

Chiang Mai J. Sci. 2006; 33(1) : 3-7 www.science.cmu.ac.th/journal-science/josci.html Contributed Paper

On Graded Prime Submodules

Shahabaddin E. Atani

Department of Mathematics, University of Guilan, P.O. Box 1914 Rasht Iran E-mail : ebrahimi@guilan.ac.ir

> Received : 18 August 2005 Accepted : 17 October 2005

ABSTRACT

Let G be a monoid with identity e, and let R be a G-graded commutative ring. Here we study the graded prime submodules of a G-graded R-module. A number of results concerning of these class of submodules are given.

Keywords: graded prime submodules, graded rings.

1. INTRODUCTION

Several authors have extended the notion of prime ideals to modules (see [1] and [2], for example). Let R be a G-graded commutative ring and M a graded R-module. In this paper we introduce the concepts of graded prime submodules of M and give some of their basic properties. However, the prime and graded prime are different concepts.

Before we state some results, let us introduce some notations and terminologies. Let G be an arbitrary monoid with identity e. By a G-graded commutative ring we mean a commutative ring R with non-zero identity together with a direct sum decomposition (as an additive group) $R=\bigoplus_{g\in G}R_g$ with the property that $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$. We denote this by G(R). Also, we write $h(R) = \bigcup_{g\in G} R_g$. The summands R_g are called homogeneous components and elements of these summands are called homogeneous elements. If $a \in R$, then a can be written uniquely as $\sum_{g\in G} a_g$ where a_g is the component of a in R_g . In this case, R_e is a subring of R and $1_R \in R_e$.

Let R be a graded ring and M an Rmodule. We say that M is a G-graded Rmodule if there exists a family of subgroups $\{M_g\}_{g\in G}$ of M such that $M = \bigoplus_{g\in G} M_g$ (as abelian groups), and $R_g M_h \subseteq M_{gh}$ for all $g,h \in G$, here $R_{g}M_{h}$ denotes the additive subgroup of M consisting of all finite sums of elements $r_g s_h$ with $r_g \in R_g$ and $s_h \in M_h$. Also, we write $h(M) = \bigcup_{g \in G} M_g$. If $M = \bigoplus_{g \in G} M_g$ is a graded module, then, M_i is an R_i -module for all $g \in G$. Let $M = \bigoplus_{g \in G} M_g$ be a graded R-module and N a submodule of M. For g \in G, let $N_g = N \bigcap M_g$. Then N is a graded submodule of M if $N = \bigoplus_{g \in G} N_g$. In this case, N_g is called the g-component of N for $g \in G$. Moreover, M/N becomes a G-graded module with g-component $(M/N)_{a}$ = $(M_g + N)/N$ for $g \in G$. Clearly, 0 is a graded submodule of M. An ideal I of G(R) is said to be graded prime ideal if $I \neq R$ and whenever $ab \in I$, we have $a \in I$ or $b \in I$, where $a, b \in I$ $h(\mathbf{R})$.

2. THE RESULTS

Our starting point is the following lemma:

Lemma 2.1. Let R be a G-graded ring, and M,N be graded R-modules. Then $(N : {}_{R}M) = \{r \in R : rM \subseteq N\}$ is a graded ideal of G(R).

Proof. Since $\bigoplus_{h \in G} (N :_R M)_h \subseteq (N :_R M)$ is trivial, we will prove the reverse inclusion. Let $a = \sum_{h \in G} a_h \in (N :_R M)$. It is enough to show that

 $a_h M \subseteq N$ for all $h \in G$. Without loss of generality we may assume that $a = \sum_{i=1}^m a_{h_i}$ where $a_{h_i} \neq 0$ for all i = 1, 2, ..., m and $a_h = 0$ for all $h \notin \{h_1, ..., h_m\}$. As $a \in (N :_R M)$, we obtain $\sum_{i=1}^m a_{h_i} M \subseteq N$. It suffices to show that for each $i, a_{h_i} m \in N$ for any $m \in M$. Since M is a graded module, we can assume that $m = \sum_{j=1}^n m_{g_j}$ with $m_{g_j} \neq 0$ for all j. Now we show that $a_{h_i} m_{g_j} \in N$ for all j. Since for each $j, am_{g_j} \in N$ and N is a graded module, we obtain $a_{h_i} m_{g_j} \in N \cap M$ and $M_{h_i g_j} \subseteq N$. Thus $a_{h_i} M \subseteq N$ for all i = 1, 2, ..., m, as required.

