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AAAAA BSTRACTBSTRACTBSTRACTBSTRACTBSTRACT

Let G be a monoid with identity e, and let R be a G-graded commutative ring. Here we
study the graded prime submodules of a G-graded R-module. A number of results concerning
of these class of submodules are given.
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1. I1. I1. I1. I1. INTRODUCTIONNTRODUCTIONNTRODUCTIONNTRODUCTIONNTRODUCTION

Several authors have extended the notion
of prime ideals to modules (see [1] and [2],
for example). Let R be a G-graded commuta-
tive ring and M a graded R-module. In this
paper we introduce the concepts of graded

prime submodules of M and give some of
their basic properties. However, the prime and
graded prime are different concepts.

Before we state some results, let us
introduce some notations and terminologies.
Let G be an arbitrary monoid with identity e.

By a G-graded commutative ring we mean a
commutative ring R with non-zero identity
together with a direct sum decomposition (as
an additive group) R=⊕

g∈G
R

g
 with the

property that 
ghhg RRR ⊆  for all Ghg ∈, . We

denote this by G(R). Also, we write

U Gg gRRh
∈

=)( . The summands gR  are called
homogeneous components and elements of
these summands are called homogeneous
elements. If  Ra∈ , then a can be written
uniquely as ∑ ∈Gg ga where ga  is the
component of a  in gR . In this case, 

e
R  is a

subring of R and eR R∈1 .
Let R be a graded ring and M an R-

module. We say that M is a G-graded R-
module if there exists a family of subgroups

GggM ∈}{  of M such that 
gGg MM ∈⊕=  (as

abelian groups), and ghhg MMR ⊆  for all

Ghg ∈, , here hgMR  denotes the additive
subgroup of M consisting of all finite sums
of elements hg sr  with gg Rr ∈  and hh Ms ∈ .
Also, we write U Gg gMMh

∈
=)( . If  gGg MM ∈⊕=

is a graded module, then, M
g
 is an R

e
-module

for all g ∈ G. Let gGg MM ∈⊕=  be a graded
R-module and N a submodule of  M. For g
∈ G, let I gg MNN = . Then N is a graded
submodule of M if 

gGg NN ∈⊕= . In this case,
N

g
 is called the g-component of  N for g ∈ G.

Moreover, M/N becomes a G-graded

module with g-component (M/N)
g
 =

NNM g /)() +=  for g ∈ G. Clearly, 0 is a graded
submodule of M. An ideal I of G(R) is said
to be graded prime ideal if I≠R and whenever
ab ∈ I, we have a ∈ I or b ∈ I, where a,b ∈
h(R).

2. T2. T2. T2. T2. THE HE HE HE HE RRRRRESULESULESULESULESULTSTSTSTSTS

Our starting point is the following lemma:

Lemma 2.1. Let R be a G-graded ring, and  M,N
be graded R-modules. Then (N :

 R
M) = {r ∈ R :

rM ⊆ N}is a graded ideal of G(R).

Proof. Since ):():( MNMN RhRGh ⊆⊕ ∈  is
trivial, we will prove the reverse inclusion. Let

).:( MNaa R

Gh

h ∈= ∑
∈

 It is enough to show that



NMah ⊆  for all h ∈ G. Without loss of
generality we may assume that ∑ =

=
m

i hi
aa
1

where 0≠
ih

a  for all mi ,...,2,1=  and 0=ha

for all },....,{ 1 mhhh∉ . As ):( MNa R∈ , we
obtain ∑ =

⊆
m

i h NMa
i1

. It suffices to show that
for each i, Nma

ih
∈  for any m ∈ M. Since M is

a graded module, we can assume that

∑ =
=

n

j g j
mm
1

 with 0≠
jg

m  for all j. Now we
show that Nma

ji gh ∈  for all j. Since for each
j, Nam

jg
∈  and N is a graded module, we

obtain NMNma
jiji ghgh ⊆∈ I . Thus

NMa
ih

⊆  for all mi ,...,2,1= , as required.  �

Definition 2.2. Let R be a G-graded ring, M
a graded R-module, N a graded submodule
of  M and g ∈ G.

(i) We say that M
g
 is a g-torsion-free R

e
-

module whenever a ∈ R
e
 and m ∈ M

g
 with am

= 0 implies that either m = 0 or a = 0.
(ii) We say that M is a graded torsion-

free R-module whenever a ∈ h(R) and m ∈
M with am = 0 implies that either m = 0 or a
= 0.

