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Abstract 
 

During this decade, the enlargement in the extensive use of digital imaging 
technologies in consumer (e.g., digital video) and other markets (e.g. security and 
military) has brought with it a simultaneous demand for higher-resolution (HR) images. 
The demand for such images can be partially met by algorithmic advances in Super-
Resolution Reconstruction (SRR) technology in addition to hardware development. Not 
only do such HR images give the viewer a more pleasing picture but also offer 
additional details that are significant for subsequent analysis in many applications. SRR 
algorithm is considered to be one of the most promising techniques that can help 
overcome the limitations due to optics and sensor resolution. In general, the problem of 
super-resolution can be expressed as that of combining a set of aliased, noisy, low-
resolution, blurry images to produce a higher resolution image or image sequence. The 
idea is to increase the information content in the final image by exploiting the 
additional spatio-temporal information that is available in each of the LR images. 
Consequently, the major advantage of the SRR algorithm is that it may cost less and the 
existing LR imaging systems can be still utilized. The SRR algorithm is proved to be 
useful in several practical cases where multiple frames of the same scene can be 
obtained, including medical imaging, satellite imaging, and video applications. 

Keywords: Digital image processing, digital image reconstruction, higher-
resolution images, algorithmic advances. 

 
1. Introduction 

This section is not meant to provide a 
review of the completed literature on image 
restoration but to provide some perspective on 
how SRR (Super-Resolution Reconstruction) 
algorithms grew out of the existing body of 
research. The spatial resolution that represents 
the number of pixels per unit area in an image 
is the principal factor in determining the 
quality of an image (Kang and Chaudhuri 2003; 
Ng and Bose 2003; Park, et al. 2003; Rajan, et 
al. 2003). With the development of image 
processing applications, there is a great 
demand for high-resolution (HR) images since 
HR images offer not only the viewer a pleasing 
picture but also additional details that are 
important for the analysis in many applications. 
The most direct solution to increase spatial 
resolution is to reduce the pixel size (i.e., 
increase the number of pixels per unit area) by 

sensor manufacturing techniques. As the pixel 
size decreases, however, the amount of light 
available also decreases. It generates shot noise 
that severely degrades the image quality. To 
reduce the pixel size without suffering the 
effects of shot noise, therefore, there exists the 
limitation of the pixel size reduction, and the 
optimally limited pixel size is estimated at 
about 40 µm2 for a 0.35 µm CMOS processor 
(Kang and Chaudhuri 2003; Park, et al. 2003). 
The current image sensor technology has 
almost reached this level. Another approach for 
enhancing the spatial resolution is to increase 
the chip size, which leads to an increase in 
capacitance. Since large capacitance makes it 
difficult to speed up a charge transfer rate, this 
approach is not considered effective. The high 
cost for high precision optics and image 
sensors is also an important concern in many 
commercial applications regarding HR imaging 
therefore many digital image restoration 
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techniques have been proposed since 1970s 
(Banham and Katsaggelos 1997; Gonzalez and 
Woods 1992). 

Based on the number of observed frames, 
image restoration techniques are broadly 
categorized into two classes. Specifically, the 
categorization is into the classes of single-
frame and multi-frame restoration methods. 
The classical image restoration problem is 
concerned with restoration of a single output 
image from a single degraded observed image 
and the literature on the restoration of a single 
input frame is extensive and spans several 
decades (Kundur and Hatzinakos 1996, 1996b, 
1998; Lanteri, et al. 2001; Banham and 
Katsaggelos 1997; Gonzalez and Woods 1992; 
Gunturk, et al. 2002; Black and Rangarajan 
1996; Black, et al. 1997, 1998; Black and 
Sapiro 1999; Demoment 1989; Kondi, et al. 
2002). Although the field of single frame 
image restoration appears to have matured, 
digital video has raised many new restoration 
problems for image processing researchers 
(Wang, et al. 2001). Since video usually 
consists of a sequence of similar, though not 
identical frames, it becomes possible to utilize 
the inter-frame motion information in 
processing the video data. This led to the 
development of image sequence processing 
techniques such as motion estimation (Stiller 
and Konrad 1999; Patras and Worring 2002; 
Namuduri 2004; Chaudhuri and Taur 2005; 
Zhu and Ma 2000; Dang, et al. 1995; Jing and 
Chau 2004; and Wang, et al. 2001), image 
sequence interpolation (Gonzalez and Woods 
1992), image registration (Fitzgibbon 2001; 
Kundur and Hatzinakos 1996, 1996b; and 
Zitová and Flusser 2003) and standards 
conversion (Wang, et al. 2001). Consequently, 
image restoration researchers also recognized 
the potential of image restoration in increasing 
spatial resolution using the information totally 
contained in an image sequence as compared 
with that available from a single image. This 
led naturally to algorithms that apply motion 
compensation and image restoration techniques 
to produce high-quality and high-resolution 
still images from image sequences called SRR 
(Super-Resolution Reconstruction). 

