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Abstract 

We study the mixed convection flow of a Casson nanofluid past a permeable moving flat plate with 
heat generation, chemical reaction and viscous dissipation effects in the presence of thermo and thermal 
diffusion effects. The fluid model described assumes the nanoparticle flux at the boundary is zero, and 
suction effects on the velocity boundary are accounted for. The system of partial differential equations 
obtained is solved using a multi-domain bivariate quasi-linearization method with a detailed description 
of the numerical method of solution. The effects of various fluid parameters on the velocity, temperature, 
and nanoparticle concentration profiles, as well as on the local skin friction, and heat and mass transfer 
coefficients, are discussed in detail. 

Keywords: Casson nanofluid, viscous dissipation, suction/injection, multi-domain bivariate spectral 
quasi-linearization method 
 
 
Introduction 

Mixed convection refers to the combination of natural and forced convection mechanisms acting 
together to significantly influence heat transfer processes. Mixed convection occurs in many industrial 
processes; the major ones include, for example, nuclear reactor technology [1]. Natural and forced 
convection are dependent on the laminar flow regime; the magnitude of the temperature driving force is 
reflected in the thermal Grashof number and the nature of the fluid flow. Mixed convection studies on 
permeable surfaces have been carried out by, among others, Isa et al. [2], on a steady boundary layer flow of 
a Casson fluid. Hayat et al. [3] considered a 2-dimensional steady stagnation point flow of an 
incompressible Casson fluid over a stretching surface with convective boundary condition. Sharada and 
Shankar [4] studied the steady laminar incompressible magnetohydrodynamic flow of a Casson fluid over 
an exponentially stretching surface with Soret and Dufour effects, thermal radiation, and chemical reaction 
effect using the Keller box method for the solution of the model equations. The influence of the convective 
boundary condition on mixed convection boundary layer flow of a Casson nanofluid over a stretching sheet 
with a heat source/sink was studied by Hayat et al. [5]. 

A chemical reaction may be either a homogeneous or heterogenous process, depending on its 
occurrence at an interface or in a single-phase volume reaction. The influence of chemical reaction on 
coupled heat and mass transfer in fluid flow is important in certain processes, such as hydrometallurgical 
industries, power and cooling, and drying, among many others. Due to the perceived importance of heat and 
mass transfer processes combined with a chemical reaction, some attention has been given to research in 
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this area in recent years. Kandasamy et al. [6] presented an analysis of steady laminar 
magnetohydromagnetic flow with heat and mass transfer from a stagnation point on a wedge plate 
embedded in a porous medium. The studied considered the effects of variable viscosity, thermal 
stratification, a first order chemical reaction, and suction or injection. Makanda et al. [7] studied the 
magnetohydrodynamic free convection flow of a Casson fluid from a horizontal circular cylinder with 
partial slip in a non-Darcy porous medium with viscous dissipation and radiative effects. In the work, the 
coupled nonlinear governing partial differential equations were solved using a bi-variate quasi-linearization 
method and validated using a successive linearization method and MATLAB’s ‘bvp4c’. Aslefallah et al. 
[8-11] used the finite difference theta method to solve some space and poisson fractional equations. 

Diffusion-thermo, or Dufour, effect is the energy flux which occurs not only by temperature 
gradients, but also due to the effects of concentration gradient, while the thermal diffusion, or Soret, effect 
is as a result of mass flux occurring due to the temperature gradient. Thermal diffusion is utilized for isotope 
or species separation in a fluid flow. Kafoussias and Williams [12] considered mixed convection and mass 
transfer in a viscous incompressible fluid over an isothermal semi-infinite vertical flat plate. Their work 
investigated thermal-diffusion and diffusion-thermo effects when the fluid viscosity varied with the 
temperature. Chamkha and El-Kabeir [13] studied the unsteady laminar and coupled heat and mass transfer 
of magnetohydrodynamic mixed convective boundary-layer flow of an electrically conducting fluid over an 
impulsively stretched vertical surface in an unbounded quiescent fluid with aiding external flow in the 
presence of a transverse magnetic field, homogenous chemical reaction, and Soret and Dufour effects. The 
governing equations were non-dimensionalized using the Williams and Rhyne transformation, and the 
resulting non-similar equations solved using the standard implicit finite difference method. They concluded 
that, as the Dufour number decreased, the skin friction coefficient, the Nusselt number, and the Sherwood 
number increased, while the opposite trend was observed for the Soret number. 