(iii) We say that N
g
 is a g-pure submodule

of the R
e
-module M

g
 if for each a ∈ R

e
,

I ggg aMNaN = .
(iv) We say that N is a graded pure

submodule of M if for each a ∈ h(R),

IaMNaN = .
(v) We say that N

g
 is a g-prime submodule

of the R
e
-module if N

g
 ≠ M

g
; and whenever a

∈ R
e
 and m ∈ M

g
 with am ∈ N

g
 , then either m

∈ N
g
 or ):( gRg MNa

e
∈ .

(vi) We say that N is a graded prime
submodule of M if N ≠ M and whenever a
∈ h(R) and m ∈ h(M) with am ∈ N, then either

m ∈ N or a ∈ (N : 
R
M).

Lemma 2.3. Let R be a G-graded ring , M a
graded R-module and N a graded submodule of M.

(i) If N is a graded prime submodule of M,
then N

g
 is a g-prime submodule of  M

g
 for every g ∈

G.
(ii) If M is a graded torsion-free R-module, then

M
g
 is a g-torsion-free R

e
-module for every g ∈ G.

(iii) If N is a graded pure submodule of a graded
torsion-free R-module M, then N

g
 is a g-pure

submodule of  M
g
 for every g ∈ G.

Proof. (i) Suppose that N is a graded prime
submodule of  M. For g ∈ G, assume that am
∈ N

g
 ⊆ N where a ∈ R

e
 and m ∈ M

g
. Since N

is graded prime it gives either m ∈ N or a ∈
(N : 

R
M). If  m ∈ N, then m ∈ N

g
. If  a ∈ (N :

R
M), then aM

g
 ⊆ aM ⊆ N . Hence

):( gRg MNa
e

∈ . So N
g
 is a prime submodule

of  M
g
.

(ii) This part is obvious.
(iii) Assume that N is a graded pure

submodule of  M and let a ∈ R
e
 and g ∈ G.

Since I ggg aMNaN ⊆  is trivial, we will

prove the reverse inclusion. Take any

I gg aMNam∈  where m ∈ M
g
. We can

assume that am ≠ 0. Then I aNaMNam =∈

since N is a graded pure submodule.
Therefore, am = at for some t ∈ N

g
; hence m

= t since M
g
 is g-torsion-free by (ii). Thus am

∈ aN
g
, as required. �

Proposition 2.4. Let R be a G-graded ring, M a
graded torsion-free R-module and N a proper graded
submodule of M. Then N is a graded pure submodule
of M if and only if, it is graded prime in M with (N

: 
R
M) = 0.

Proof. Assume that N is a graded pure
submodule of M and let rm ∈ N with r ∉

(N:
R
M), where r ∈ h(R) and m ∈ h(M). Then

rNrMNrm =∈ I , so rm = rn for some

homogeneous element n of  N. It follows that
m = n ∈ N since M is graded torsion-free.
Suppose that a ∈ (N : 

R
M) with a ≠ 0. Without

loss of generality assume ∑ =
=

n

i g i
aa
1

 where

0≠
ig

a  for all i = 1,2,...,n and a
g=0

 for all g ∉
{g

1
,...,g

n
}. As N ≠ M, there is a homogeneous

element m
s
 of M such that m

s
 ∉ N and

Nma sgi
∈  for all i = 1,2,...,n since N is a

graded submodule. Since for every i ,
NaMaNma
iii ggsg =∈ I  , there exists a

homogeneous element b of N such that
bama
ii gsg = . Thus m

s
 = b ∈ N since M is

graded torsion-free, which is a contradiction.
So (N : 

R
M)=0.

Conversely, assume that N is graded
prime in M with (N : 

R
M)=0 and let a ∈ h(R).

It is enough to show that aNNaM ⊆I . Let

INaMax∈  where x ∈ M. We can assume
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that ax ≠ 0. There are non-zero homogeneous
elements 

thh xx ,...,
1

of M such that
Naxax

thh ∈,...,
1

 since N is graded submodule.
So N graded prime and a ≠ 0 gives

Nxx
thh ∈,...,

1
. Hence x ∈ N ,  which is

required. �

Let R be a G-graded ring and M a graded
R-module. We say that R is a graded integral
domain whenever a,b ∈ h(R) with ab = 0
implies that either a = 0 or b = 0. If R is a
graded ring and M is a graded R-module, the
subset T(M) of M is defined by T(M) = {m ∈

M : rm = 0 for some 0 ≠ r ∈ h(R)}
Clearly, R is an integral domain if  and

only if R is a graded integral domain, so if R
is a graded integral domain, then T(M) is a
submodule of M.