SRR algorithms investigate the relative 
motion information between multiple corrupted 

low-resolution (LR) images or a video 
sequence and increase the spatial resolution by 
fusing them into a single frame. In doing so, it 
also removes the effect of possible blurring and 
noise in the LR images. In summary, the SRR 
algorithm estimates an HR image with finer 
spectral details from multiple LR observations 
degraded by blur, noise, and aliasing (Segall, et 
al. 2003; Rajan, et al. 2003; Kang and 
Chaudhuri 2003; Ng and Bose 2003; and Park, 
et al. 2003). 

Therefore, the major advantage of this 
approach is that the cost of implementation is 
reduced and the existing LR imaging systems 
can still be utilized. Hence, applications for the 
techniques of SRR from image sequences grow 
rapidly as the theory gains exposure. 
Continuing researches and the availability of 
fast computational machineries have made 
these methods increasingly attractive in 
applications requiring the highest restoration 
performance. SRR techniques have already 
been applied to problems in a number of 
applications such as satellite imaging, 
astronomical imaging, video enhancement 
(Callicó, et al. 2003; Jiang, et al. 2003; Zibetti 
and Mayer 2005) and restoration, video 
standards conversion, confocal microscopy, 
digital mosaicing, aperture displacement 
cameras, medical computed tomographic 
imaging, diffraction tomography, video freeze 
frame, hard copy and concealed weapon 
detection (Chen, et al. 2005). 
 

2. Introduction of SRR Algorithm 
 

In SRR, typically, the LR images 
represent different “looks” at the same scene 
(Park, et al. 2003). That is, LR images are sub-
sampled (aliased) as well as shifted with sub-
pixel precision. If the LR images are shifted by 
integer units, then each image contains the 
same information, and thus there is no new 
information that can be used to reconstruct a 
HR image. If the LR images have different 
sub-pixel shifts from each other and if aliasing 
is present, however, then each image cannot be 
obtained from the others. In this case, the new 
information contained in each LR image can be 
exploited to obtain a HR image. To obtain 
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different looks at the same scene, some relative      scene motions must exist from frame 
to frame via multiple scenes or video 
sequences. Multiple scenes can be obtained 
from one camera with several captures or from 
multiple cameras located in different positions. 
These scene motions can occur due to the 
controlled motions in imaging systems, e.g., 
images acquired from orbiting satellites. The 
same is true of uncontrolled motions, e.g., 
movement of local objects or vibrating imaging 
systems. If these scene motions are known or 
can be estimated within sub-pixel accuracy and 
if these LR images are combined, then SRR is 
possible. 
 
2.1 Imaging System, or Observation Model 
 

Transitionally, imaging systems, or 
observation models, can be broadly divided 
into the models for still images and for video 
sequence. To present a basic concept of SR 
reconstruction techniques, the imaging system 
for still images is shown in Fig. 1, since it is 
rather straightforward to extend the still image 

model to the video sequence model (Park, et al. 
2003; and Borman 2004). 

