }_{\mathrm{R}} M\right)$, we get that K / N is a proper R / P-submodule of M / N. Let $(a+P)(m+N)$ $=a m+N \in K / N$ for $a \in b(\mathrm{R})$ and $m \in b(M)$. Then K being graded prime gives either $m \in$
M or $a M \subseteq K$. Hence either $m+N \in K / N$ or $(a+P)(M / N) \subseteq K / N$. Therefore, K / N is a graded prime submodule of M / N. Conversely, let K / N be a graded prime submodule of M / N. To show that K is a graded prime submodule of M, we suppose that $b t \in K$ where $b \in b(\mathrm{R})$ and $t \in b(M)$. Then $(b+P)(t+N)=b t+N \in K / N$. So K / N being graded prime gives either $t \in K$ or $b M$ $\subseteq K$, as required.

Theorem 2.11. Let R be a G-graded ring, M a graded R-module, N a graded submodule of M and g $\in G$. Then the following hold:
(i) N_{g} is a prime submodule of M_{g} if and only if $\left(N_{g}:_{R_{e}} M_{g}\right)=P_{g}$ is a prime ideal of R_{e} and $M_{g} /$ N_{s} is a g-torsion-free R_{8} / P_{s}-module.
(ii) N is a graded prime submodule of M if and only if $\left(N:{ }_{\mathrm{R}} M\right)=P$ is a graded prime ideal of $G(R)$ and M / N is a graded torsion-free R / P-module.

Proof. (i) First suppose that N_{s} is a prime submodule of M_{g}. Then by Proposition 2.7 (i), P_{g} is a prime ideal of R_{6} and M_{g} / N_{g} is an $\mathrm{R}_{\delta} / P_{s}^{s}$-module. If $\left(a+P_{s}\right)(m+N)=N_{s}$ where $a \in \mathrm{R}_{s}$ and $m \in M_{g}$, then $a m \in N_{s}$. So either m $\in N_{s}$ or $a \in P_{s}$. Hence $m+N_{s}=N_{s}$ or $a+P_{s}=$ $P_{s}{ }^{s}$ Therefore, M_{g} / N_{s} is a g_{g}^{g} torsion-free $\delta^{8} /$ P_{s} module. Conversely, let P_{s} be a prime ideal of R_{g} and let M_{g} / N_{g} be a g-torsion-free $R /$ P_{s} module. Since $P_{g}^{g}=\left(N_{g}:_{R_{e}} M_{g}\right) \neq R_{e}, N_{s}$ $\neq M_{g}$. To show that N_{s} is a prime submodule of $\stackrel{g}{g}_{g}$ assume that $b t \stackrel{g}{\in} N_{g}$ for $b \in \mathrm{R}_{g} t \in M_{g}$. So $\left(b+P_{g}\right)(t+N)=b t+N_{s} \stackrel{\delta}{=} N_{s}$. Hence either $b \notin P$ or $t \in N_{g}$ and the proof is complete.
(ii) Let N be a graded prime submodule of M. Then by Proposition 2.7(ii), P is a graded prime ideal of $G(R)$ and M / N is an $R / P-$ module. Suppose that $(p+P)(n+N)=N$ where $p+P \in b(R / P)$ and $n+N \in b(M / N)$. Then $p n$ $\in N$ for some $p \in b(\mathrm{R}), n \in b(M)$. Therefore, N being graded prime gives either $p+P=P$ or $n+N=N$. Hence M / N is graded torsionfree. Conversely, assume that P is a graded prime ideal of $G(\mathrm{R})$ and let M / N be a graded torsion-free R / P-module. Clearly, $N \neq M$. To see that N is graded prime, assume that $a m \in$
N where $a \in h(R)$ and $m \in h(M)$. Then $(a+P)(m+N)=N$. So either $a \in P$ or $m \in N$. Thus N is graded prime.

REFERENCES

[1] Chin-Pi Lu, Prime submodules of modules, Comm. Math. Univ. Sancti Pauli, 1984; 33: 61-69.
[2] Chin-Pi Lu, Spectra of modules, Comm. in Algebra, 1995; 23: 3741-3752.
[3] Nastasescu C., and Van Oystaeyen F., Graded Ring Theory, Mathematical Library 28, North Holand, Amsterdam, 1982.
[4] Refai M., and Al-Zoubi K., On Graded Primary Ideals, Turkish J. Mathematics, 2004; 28: 217-229.