Proposition 2.5. Let R be a G-graded ring, M a
graded R-module and P a graded ideal of G(R).
Then the following hold:

(i) If R is a graded integral domain, then T(M)
is a graded submodule of M.

(ii) If R is a graded integral domain and T(M)

≠ M, then T(M) is a graded prime submodule of M.
(iii) Let R be an overring of  S such that S is a

G-graded ring. Then every graded prime ideal P of
R is a graded prime submodule of S-module R with
(P : 

S
R) = P∩S.
(iv) R/P is a graded integral domain if and

only if P is a graded prime ideal of G(R).

Proof.

(i) It is enough to show that )(MT ⊕=

))(() gGg MMT I
∈

⊕= . Clearly, )(( MTGg⊕
∈

)())( MTM g ⊆I . Let )(MTmm
Gg g ∈= ∑ ∈

.

Our goal is to show that m
g
 ∈ T(M) for all g ∈

G . Without loss of  generality assume

∑ =
=

n

i gi
mm
1

 where 0≠
ig

m  for all i = 1,...,n
and m

g
 = 0 for all g ∉ {g

1
,...,g

n
}. Since m ∈

T(M), there exists a non-zero element r ∈ h(R)
such that rm = 0, so we get ...

1
==

ngg rmrm

0= . Hence )(MTm
ig
∈  for all i, as needed.

(ii) Let am ∈ T(M) with a ∉ (T(M) :
R
M),

where a ∈ h(R) and m ∈ h(M). Then a ∈ R
g

and m ∈ M
h
 for some g,h ∈ G. Since am ∈

T(M), there exists a non-zero element b of
h(R), say b ∈ R

t
, such that abm = 0. If am = 0,

then m ∈ T(M). So suppose that am ≠ 0. As R
is a graded integral domain, we get 0 ≠ ab ∈
R

gt
  ⊆ h(R). Hence m ∈ T(M). Thus T(M) is

graded prime.
(iii) Let ab ∈ P where a ∈ h(S) and b ∈

h(R). Then either a ∈ P or b ∈ P since P is a

graded prime ideal of  G(R). If  a ∈ P, then a
∈ (P : 

R
R). Otherwise, b ∈ P. Hence P is a

prime submodule. Finally, the equality (P : 
S
R)

= P∩S is clear.
(iv) The proof is completely straight-

forward. �

Lemma 2.6. Let R be a G-graded ring , M a
graded R-module, N a graded submodule of M and g
∈ G. Then the following assertions are equivalent.

(i) N
g
 is a prime submodule of M

g
;

(ii) If whenever IB ⊆ N
g
 with I an ideal of R

e

and B a submodule of M
g
 implies that

):( gRg MNI
e

⊆ or B ⊆ N
g
.

Proof. (i) ⇒ (ii) Suppose that N
g
 is a prime

submodule of  M
g
. Let IB ⊆ N

g
 with x ∈ B -

N
g
. We want to prove that ):( gRg MNI

e
⊆ .

Let a ∈ I. Then ax ∈ N
g
, so ):( gRg MNa

e
∈

since is prime.
(ii) ⇒ (i) Suppose that cy ∈ N

g
 where c ∈

R
e
 and y ∈ M

g
. Take I = R

e
c and B = R

e
y. Then

IB ⊆ N
g
, so either B ⊆ N

g
 or ):( gRg MNI

e
⊆

by (ii). Hence either y ∈ N
g
 or ):( gRg MNc

e
∈ .

So N
g
 is prime. �

Proposition 2.7. Let R be a G-graded ring, M a
graded R-module, N a graded prime submodule of
M and g ∈ G. Then the following hold:

(i) ):( gRg MN
e

 is a prime ideal of R
e
.

(ii) (N : 
R
M) is a graded prime ideal of G(R).

Proof. (i) By Lemma 2.3, N
g
 is a prime

submodule of M
g
, so ):( gRg MN

e
≠ R

e
. Let

):( gRg MNab
e

∈  where a,b ∈ R
e
. Then abM

g

⊆ N
g
. If  bt ∈ N

g
 for every t ∈ M

g
, then

):( gRg MNb
e

∈ . So suppose that there is an
element n ∈ M

g
 such that bn ∉ N

g
. As abn ∈

N
g
 and bn ∉ N

g
, we get ):( gRg MNa

e
∈ , as

needed.
(ii) As N is a graded prime submodule

of M, we get (N : 
R
M) ≠ R. Let cd ∈ (N : 