Due to the low thermal conductivity of most Newtonian fluids, nano-sized particles are now routinely 
added to enhance the thermophysical properties of common fluids and, thus, improve heat transfer 
processes. This innovation is due to Choi [14], who proposed the suspension of nanoparticles to these 
so-called base fluids. Buongiorno [15] explained 7 possible mechanisms for the enhancement of the heat 
transfer process in nanofluids, and concluded by noting that the most important of these mechanisms are 
thermophoresis and the Brownian motion of the nanoparticles. A model was developed to take into account 
of these processes. Kuznetsov and Nield [16] revised the earlier model by assuming that the nanoparticles 
flux at the boundary is zero, so that the nanoparticle volume fraction at the boundary is passive rather than 
actively controlled. Fakour et al. [17] studied the steady fully-developed mixed convection flow of a 
nanofluid filled in a vertical channel, which is driven by an external pressure gradient and a buoyancy force. 
Khan et al. [18] discussed 3-dimensional incompressible flow of a nanofluid induced due to a surface 
stretched nonlinearly in 2 lateral directions, and considered the passive control of nanoparticle volume 
fraction at the wall. Recent publications on Casson nanofluid can be found in [19,22]. 

In this study, mixed convection in a Casson nanofluid flow past a permeable moving flat plate is 
studied. We assume the presence of a chemical reaction, heat generation, and diffusion-thermo and thermal 
diffusion effects. A second innovation in this paper is the use of multi-domain bivariate quasi-linearization 
method to find numerical solutions of the nonlinear differential equations that describe the fluid flow 
model. This method of solution is accurate and has low CPU times. Another important characteristic of the 
multidomain bivariate quasi-linearization method is that it allows for the prediction of heat and mass 
transfer coefficients for large values of the independent variable. The results were validated via a 
comparative analysis with existing literature values for certain parameter values.  
 
Mathematical formulation 

Consider mixed convection in steady 2-dimensional boundary layer flow of a Casson nanofluid over a 
permeable flat plate moving with velocity 𝑈𝑤 and free stream velocity 𝑈∞. The physical co-ordinates 𝑥 
and 𝑦 are chosen, such that the 𝑥-axis is along the plate in the vertical direction, the 𝑦-axis is normal to it, 
and 𝑢 and 𝑣 are the velocity components along the 𝑥 and 𝑦 directions, respectively; see Figure 1. It is 
assumed that the plate is maintained at a uniform and constant wall temperature 𝑇𝑤 and the temperature 𝑇𝑤 
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is greater than the ambient temperature 𝑇∞ at any particular point in the boundary layer. The Casson fluid 
and the nanoparticles are assumed to be in thermal equilibrium without slip. The nanoparticle flux at the 
boundary is assumed to be zero and viscous dissipation is considered to be important in the analysis. 

The rheological equation of state for an isotropic and incompressible flow of a Casson fluid is 
expressed (see [23]) as; 

 

𝜏𝑖𝑗 = �
2 �𝜇𝐵 + 𝑝𝑦

√2𝜋
� 𝑒𝑖𝑗 𝑖𝑓𝜋 > 𝜋𝑐

2 �𝜇𝐵 + 𝑝𝑦
�2𝜋𝑐

� 𝑒𝑖𝑗 𝑖𝑓𝜋 < 𝜋𝑐 ,
�           (1) 

 
where 𝑒𝑖𝑗 is the (𝑖, 𝑗)th component of the rate of strain tensor, 𝜏𝑖𝑗 is the (𝑖, 𝑗)th component of the stress 
tensor, 𝜇𝐵 is the Casson coefficient of viscosity, 𝜋 = 𝑒𝑖𝑗𝑒𝑖𝑗 is the product of the rate of strain tensor with 
itself, 𝜋𝑐 is the critical value of the product of the rate of strain tensor with itself, and 𝑝𝑦 is the yield stress 
of the fluid. 
 