The warping process is caused by the 
motion that occurs during the image acquisition 
is represented by warping processes and this 
motion may contain global or local translation, 
rotation, and so on. Because this motion 
information is typically unknown, it is needed 
to estimate the scene motion for each frame 
with reference to one particular frame. 
Moreover, the warping process performed on 
HR image is actually defined in terms of LR 
pixel spacing when being estimated. Thereby, 
this step requires interpolation when the 
fractional unit of motion is not equal to the HR 
sensor grid (Stiller and Konrad 1999; 
Bradshaw and Kingsbury 1997; Patras and 
Worring 2002; Wegger 2000; Namuduri 2004; 
Milanfar 1999; Vandewalle, et al. 2004; 
Vandewalle, et al. 2005; Vandewalle, et al. 
2006; Zhu and Ma 2000; Dang, et al. 1995; 
Patanavijit and Jitapulkul 2006; Patanavijit,    
et al. 2007; Beauchemin and Barron 1995; and 
Ben-Ezra and Nayar 2004). 
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Fig. 1. Imaging system or observation model. 
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The blur process may be caused by an 
optical system (e.g., out of focus, diffraction 
limit, aberration, etc.), relative motion between 
the imaging system and the original scene, and 
the point spread function (PSF) of the LR 
sensor. The optical or motion blur in single 
image restoration applications is usually 
considered however the finiteness of a physical 
dimension in LR sensors in the SRR is an 
important factor of blur. In the use of SRR 
algorithms, the characteristics of the blur are 
assumed to be known. However, if it is difficult 
to obtain this information, blur identification 
should be incorporated into the reconstruction 
procedure (Anconelli 2003; and Bascle, et al. 
1996). 

The down-sampling process often 
generates aliased LR images from the warped 
and blurred HR image due to memory and data 
transferring limitation. 

Finally, the observed image may be 
corrupted by noise for several reasons such as 
shot noise (by electronic devices). 
 
2.2 Concept of SRR Algorithm 
 

Most of the explored SRR algorithms 
consist of the three stages (Fig. 2). These steps 
can be implemented separately or 
simultaneously according to the reconstruction 
methods adopted. 

First, the SRR algorithm receive several 
low-resolution corrupted images as the inputs 
then the registration or estimation process 
estimate the relative shifts between LR images 
compared to the reference LR image with 
fractional pixel accuracy. Obviously, accurate 
sub-pixel motion estimation is a very important 
factor in the success of the SRR algorithm. 
Since the shifts between LR images are 
arbitrary, the registered HR image will not 
always match up to a uniformly spaced HR 
grid. Thus, non-uniform interpolation is 

necessary to obtain a uniformly spaced HR 
image from a composite of non-uniformly 
spaced LR images. Finally, image restoration is 
applied to the up-sampled image to remove 
blurring and noise. 
 

3. Review of SRR 
 

Based on the observation model that is 
presented in previous section, the relevant 
research papers, published in the conferences 
and journals are comprehensively reviewed and 
are broadly categorized into two classes 
(Patanavijit and Jitapunkul 2007). Specifically, 
the categorization is into the classes of 
reconstruction-based SRR algorithm and 
Recognition-Based SRR algorithm (or 
hallucination). 
 
3.1 Reconstruction-Based SRR Algorithm 
 

This reconstruction-based SRR algorithm 
doesn’t require images for training therefore 
this algorithm doesn’t depend on observed 
images but Reconstruction-based approach 
inherits limitations when magnification factor 
increases. 
 

3.1.1 Frequency Domain Approach: The 
frequency domain approach makes explicit use 
of the aliasing that exists in each LR image to 
reconstruct an HR image. 

The Super-Resolution Reconstruction 
(SRR) idea was first presented by Huang and 
Tsai (1984). They used the frequency domain 
approach to demonstrate the ability to 
reconstruct one improved resolution image 
from several downsampled noise-free versions 
of it, based on the spatial aliasing effect. Next, 
a frequency domain recursive algorithm for the 
restoration of super-resolution images from 
noisy and blurred measurements was proposed 
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Fig. 2. Basic structure of super-resolution reconstruction (SRR). 
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by Kim, et al. (1990). The algorithm using a 
weighted recursive least squares algorithm, is 
based on sequential estimation theory in the 
frequency-wave number domain, to achieve 
simultaneous improvement in signal-to-noise 
ratio and resolution from available registered 
sequence of low-resolution noisy frames. Kim 
and Su (1993) also incorporated explicitly the 
deblurring computation into the high-resolution 
image reconstruction process because separate 
deblurring of input frames would introduce the 
undesirable phase and high wave number 
distortions in the DFT of those frames. 
Subsequently, Ng and Bose (2002) proposed 
the analysis of the displacement errors on the 
convergence rate to the iterative approach for 
solving the transform based preconditioned 
system of equation hence it is established that 
the use of the MAP, L2 Norm or H1 Norm 
regularization functional leads to a proof of 
linear convergence of the conjugate gradient 
method in terms of the displacement errors 
caused by the imperfect sub-pixel locations. 
Park, et al. (2004) proposed adaptive high-
resolution image reconstruction of DCT-based 
compressed images. Later, Bose, et al. (2006) 
proposed the fast SRR algorithm, using MAP 
with MRF for blurred observation. This 
algorithm uses the reconditioned conjugated 
gradient method and FFT. 