Definition 2.2. Let *R* be a *G*-graded ring, *M* a graded *R*-module, *N* a graded submodule of *M* and $g \in G$.

(i) We say that M_{g} is a g-torsion-free R_{e} module whenever $a \in R_{e}$ and $m \in M_{g}$ with am = 0 implies that either m = 0 or a = 0.

(ii) We say that M is a graded torsionfree R-module whenever $a \in b(R)$ and $m \in M$ with am = 0 implies that either m = 0 or a = 0.

(iii) We say that N_g is a g-pure submodule of the R-module M_g^{s} if for each $a \in R_{s}$, $aN_g = N_g \bigcap aM_g$.

(iv) We say that N is a graded pure submodule of M if for each $a \in h(R)$, $aN = N \bigcap aM$.

(v) We say that N_g^{e} is a *g*-prime submodule of the R_e -module if $N_g^{e} \neq M_g^{e}$; and whenever $a \in R_e$ and $m \in M$ with $am \in N_g$, then either $m \in N_g$ or $a \in (N_g^{e} :_{R_e} M_g)$.

(vi) We say that N is a graded prime submodule of M if $N \neq M$ and whenever $a \in h(R)$ and $m \in h(M)$ with $am \in N$, then either $m \in N$ or $a \in (N : {}_{w}M)$.

Lemma 2.3. Let R be a G-graded ring, M a graded R-module and N a graded submodule of M.

(i) If N is a graded prime submodule of M, then N_g is a g-prime submodule of M_g for every $g \in G$.

(ii) If M is a graded torsion-free R-module, then M_a is a g-torsion-free R_a-module for every $g \in G$.

(iii) If N is a graded pure submodule of a graded torsion-free R-module M, then N_g is a g-pure submodule of M_g for every $g \in G$. **Proof.** (i) Suppose that N is a graded prime submodule of M. For $g \in G$, assume that $am \in N_g \subseteq N$ where $a \in R_e$ and $m \in M_g$. Since N is graded prime it gives either $m \in N$ or $a \in (N : {}_{R}M)$. If $m \in N$, then $m \in N_g$. If $a \in (N : {}_{R}M)$, then $aM_g \subseteq aM \subseteq N$. Hence $a \in (N_g : {}_{R_e}M_g)$. So N_g is a prime submodule of M.

(ii) This part is obvious.

(iii) Assume that N is a graded pure submodule of M and let $a \in R_e$ and $g \in G$. Since $aN_g \subseteq N_g \bigcap aM_g$ is trivial, we will prove the reverse inclusion. Take any $am \in N_g \bigcap aM_g$ where $m \in M_e$. We can assume that $am \neq 0$. Then $am \in N \bigcap aM = aN$ since N is a graded pure submodule. Therefore, am = at for some $t \in N_g$; hence m= t since M_g is g-torsion-free by (ii). Thus $am \in aN_g$, as required.

Proposition 2.4. Let R be a G-graded ring, M a graded torsion-free R-module and N a proper graded submodule of M. Then N is a graded pure submodule of M if and only if, it is graded prime in M with (N : $_{v}M$) = 0.