 
Figure 1 Schematic diagram of flow problem under consideration. 
 
 

Under the Boussinesq and boundary layer approximations, the conservation equations are given as; 
 
∂𝑢
∂𝑥

+ ∂𝑣
∂𝑦

= 0,              (2) 
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𝑢 ∂𝐶
∂𝑥

+ 𝑣 ∂𝐶
∂𝑦

= 𝐷𝐵
∂2𝐶
∂𝑦2

− 𝑘𝑐(𝐶 − 𝐶∞) + 𝐷𝑇
𝑇∞

∂2𝑇
∂𝑦2

+ 𝐷𝑚𝑘𝑇
𝑇𝑚

∂2𝑇
∂𝑦2

,         (5) 
 

where 𝑢 and 𝑣 are the velocities in the 𝑥- and 𝑦-directions, respectively, 𝛽 = 𝜇𝐵
�2𝜋𝑐
𝑝𝑦

 is the Casson fluid 

parameter, 𝜈  is the kinematic viscosity, 𝑔  is the acceleration due to gravity, 𝛽𝑇  and 𝛽𝐶  are the 
coefficient of thermal diffusivity and concentration expansion, respectively, 𝛼𝑚 is the thermal diffusivity, 
𝑐𝑝 is the specific heat at constant pressure, 𝑄𝑜 is the heat generation constant, 𝜏 = (𝜌𝑐)𝑝/(𝜌𝑐)𝑓 is the 
ratio of the heat capacity of the nanoparticle material and the heat capacity of the Casson fluid, 𝐷𝐵 is the 
Brownian diffusion coefficient, 𝐷𝑇  is the thermophoretic diffusion coefficient, 𝐷𝑚 is the mass diffusivity, 
𝑘𝑇 is the thermal diffusivity, 𝑐𝑠 is the concentration susceptibility, 𝑘𝑐 is the chemical reaction rate, and 
𝑇𝑚 is the mean temperature. 

The associated boundary conditions are;  
 

𝑢 = 𝑈𝑤 ,        𝑣 = 𝑉𝑤 ,        𝑇 = 𝑇𝑤 ,        𝐷𝐵
∂𝐶
∂𝑦

+ 𝐷𝑇
𝑇∞

∂𝑇
∂𝑦

= 0,         𝑎𝑡𝑦 = 0        (6) 
 
𝑢 → 𝑈∞,        𝑇 → 𝑇∞,        𝐶 → 𝐶∞,        𝑎𝑠𝑦 → ∞.          (7) 
 

The variable plate surface permeability function is given as; 
 

𝑉𝑤(𝑥) = −𝑓𝑤
2
�𝑈𝜈

𝑥
,             (8) 

 
where 𝑈 = 𝑈𝑤 + 𝑈∞, 𝑓𝑤 is a constant, 𝑓𝑤 > 0 represents suction effects at the plate surface, 𝑓𝑤 < 0 is 
injection, and 𝑓𝑤 = 0 represents an impermeable surface. For the continuity equation to be satisfied, 
introduce the stream function 𝜓 approach, such that; 
 
𝑢 = ∂𝜓

∂𝑦
,        𝑣 = −∂𝜓

∂𝑥
.             (9) 

 
The system of non-linear partial differential equations are reduced by introducing the following 

non-dimensional variables; 

𝜓 = (𝑈𝜈𝑥)
1
2𝑓(𝜁, 𝜂),    𝜂 = 𝑦 � 𝑈

𝜈𝑥
�
1
2 ,    𝜁 = �𝑈𝑥

𝜈
�
1
2 ,    𝑇−𝑇∞

𝑇𝑤−𝑇∞
= 𝜗(𝜁, 𝜂), 𝐶−𝐶∞

𝐶𝑤−𝐶∞
= 𝜑(𝜁, 𝜂),     (10) 

 
where 𝑓(𝜁, 𝜂),𝜗(𝜁, 𝜂) and 𝜑(𝜁, 𝜂)  are the non-dimensional velocity, temperature, and concentration, 
respectively. Using the transformations defined in (10), Eqs. (2) - (5), together with the boundary 
conditions in (6) and (7), are transformed to the following non-dimensional form; 
 