Although the frequency domain methods 
are intuitively simple and computationally 
cheap, the observation model is restricted to 
only global translational motion and LSI blur. 
Due to the lack of data correlation in the 
frequency domain, it is also difficult to apply 
the spatial domain a priori knowledge for 
regularization. 
 

3.1.2 POCS Approach (Projection onto 
Convex Sets): The POCS approach describes 
an alternative iterative approach to 
incorporating prior knowledge about the 
solution into the reconstruction process. With 
the estimates of registration parameters, this 
algorithm simultaneously solves the restoration 
and interpolation problem to estimate the SR 
image (Combettes and Civanlar 1991; 
Combettes 1993). 

The POCS formulation of the SRR was 
first suggested by Stark and Oskoui (1989). 

Their method was extended by Tekalp, et al. 
(1992) to include observation noise. Although 
POCS is simple and can utilize a convenient 
inclusion of a priori information, this method 
has the disadvantages of non-uniqueness of 
solution, slow convergence and a high 
computational cost. Next, Patti and Altunbasak 
(2001) proposed a SRR (Super-Resolution 
Reconstruction) using ML estimator with 
POCS-based regularization and Altunbasak,   
et al. (2002) proposed a Super-Resolution 
Reconstruction (SRR) for the MPEG sequences. 
They proposed a motion-compensated, 
transform-domain super-resolution procedure 
that directly incorporates the transform-domain 
quantization information by working with the 
compressed bit stream. Later, Gunturk, et al. 
(2004) proposed a ML super-resolution with 
regularization based on compression 
quantization, additive noise and image prior 
information in 2004. Next, Hasegawa, et al. 
(2005) proposed iterative SSR using the 
Adaptive Projected Sub-gradient method for 
MPEG sequences. 
 

3.1.3 Regularized ML Approach: Typically, 
the SRR algorithm is an ill-posed problem due 
to an insufficient number of LR images and ill-
conditioned blur operators. Procedures adopted 
to stabilize the inversion of ill-posed problem 
are called regularization. In this section, 
deterministic and stochastic regularization 
approaches for SRR algorithm are presented. 
Traditionally, constrained least squares (CLS) 
(Haykin 2002) and maximum a posteriori 
(MAP) SR image reconstruction methods are 
introduced (Vaseghi 1996). 

The MRF or Markov/Gibbs Random 
Fields are proposed and developed for 
modeling image texture during 1990-1994 
(Elfadel and Picard 1990, 1993, 1994; Picard 
and Elfadel 1994; Picard, et al. 1991; Picard 
1992; Popat and Picard 1993, 1994). Due to 
MRF (Markov Random Field) that can model 
the image characteristic especially on image 
texture, Bouman and Sauer (1993) proposed 
the single image restoration algorithm using 
MAP estimator with the GGMRF (Generalized 
Gaussian-Markov Random Field) prior. Later, 
Stevenson, et al. (1994) proposed the single 
image restoration algorithm using ML 
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estimator with the Discontinuity Persevering 
Regularization. Schultz and Stevenson (1994) 
proposed the single image restoration 
algorithm using MAP estimator with the 
HMRF (Huber-Markov Random Field) prior. 
Next, the Super-Resolution Reconstruction 
algorithm using MAP estimator (or the 
Regularized ML estimator), with the HMRF 
prior was proposed by Schultz and Stevenson 
(1996). The blur of the measured images is 
assumed to be simple averaging and the 
measurements additive noise is assumed to be 
independent and identically distributed (i.i.d.) 
Gaussian vector. Pan and Reeves (2006) 
proposed single image MAP estimator 
restoration algorithm with the efficient HMRF 
prior using decomposition-enabled edge-
preserving image restoration in order to reduce 
the computational demand. 