Proof. Assume that N is a graded pure submodule of M and let $rm \in N$ with $r \notin$ $(N_{\mathbb{P}}M)$, where $r \in h(\mathbb{R})$ and $m \in h(M)$. Then $rm \in N$ rM = rN, so rm = rn for some homogeneous element n of N. It follows that $m = n \in N$ since M is graded torsion-free. Suppose that $a \in (N: {}_{R}M)$ with $a \neq 0$. Without loss of generality assume $a = \sum_{i=1}^{n} a_{g_i}$ where $a_{g_i} \neq 0$ for all i = 1, 2, ..., n and $a_{g=0}$ for all $g \notin$ $\{g_1, \dots, g_n\}$. As $N \neq M$, there is a homogeneous element m_i of M such that $m_i \notin N$ and $a_{g_i}m_s \in N$ for all i = 1, 2, ..., n since N is a graded submodule. Since for every i, $a_{g_i}m_s \in N$ $a_{g_i}M = a_{g_i}N$, there exists a homogeneous element b of N such that $a_{g_i}m_s = a_{g_i}b$. Thus $m_i = b \in N$ since M is graded torsion-free, which is a contradiction. So $(N : {}_{p}M) = 0$.

Conversely, assume that N is graded prime in M with $(N: {}_{R}M)=0$ and let $a \in h(R)$. It is enough to show that $aM \bigcap N \subseteq aN$. Let $ax \in aM \bigcap N$ where $x \in M$. We can assume that $ax \neq 0$. There are non-zero homogeneous elements $x_{h_1}, ..., x_{h_r}$ of M such that $ax_{h_1}, ..., ax_{h_r} \in N$ since N is graded submodule. So N graded prime and $a \neq 0$ gives $x_{h_1}, ..., x_{h_r} \in N$. Hence $x \in N$, which is required.

Let R be a G-graded ring and M a graded R-module. We say that R is a graded integral domain whenever $a, b \in h(R)$ with ab = 0implies that either a = 0 or b = 0. If R is a graded ring and M is a graded R-module, the subset T(M) of M is defined by $T(M) = \{m \in M : rm = 0 \text{ for some } 0 \neq r \in h(R)\}$

Clearly, R is an integral domain if and only if R is a graded integral domain, so if R is a graded integral domain, then T(M) is a submodule of M.

Proposition 2.5. Let R be a G-graded ring, M a graded R-module and P a graded ideal of G(R). Then the following hold:

(i) If R is a graded integral domain, then T(M) is a graded submodule of M.

(ii) If R is a graded integral domain and $T(M) \neq M$, then T(M) is a graded prime submodule of M.

(iii) Let R be an overring of S such that S is a G-graded ring. Then every graded prime ideal P of R is a graded prime submodule of S-module R with $(P: {}_{S}R) = P \cap S$.

(iv) R/P is a graded integral domain if and only if P is a graded prime ideal of G(R).

Proof.

(i) It is enough to show that $T(M) = \bigoplus_{g \in G} (T(M) \cap M_g)$. Clearly, $\bigoplus_{g \in G} (T(M) \cap M_g) \subseteq T(M)$. Let $m = \sum_{g \in G} m_g \in T(M)$. Our goal is to show that $m_g \in T(M)$ for all $g \in G$. Without loss of generality assume $m = \sum_{i=1}^{n} m_{g_i}$ where $m_{g_i} \neq 0$ for all i = 1,...,n and $m_g = 0$ for all $g \notin \{g_1,...,g_n\}$. Since $m \in T(M)$, there exists a non-zero element $r \in h(R)$ such that rm = 0, so we get $rm_{g_1} = ... = rm_{g_n} = 0$. Hence $m_{g_i} \in T(M)$ for all i, as needed.

(ii) Let $am \in T(M)$ with $a \notin (T(M) :_{R}M)$, where $a \in b(R)$ and $m \in b(M)$. Then $a \in R_{g}$ and $m \in M_{b}$ for some $g, b \in G$. Since $am \in T(M)$, there exists a non-zero element b of b(R), say $b \in R_{p}$ such that abm = 0. If am = 0, then $m \in T(M)$. So suppose that $am \neq 0$. As R is a graded integral domain, we get $0 \neq ab \in R_{g'} \subseteq b(R)$. Hence $m \in T(M)$. Thus T(M) is graded prime.

(iii) Let $ab \in P$ where $a \in h(S)$ and $b \in h(R)$. Then either $a \in P$ or $b \in P$ since P is a graded prime ideal of G(R). If $a \in P$, then $a \in (P : {}_{R}R)$. Otherwise, $b \in P$. Hence P is a prime submodule. Finally, the equality $(P : {}_{S}R) = P \cap S$ is clear.