�1 + 1

𝛽
� 𝑓′′′ + 1

2
𝑓𝑓′′ + 𝜆(𝜗 + 𝑁1𝜑) = 𝜁

2
�𝑓′ ∂𝑓′

∂𝜁
− 𝑓′′ ∂𝑓

∂𝜁
�,        (11) 
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𝛽
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2
�𝑓′ ∂𝜗
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∂𝜁
�,     (12) 

 
𝜑′′ + 𝐿𝑒

2
𝑓𝜑′ − 𝐿𝑒𝜁2𝑅𝜑 + 𝑁𝑡

𝑁𝑏
𝜗′′ + 𝐿𝑒𝑆𝑟𝜗′′ = 𝐿𝑒 𝜁

2
�𝑓′ ∂𝜑

∂𝜁
− 𝜑′ ∂𝑓

∂𝜁
�.       (13) 

 
The transformed boundary conditions are; 

 
𝑓(𝜁, 0) + 𝜁 ∂𝑓(𝜁,0)

∂𝜁
= 𝑓𝑤,   𝑓 ′(𝜁, 0) = 1 − 𝑟, 𝜗(𝜁, 0) = 1, 𝑁𝑏𝜑′(𝜁, 0) + 𝑁𝑡𝜗′(𝜁, 0) = 0,     (14) 
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𝑓′(𝜁,∞) = 𝑟,        𝜗(𝜁,∞) = 0,        𝜑(𝜁,∞) = 0,         (15) 
 
where 𝐺𝑟 = 𝑔𝛽𝑇(𝑇𝑤−𝑇∞)𝑥3

𝜈2
 and 𝐺𝑐 = 𝑔𝛽𝐶(𝐶𝑤−𝐶∞)𝑥3

𝜈2
 are the thermal and solutal Grashof numbers, 

respectively, 𝜆 = 𝐺𝑟/𝑅𝑒𝑥2 and 𝜆∗ = 𝐺𝑐/𝑅𝑒𝑥2 are the buoyancy parameters, 𝑁1 = 𝜆∗/𝜆 is the ratio of the 
buoyancy forces, 𝑅𝑒𝑥 = 𝑈𝑥/𝜈 is the local Reynolds number, 𝑟 = 𝑈∞/𝑈 is the velocity ratio parameter, 
𝑃𝑟 = 𝜈/𝛼𝑚 is the Prandtl number, 𝐸𝑐 = 𝑈2/𝑐𝑝(𝑇𝑤 − 𝑇∞) is the Eckert number, 𝐻𝑒 = 𝑄0𝜈/𝑈2  is the 
heat generation parameter, 𝑁𝑏 = 𝜏𝐷𝐵(𝐶𝑤 − 𝐶∞)/𝜈 is the Brownian motion parameter, 𝑁𝑡 = 𝜏𝐷𝑇(𝑇𝑤 −
𝑇∞)/𝜈𝑇∞ is the thermophoresis parameter, 𝐷𝑓 = 𝐷𝑚𝑘𝑇(𝐶𝑤−𝐶∞)

𝑐𝑠𝑐𝑝𝜈(𝑇𝑤−𝑇∞)
 is the Dufour number, 𝐿𝑒 = 𝜈/𝐷𝐵  is the 

Lewis number, R = 𝑘𝑐𝜈
𝑈2

 is the chemical reaction parameter, and 𝑆𝑟 = 𝐷𝑚𝑘𝑇(𝑇𝑤−𝑇∞)
𝜈(𝐶𝑤−𝐶∞)𝑇𝑚

 is the Soret number.  
 