Typically, the regularized ML estimation 
(or MAP) is used in image restoration therefore 
the determination of the regularization 
parameter is an important issue in the image 
restoration. Thompson, et al. (1991) proposed 
the Methods of choosing the smoothing 
parameter in image restoration by regularized 
ML. Next, Mesarovic, et al. (1995) proposed 
the single image restoration using regularized 
ML for unknown linear space-invariant (LSI) 
point spread function (PSF). Subsequently, 
Geman and Yang (1995) proposed single 
image restoration using regularized ML with 
robust nonlinear regularization. This approach 
can be done efficiently by Monte Carlo 
Methods, for example by annealing FFT 
domain using Markov chain that alternates 
between (global) transitions from one array to 
the other. Later, Kang and Katsaggelos (1995) 
proposed the use of a single image 
regularization functional, which is defined in 
terms of restored image at each iteration step, 
instead of a constant regularization parameter 
and Kang and Katsaggelos (1997) proposed 
regularized ML for SRR, in which no prior 
knowledge of the noise variance at each frame 
or the degree of smoothness of the original 
image is required. Molina (1995) and Molina,  
et al. (1999) proposed the application of the 
hierarchical ML with Laplacian regularization 
to the single image restoration problem and 
derived expressions for the iterative evaluation 

of the two hyper-parameters (regularized 
parameter) applying the evidence and 
maximum a posteriori (MAP) analysis within 
the hierarchical regularized ML paradigm. 
Molina, et al. (2003) proposed the multi-frame 
super-resolution reconstruction using ML with 
Laplacian regularization. The regularized 
parameter is defined in terms of restored image 
at each iteration step. Next, Rajan and 
Chaudhuri (2003) proposed super-resolution 
approach, based on ML with MRF 
regularization, to simultaneously estimate the 
depth map and the focused image of a scene, 
both at a super-resolution from its defocused 
observed images. Subsequently, He and Kondi 
(2004, 2004b) proposed image resolution 
enhancement with adaptively weighted low-
resolution images (channels) and simultaneous 
estimation of the regularization parameter and 
He and Kondi (2005) proposed a generalized 
framework of regularized image/video Iterative 
Blind Deconvolution/Super-Resolution (IBD-
SR) algorithm using some information from the 
more matured blind Deconvolution techniques 
form image restoration. Later, He and Kondi 
(2006) proposed SRR algorithm that takes into 
account inaccurate estimates of the registration 
parameters and the point spread function. Vega, 
et al. (2006) proposed the problem of de-
convolving color images observed with a single 
coupled charged device (CCD) from the super-
resolution point of view. Utilizing the 
regularized ML paradigm, an estimate of the 
reconstructed image and the model parameters 
is generated. 

Elad and Feuer (1997) proposed the 
hybrid method combining the ML and non-
ellipsoid constraints for the super-resolution 
restoration and Elad and Feuer (1999) proposed 
the adaptive filtering approach for the Super-
Resolution Reconstruction. Next, Elad and 
Feuer (1999b) proposed two iterative 
algorithms, the R-SD and the R-LMS, to 
generate the desired image sequence at the 
practically computational complexity. These 
algorithms assume the knowledge of the blur, 
the down-sampling, the sequences motion, and 
the measurements noise characteristics, and 
apply a sequential reconstruction process. 
Subsequently, the special case of Super-
Resolution Reconstruction (where the warps 
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are pure translations, the blur is space invariant 
and the same for all the images and the noise is 
white) are proposed by Elad and Hel-Or (2001) 
for a fast Super-Resolution Reconstruction. 
Later, Nguyen (2000) and Nguyen, et al. (2001) 
proposed fast SRR algorithm using regularized 
ML by using efficient block circulant 
preconditioners and the conjugate gradient 
method. Elad (2002) proposed the Bilateral 
Filter theory, showed how the bilateral filter 
can be improved and extended to treat more 
general reconstruction problems. Consequently, 
the alternate super-resolution approach, L1 
Norm estimator and robust regularization based 
on a Bilateral Total Variance (BTV), was 
presented by Farsiu, et al. (2004, 2004b). This 
approach performance is superior to what 
proposed earlier in and this approach has fast 
convergence but this SRR algorithm effectively 
apply only on AWGN models. Next, Farsiu, et 
al. (2006) proposed a fast SRR of color images 
using ML estimator with BTV regularization 
for luminance component and Tikhonov 
regularization for chrominance component. 
Subsequently, Farsiu, et al. (2006b) proposed 
the dynamic super-resolution problem of 
reconstructing a high-quality set of 
monochromatic or color super-resolved images 
from low-quality monochromatic, color or 
mosaiced frames. This approach includes a 
joint method for simultaneous SR, deblurring 
and Demosaicing. It takes into account 
practical color measurements encountered in 
video sequences. Later, Patanavijit and 
Jitapunkul (2006) proposed the SRR using a 
regularized ML estimator with affine block-
based registration for the real image sequence. 
Moreover, Rochefort, et al. (2006) proposed 
super-resolution approach based on regularized 
ML for the extended original observation 
model devoted to the case of non-isometirc 
interframe motion such as affine motion. 
 