(iv) The proof is completely straightforward.

Lemma 2.6. Let R be a G-graded ring, M a graded R-module, N a graded submodule of M and g ϵ G. Then the following assertions are equivalent.

(i) N_{i} is a prime submodule of M_{j} :

(ii) If whenever IB $\subseteq N_g$ with I an ideal of R_g and B a submodule of M_g implies that $I \subseteq (N_g :_{R_e} M_g)$ or $B \subseteq N_g$.

Proof. (i) \Rightarrow (ii) Suppose that N_g is a prime submodule of M_g . Let $IB \subseteq N_g$ with $x \in B$. N_g . We want to prove that $I \subseteq (N_g :_{R_e} M_g)$. Let $a \in I$. Then $ax \in N_g$, so $a \in (N_g :_{R_e} M_g)$ since is prime.

(ii) \Rightarrow (i) Suppose that $cy \in N_g$ where $c \in R_e$ and $y \in M_g$. Take $I = R_e c$ and $B = R_g y$. Then $IB \subseteq N_g$, so either $B \subseteq N_g$ or $I \subseteq (N_g :_{R_e} M_g)$ by (ii). Hence either $y \in N_g$ or $c \in (N_g :_{R_e} M_g)$. So N_g is prime.

Proposition 2.7. Let R be a G-graded ring, M a graded R-module, N a graded prime submodule of M and $g \in G$. Then the following hold:

(i) $(N_g :_{R_e} M_g)$ is a prime ideal of R_e . (ii) $(N : _{w}M)$ is a graded prime ideal of G(R).

Proof. (i) By Lemma 2.3, N_g is a prime submodule of M_g , so $(N_g :_{R_e} M_g) \neq R_e$. Let $ab \in (N_g :_{R_e} M_g)$ where $a, b \in R_e$. Then $abM_g \subseteq N_e$. If $bt \in N_g$ for every $t \in M_g$, then $b \in (N_g :_{R_e} M_g)$. So suppose that there is an element $n \in M_g$ such that $bn \notin N_e$. As $abn \in N_g$ and $bn \notin N_g$, we get $a \in (N_g :_{R_e} M_g)$, as needed.

(ii) As N is a graded prime submodule of M, we get $(N: {}_{R}M) \neq R$. Let $cd \in (N: {}_{R}M)$

where $c,d \in b(\mathbb{R})$. Then $cdM \subseteq N$. If $dM \subseteq N$, then $d \in (N: \mathbb{R}M)$. So suppose that there exists $m \in M$ such that $dm \notin N$. As M is a graded \mathbb{R} module, there is an element $b \in G$ such that $dm_b \notin N$. Since $cdm \in N$ and N is a graded submodule, we have $cdm_b \in N$. Since N is graded prime gives $c \in (N: \mathbb{R}M)$ since $dm_b \notin N$, as required. \Box

Lemma 2.8. Let R be a G-graded ring and M a graded R-module. Assume that N and K are graded submodules of M with $K \subseteq N$. Then N is a graded prime submodule of M if and only if N/K is a graded prime submodule of the R-module M/K.

Proof. Let N be a graded prime submodule of M. Then $N/K \neq M/K$. To show that N/Kis a prime submodule of M/K, let $a(m+K) \in$ N/K where $a \in b(R)$ and $m + K \in b(M/K)$, so $m \in b(M)$ and $am \in N$. Since, N is graded prime it gives either $m + K \in (M/K)$ or $a \in$ $(N : {}_{R}M) = (N/K : {}_{R}M/K)$. Similarly, we can prove that if N/K is graded prime, then N is graded prime.

Theorem 2.9. Let R be a G-graded ring and M a graded R-module. Assume that A and B are graded submodules of M with $A + B \neq M$. Then A + B is a graded prime submodule of M.

Proof. Since $(A + B)/B \cong B/(A \cap B)$, we obtain A + B is a graded prime submodule of M by Lemma 2.8. \Box

Theorem 2.10. Let R be a G-graded ring, M a graded R-module and N a graded prime submodule of N with $(N : {}_{R}M) = P$. Then there is a one-to-one correspondence between graded prime submodules of the R/P-module M/N and the graded prime submodules of M containing N.