Skin friction, rate of heat and mass transfer 

The local wall shear stress denoted by 𝜏𝑤  and the local surface heat flux 𝑞𝑤  are evaluated, 
respectively, from the following; 

 

𝜏𝑤 = �𝜇𝐵 + 𝑝𝑦
�2𝜋𝑐

� �∂𝑢
∂𝑦
�
𝑦=0

,        𝑞𝑤 = −𝑘 �∂𝑇
∂𝑦
�
𝑦=0

.         (16) 

 
The dimensionless skin friction coefficient denoted by 𝐶𝑓𝑥 and the local Nusselt number 𝑁𝑢𝑥 are 

defined as;  
 
𝐶𝑓𝑥 = 𝜏𝑤𝑥

1
2𝜌𝑈

2 ,        𝑁𝑢𝑥 = 𝑥𝑞𝑤
𝑘(𝑇𝑤−𝑇∞)

,           (17) 

 
Hence, using the similarity variables given in (11), we obtain; 

 

𝑅𝑒𝑥
1
2𝐶𝑓𝑥 = 2 �1 + 1

𝛽
� 𝑓′′(𝜁, 0),        𝑅𝑒𝑥

−12𝑁𝑢𝑥 = −𝜗′(𝜁, 0).        (18) 
 
Method of solution 

Multi-domain bivariate spectral quasi-linearization method(MD-BSQLM) 
In this section we first provide a description of the MD-BSQLM for solving systems of differential 

equations. The multi-domain approach has been used previously to solve systems of first order initial value 
problems that model chaotic systems (see Motsa et al. [24]). In this study, the method is extended to the 
nonlinear system of Eqs. (11) - (13). It is worth to noting that the multidomain approach is applied in the 𝜁 
direction only. To apply the concept to our system of equations, we let 𝜁 ∈ Λ, where Ω = [0,𝑇] and 
decompose Λ into 𝑝 non-overlapping intervals defined by;  
 
Λ𝑚 = [𝜁𝑚−1, 𝜁𝑚],      𝑚 = 1,2,⋯ , 𝑝, with     0 = 𝜁0 < 𝜁1 < 𝜁2 < ⋯ < 𝜁𝑝 = 𝑇.      (19) 
  

In the framework of the multi-domain approach, the partial differential equations are solved 
independently on each sub-domain using the initial condition for the solution in the first interval. When the 
solution has been computed, the new solution at the right hand boundary of the first interval is then used as 
an initial solution for the second interval. At the 𝑚th interval, the computed solution at the right hand 
boundary of the 𝑚 − 1𝑡ℎ interval is used as the initial solution. If we denote 𝜁 in the interval Ω𝑚 by 𝜁(𝑚) 
and the solution of Eqs. (11) - (13) by 𝑓(𝑚)(𝜁(𝑚), 𝜂), 𝜗(𝑚)(𝜁(𝑚), 𝜂), and 𝜑(𝑚)�𝜁(𝑚), 𝜂�, respectively, then, 
in the first interval [𝜁0 , 𝜁1], the solutions; 

 
𝑓(1)(𝜁, 𝜂),        𝜗(1)(𝜁, 𝜂),        𝜑(1)(𝜁, 𝜂),          (20) 
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are obtained subject to the “initial” conditions; 
 
𝑓(1)(0, 𝜂),        𝜗(1)(0, 𝜂),        𝜑(1)(0, 𝜂).          (21) 
 

At each interval [𝜁𝑚−1, 𝜁𝑚], (𝑚 ≥ 2), the continuity conditions; 
 

𝑓(𝑚)(𝜁𝑚−1, 𝜂) = 𝑓(𝑚−1)(𝜁𝑚−1, 𝜂), 𝜗(𝑚)(𝜁𝑚−1, 𝜂) = 𝜗(𝑚−1)(𝜁𝑚−1, 𝜂),
𝜑(𝑚)(𝜁𝑚−1, 𝜂) = 𝜑(𝑚−1)(𝜁𝑚−1, 𝜂),           (22) 

 
This process is repeated to generate a sequence of solutions; 

 
𝑓(𝑚)(𝜁, 𝜂),𝜗(𝑚)(𝜁, 𝜂),𝜑(𝑚)(𝜁, 𝜂).           (23) 

 
The next step is to linearize the nonlinear system of equations.  
 