3.1.4 Nonuniform Interpolation Approach: 
This approach is the most intuitive method for 
SR image reconstruction. The three stages 
presented in Fig. 2 are performed successively 
in this approach: (i) estimation of relative 
motion, i.e., registration; (ii) nonuniform 
interpolation to produce an improved 
resolution image; and (iii) deblurring process. 

During 2004 to 2006, Vandewalle, et al. 
(2004, 2005, 2006) have proposed a fast super-
resolution reconstruction based on a non-
uniform interpolation using a frequency 
domain registration. This method has low 
computation and can be used in the real-time 
system but the degradation models are limited, 
therefore, this algorithm can apply on few 
applications. 
 
3.2 Recognition-Based SRR Algorithm (or 
Hallucination) 
 

This recognition-based SRR algorithm 
require images for training therefore this 
algorithm depend on observed images but this 
algorithm have high performance when 
magnification factor increases. (Capel and 
Zisserman 2001; and Lin and Shum 2004). 
 

3.2.1 Weighted Sum (WS) Filter Approach: 
Barner et al. (1999) proposed the single image 
restoration algorithm (recognition-based) using 
Hard Partition based Weighted Sum (HP-WS) 
filter. Observed image is partition into several 
blocks and each block is quantized in order to 
select the most proper filter coefficient for that 
block to restoration. The weights (or filter 
coefficients) is turned by train on a 
representative image and the two-state 
suboptimal training is proposed to determine 
optimizing weights (or filter coefficients). 
Although this algorithm can be effectively 
applied on the image but an analytical solution 
for the global optimization is difficult to obtain 
due to the nondifferentiable HP-WS filter 
function. 

Alam, et al. (2000) proposed the SRR 
algorithm (the interpolation-restoration 
techniques) for the infrared images. The 
gradient-based registration is used for each 
observed LR images and a weighted nearest-
neighbor approach for placing the frame onto a 
uniform grid to form a high-resolution image. 
Subsequently, the Wiener filter is used for 
deblurring the final high-resolution image. 

Later, Lin, et al. (2005) proposed the 
single image restoration algorithm 
(recognition-based) using Subspace HP-WS (S-
HPWS) filter. The observation vectors into a 
subspace using PCA (Principal Component 
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Analysis) in order to reduce the computational 
burden especially for large window sizes. 
Consequently, the performance is enhanced due 
to improved partitioning size and the computation 
time of the S-HPWS is less than half of that of 
the HP-WS for training and testing. 

Due to the non-differentiable 
characteristic, the global optimization of HP-
WS is difficult to obtain. Consequently, Lin,   
et al. (2006) proposed a novel radial basis 
function interpretation of the Soft Partition 
based Weighted Sum (SP-WS) filters and 
present an efficient optimization procedure 
based on the gradient method (both quasi-
Newton method and steepest descent method). 

Next, Shao and Barner (2006) proposed 
the single image restoration algorithm 
(recognition-based) using Soft Partition based 
Weighted Sum (SP-WS) filter. Thus, an 
analytical solution for the global optimization 
is easily to obtain due to the differentiable SP-
WS filter function. Moreover, they compared 
the proposed SP-WS solution and HP-WS 
solution computed by two-state suboptimal 
training and by GA algorithm. 