Proof. Let K be a graded prime submodule of M containing N. Since $K \neq M$ and $P = (N : {}_{R}M) \subseteq (K : {}_{R}M)$, we get that K/N is a proper R/P-submodule of M/N. Let $(a+P)(m+N) = am + N \in K/N$ for $a \in h(R)$ and $m \in h(M)$. Then K being graded prime gives either $m \in M$ M or $aM \subseteq K$. Hence either $m + N \in K/N$ or $(a+P)(M/N) \subseteq K/N$. Therefore, K/N is a graded prime submodule of M/N. Conversely, let K/N be a graded prime submodule of M/N. To show that K is a graded prime submodule of M, we suppose that $bt \in K$ where $b \in b(R)$ and $t \in b(M)$. Then $(b+P)(t+N) = bt+N \in K/N$. So K/Nbeing graded prime gives either $t \in K$ or bM $\subseteq K$, as required.

Theorem 2.11. Let R be a G-graded ring, M a graded R-module, N a graded submodule of M and g ϵ G. Then the following hold:

(i) N_g is a prime submodule of M_g if and only if $(N_g :_{R_g} M_g) = P_g$ is a prime ideal of R_g and M_g/N_g is a g-torsion-free R/P_g -module.

(ii) N is a graded prime submodule of M if and only if $(N : {}_{R}M) = P$ is a graded prime ideal of G(R) and M/N is a graded torsion-free R/P-module.

Proof. (i) First suppose that N_{g} is a prime submodule of M. Then by Proposition 2.7 (i), P is a prime ideal of R and M/N_{g} is an R/P-module. If (a+P)(m+N) = N where $a \in \mathbb{R}$ and $m \in M$, then $am \in \mathbb{N}$. So either $m \in \mathbb{N}$ or $a \in P$. Hence $m+N = \mathbb{N}$ or $a+P = P_{g}$. Therefore, M/N_{g} is a g-torsion-free \mathbb{R}/P_{g} -module. Conversely, let P_{g} be a prime ideal of R and let M/N_{g} be a g-torsion-free \mathbb{R}/P_{g} -module. Since $P_{g} = (N_{g}:_{R} M_{g}) \neq R_{g}, N_{g} \neq M$. To show that N_{g} is a prime submodule of M, assume that $bt \in N_{g}$ for $b \in \mathbb{R}$, $t \in M_{g}$. So (b+P)(t+N) = bt+N = N. Hence either $b \in P$ or $t \in \mathbb{N}$ and the proof is complete.

(ii) Let N be a graded prime submodule of M. Then by Proposition 2.7(ii), P is a graded prime ideal of G(R) and M/N is an R/Pmodule. Suppose that (p+P)(n+N) = N where $p+P \in b(R/P)$ and $n+N \in b(M/N)$. Then $pn \in N$ for some $p \in b(R)$, $n \in b(M)$. Therefore, N being graded prime gives either p+P = Por n+N = N. Hence M/N is graded torsionfree. Conversely, assume that P is a graded prime ideal of G(R) and let M/N be a graded torsion-free R/P-module. Clearly, $N \neq M$. To see that N is graded prime, assume that $am \in$ N where $a \in b(R)$ and $m \in b(M)$. Then (a+P)(m+N) = N. So either $a \in P$ or $m \in N$. Thus N is graded prime.

REFERENCES

- Chin-Pi Lu, Prime submodules of modules, *Comm. Math. Univ. Sancti Pauli*, 1984; 33: 61-69.
- [2] Chin-Pi Lu, Spectra of modules, *Comm. in Algebra*, 1995; **23**: 3741-3752.
- [3] Nastasescu C., and Van Oystaeyen F., *Graded Ring Theory*, Mathematical Library 28, North Holand, Amsterdam, 1982.
- [4] Refai M., and Al-Zoubi K., On Graded Primary Ideals, *Turkish J. Mathematics*, 2004; **28**: 217-229.