Linearization 
The nonlinear partial differential equations are linearized using the quasi-linearization (QLM) 

technique (see [25-27]). We derive the scheme by linearizing the nonlinear components of the governing 
equations using Taylor series expansion. It is assumed in the linearization technique that the difference 
between the value of the unknown function at the current iteration level denoted by 𝑒 + 1 and the value at 
the previous iteration level denoted by 𝑒 is small. Applying the QLM technique to Eqs. (11) - (13) gives 
the following;  

𝑎0,𝑒𝑓𝑒+1
′′′(𝑚) + 𝑎1,𝑒𝑓𝑒+1

′′(𝑚) + 𝑎2,𝑒𝑓𝑒+1
′(𝑚) + 𝑎3,𝑒𝑓𝑒+1

(𝑚) + 𝑎4,𝑒
∂𝑓𝑒+1

′(𝑚)

∂𝜁
+ 𝑎5,𝑒

∂𝑓𝑒+1
(𝑚)

∂𝜁
+ 𝑎6,𝑒𝜗𝑒+1

(𝑚) + 𝑎7,𝑒𝜑𝑒+1
(𝑚) = 𝑅1,𝑒, 

𝑏0,𝑒𝜗𝑒+1
′′(𝑚) + 𝑏1,𝑒𝜗𝑒+1

′(𝑚) + 𝑏2,𝑒𝜗𝑒+1
(𝑚) + 𝑏3,𝑒

∂𝜗𝑒+1
(𝑚)

∂𝜁
+ 𝑏4,𝑒𝑓𝑒+1

′′(𝑚) + 𝑏5,𝑒𝑓𝑒+1
′(𝑚) + 𝑏6,𝑒𝑓𝑒+1

(𝑚) + 𝑏7,𝑒
∂𝑓𝑒+1

(𝑚)

∂𝜁
+

𝑏8,𝑒𝜑𝑒+1
′′(𝑚) + 𝑏9,𝑒𝜑𝑒+1

′(𝑚) = 𝑅2,𝑒, 𝑐0,𝑒𝜑𝑒+1
′′(𝑚) + 𝑐1,𝑒𝜑𝑒+1

′(𝑚) + 𝑐2,𝑒𝜑𝑒+1
(𝑚) + 𝑐3,𝑒

∂𝜑𝑒+1
(𝑚)

∂𝜁
+ 𝑐4,𝑒𝑓𝑒+1

′(𝑚) + 𝑐5,𝑒𝑓𝑒+1
(𝑚) +

𝑐6,𝑒
∂𝑓𝑒+1

(𝑚)

∂𝜁
+ 𝑐7,𝑒𝜗𝑒+1

′′(𝑚) = 𝑅3,𝑒,           (24) 
 
where the variable coefficients 𝑎𝑖,𝑒 , 𝑏𝑖,𝑒 , 𝑐𝑖,𝑒, and 𝑑𝑖,𝑒(𝑖 = 1,2,3, … ) are known from previous calculations 
and are given by;  

𝑎0,𝑒 = 1 +
1
𝛽

,   𝑎1,𝑒 = �
1
2
� �𝑓𝑒

(𝑚) + 𝜁
∂𝑓𝑒

(𝑚)

∂𝜁
� ,   𝑎2,𝑒 = −�

1
2
� 𝜁

∂𝑓𝑒
′(𝑚)

∂𝜁
, 𝑎3,𝑒 = �

1
2
� 𝑓𝑒

′′(𝑚),    

𝑎4,𝑒 = −�
1
2
� 𝜁𝑓𝑒

′(𝑚),    𝑎5,𝑒 = �
1
2
� 𝜁𝑓𝑒

′′(𝑚),    𝑎6,𝑒 = 𝜆,    𝑎7,𝑒 = 𝜆𝑁1, 

𝑏0,𝑒 =
1
𝑃𝑟

,    𝑏1,𝑒 = �
1
2
� �𝑓𝑒

(𝑚) + 𝜁
∂𝑓𝑒

(𝑚)