Narayanan, et al. (2007) proposed the 
fast recognition-based SRR algorithm (the 
interpolation-restoration techniques) using 
Hard Partition based Weighted Sum (HP-WS) 
filter. Due to computational complexity, the 
HP-WS filter is incorporate in this algorithm 
instead of SP-WS filter. Hence, HP-WS filters 
are employed to simultaneously perform non-
uniform interpolation and perform de-
convolution of the system PSF. 

Subsequently, Hardie (2007) proposed 
the fast SRR algorithm using the fast 
recognition-based SRR algorithm (the 
interpolation-restoration techniques) using 
Adaptive Wiener Filter. The positions of the 
LR pixels are not quantized to a finite grid as 
with some previous techniques and the weights 
(or filter coefficients) for each HR pixels are 
designed to minimize the MSE and they 
depend on the relative positions of the 
surrounding LR pixels. The parametric 
statistical model is used for these correlations 
that ultimately define the filter weights. 

3.2.2 Statistical Approach: Baker and 
Kanade (2002) proposed another super-

resolution algorithm (hallucination or 
recognition-based super-resolution) that 
attempts to recognize local features in the low-
resolution image and then enhances their 
resolution in an appropriate manner. Due to the 
training data base, therefore, this algorithm 
performance depends on the image type (such 
as face or character) and this algorithm is not 
robust enough to be sued in typical surveillance 
video. Next, Sun, et al. (2003) proposed 
hallucination super-resolution (for single image) 
using regularization ML with primal sketches 
as the basic recognition elements. Later, Jai 
and Gong (2008) proposed Generalized Face 
Super-Resolution. This algorithm uses Tensor 
Space to represent face images and can be 
applied to multi-model cases such as smiling or 
angry images. 
 

4. Concluding Remarks  
and Future Research 

 
This article aims to present the concept of 

SRR technology by providing an overview of 
existing SRR algorithms. The article also 
categorizes and reviews the SRR researches for 
each category approach in order to assist the 
proper understanding of the readers. From this 
comprehensive literature review, although 
numerous SRR researches are proposed, it can 
be deduced that it is necessary to extend the 
current SRR algorithms to real-world imaging 
systems, as follows: 

1) Color imaging system is slightly 
considered by SRR research community 
but a more careful reconstruction method 
which reflects the characteristic of color 
is needed. The important problem in 
color SRR is to analyze the characteristic 
of a color filter array and color 
interpolation procedure and take into 
account intercorrelation between color 
components in the reconstruction 
procedure (Kimmel 1999; Capel 2001). 

2) Compressing imaging system 
(MPEG/JPEG) that has a special blur and 
noisy characteristic. Few SRR algorithms 
have addressed resolution enhancement 
of compressed video sequences. 
Compression artifacts can dramatically 
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decrease the performance of any SRR 
algorithms. Moreover, consideration of 
compression color artifacts in designing 
novel multiframe demosaicing algorithms 
is a part of the ongoing work. (Schilling 
and Cosman 2003; Robertson 1998; 
Hasegawa, et al. 2005)  

3) Imaging system that is corrupted by real 
noise model (not a simple Gaussian noise 
model) such as Poisson noise, Salt & 
Pepper or Speckle. 

4) The performance of SRR algorithm 
depends on the accuracy of the 
registration process. Therefore, more 
realistic and higher accuracy registrations 
are still required for higher accuracy 
results from the SRR algorithms. 
(Fitzgibbon 2001; Lim 2002) 

5) Traditionally, the blurring function is 
unknown, hence, one important extension 
for the SRR algorithms is the 
incorporation of blur identification 
algorithms in the SRR algorithm because 
many single-frame blind deconvolution 
algorithms have been suggested in the 
last two decades. 

6) Moreover, computational resources are 
becoming progressively more powerful 
and cheaper, therefore, this makes it 
feasible to implement algorithms which 
were previously prohibitive in terms of 
their computational complexity. 
SRR algorithms form one of the most 

spotlighted research areas during this decade, 
because they can overcome the inherent 
resolution limitation of the imaging systems 
and improve the performance of most digital 
image processing applications. Consequently, 
the author hopes that this article may create 
interest in this area as well as motivation to 
further develop relevant SRR techniques. 
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