R
M)
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where c,d E h(R). Then cdM ~ N. If dM ~ N,
then dE (N:~. So suppose that there exists
m E M such that dm ~ N. As M is a graded R-
module, there is an element h E G such that
dmh ~ N. Since cdm E Nand N is a graded
s\l1bmodule, we have cdmh E N. Since N is
graded prime gives c E (N: ~ since dmh ~
N, as required. 0

M or aM ~ K. Hence either m + N E KIN or
(a+p) (MIN) ~ KIN. Therefore, KIN is a
grJded prime submodule of MIN.
Cdnversely, let KIN be a graded prime
submodule of MIN. To show that K is a
graded prime submodule of M, we suppose
that bt E K where b E h(R) and t E h(M).
Then (b+P)(t+N) = bt+N E KIN. SO KIN

being graded prime gives either t E K or bM
~ K, as required. 0Lemma 2.8. Let R be a G-graded ring and M a

graded R-module. Assume that Nand K are graded

submodules oj M with K s;; N. Then N is a graded
prime submodule of M if and onlY if N/K is a
graded prime submodule oj the R-module M/ K

Proof. Let N be a graded prime submodule
of M. Then N/ K * M/ K To show that N/ K
is a prime submodule of M/K, let a(m+K) E
N/Kwhere a E h(R) and m + K E h(M/K),
so m E h(M) and am E N. Since, N is graded
prime it gives either m + K E (M/ K) or a E
(N: ~ = (N/K: ~/K). Similarly, we can

prove that if N/ K is graded prime, then N is
graded prime. D

Theorem 2.11. Let R be a G-graded ring, M a
graded R-module, N a graded submodule ofM andg
E "Then the following hold"

(i) N is a prime submodule of M if and onlY
g g

if( g:R, M g) = P g is a prime idealofR, andMI

N is a g-torsionjree RI P -module.
.g

(ii) N is agraded prime submodule ofM if and
0 if (N ..gA1) = P is a graded prime ideal of

G J and M/ N is a graded torsion-free R/ P-module.

Proof. (i) First suppose that Nl is a prime
submodule of M. Then by Proposition 2.7
(i), I PI is a prime ideal of R, and MINI is an
R/PI-module. If (a+P)(m+N) = Nl.where

a E R and m E M.. then am EN. So either m, 6 I
E ora E P. Hencem+N =N ora+P =

I I I I I
Pi Therefore, M/~ is a g-torsion-free R/
P ~ odule. Conversely, let P be a prime ideal
ot R, and let MINI be a ;torsion-free R/
Pit odule. Since Pg = (N g :R, M g) * R., Nl

*~ .To show that N is a prime submoduleI I
of M.g' assume that bl E Nl for b E R,. I E MI.
So (b+P)(/+N) = bt+NI = Nl. Hence either

b P or I E N and the proof is complete.
I I

(ii) Let N be a graded prime submodule
of .Then by Proposition 2. 7(ii), Pis a graded
pt e ideal of G(R) and M/N is an R/P-
111 dule. Suppose that (p+PJ(n+l\1) = Nwhere

p+ E h(R/PJ and n+N E h(M/l\1). Thenpn
E for some p E h(R), n E h(M). Therefore,
N being graded prime gives either p+ P = P
ot n+N = N. Hence M/N is graded torsion-
fr e. Conversely, assume that P is a graded
p e ideal of G(R) and let M/Nbe a graded
t~ sion-free R/P-module. Clearly, N*M. To
s, that N is graded prime, assume that am E

Theorem 2.9. Let R be a G-graded ring and M
a graded R -module. Assume that A and B are graded
submodules ofM with A + B ~M. ThenA + B is

a graded prime submodule of M.

Proof. Since (A + B)/B == B/(AnB), we
obtain A + B is a graded prime submodule
of M by Lemma 2.8. 0

Theorem 2.10. Let R be a G-graded ring, M a
graded R-module and N a graded prime submodulc
of N with (N ..~) = P. Then there is a one-to-one

correspondence between graded prime submodules of

the R/ P-module M/ N and the graded prime
sJlbmodulcs of M containing N.

Proof. Let K be a graded prime submodule
of M containing N. Since K * M and P = (N
: ~ ~ (K: ~,we get that KIN is a proper
RIP-submodule of MIN. Let (a+p)(m+N)
= am + N E KIN for a E h(R) andm E h(M).
Then K being graded prime gives either m E



N where a ∈ h(R) and m ∈ h(M). Then

(a+P)(m+N) = N. So either a ∈ P or m ∈ N.

Thus N is graded prime. �
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