∂𝜁
� + 𝑁𝑏𝜑𝑒

′(𝑚) + 2𝑁𝑡𝜗𝑒
′(𝑚),   𝑏2,𝑒 = 𝐻𝑒𝜁2, 

𝑏3,𝑒 = −�
1
2
� 𝜁𝑓𝑒

′(𝑚),    𝑏4,𝑒 = 2𝐸𝑐 �1 +
1
𝛽
� 𝑓𝑒

′′(𝑚),    𝑏5,𝑒 = −�
1
2
� 𝜁

∂𝜗𝑒
(𝑚)

∂𝜁
,     

𝑏6,𝑒 = �
1
2
� 𝜗𝑒

′(𝑚), 𝑏7,𝑒 = �
1
2
� 𝜁𝜗𝑒

′(𝑚),    𝑏8,𝑒 = 𝐷𝑓 ,    𝑏9,𝑒 = 𝑁𝑏𝜗𝑒
′(𝑚), 

𝑐0,𝑒 = 1,    𝑐1,𝑒 = �
1
2
� 𝐿𝑒 �𝑓𝑒

(𝑚) + 𝜁
∂𝑓𝑒

(𝑚)

∂𝜁
� ,    𝑐2,𝑒 = −𝐿𝑒𝑅𝜁2,    𝑐3,𝑒 = −�

1
2
� 𝐿𝑒𝜁𝑓𝑒

′(𝑚), 

𝑐4,𝑒 = −�
1
2
� 𝐿𝑒𝜁

∂𝜑𝑒
(𝑚)

∂𝜁
,   𝑐5,𝑒 = �

1
2
� 𝐿𝑒𝜑𝑒

′(𝑚),   𝑐6,𝑒 = �
1
2
� 𝐿𝑒𝜁𝜑𝑒

′(𝑚),   𝑐7,𝑒 =
𝑁𝑡
𝑁𝑏

+ 𝐿𝑒𝑆𝑟. 
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and the right hand side 𝑅𝑖,𝑒(𝑖 = 1,2,3) are given below; 
 

𝑅1,𝑒 = �
1
2
� 𝑓𝑟

(𝑚)𝑓𝑒
′′(𝑚) − �

1
2
� 𝜁 �𝑓𝑒

′(𝑚) ∂𝑓𝑒
′(𝑚)

∂𝜁
− 𝑓𝑒

′′(𝑚) ∂𝑓𝑒
(𝑚)

∂𝜁
�, 

𝑅2,𝑒 = �
1
2
� 𝑓𝑒

(𝑚)𝜗𝑒
′(𝑚) + 𝑁𝑡𝜗𝑒

′2(𝑚) + 𝐸𝑐 �1 +
1
𝛽
� 𝑓𝑒

′′2(𝑚) + 𝑁𝑏𝜗𝑒
′(𝑚)𝜑𝑒

′(𝑚) 

−�
1
2
� 𝜁 �𝑓𝑒

′(𝑚) ∂𝜗𝑒
(𝑚)

∂𝜁
− 𝜗𝑒

′(𝑚) ∂𝑓𝑒
(𝑚)

∂𝜁
�, 

𝑅3,𝑒 = (1/2)𝐿𝑒𝑓𝑒
(𝑚)𝜑𝑒

′(𝑚) − (1/2)𝐿𝑒𝜁 �𝑓𝑒
′(𝑚) ∂𝜑𝑒

(𝑚)

∂𝜁
− 𝜑𝑒

′(𝑚) ∂𝑓𝑒
(𝑚)

∂𝜁
�.       (25) 

 
Collocation 
The interval 𝜁 ∈ Λ𝑚 ≡ [𝜁𝑚−1, 𝜁𝑚] is transformed to 𝑠 ∈ [−1,1] using the linear transformation; 

 

𝜁 =
1
2

(𝜁𝑚 − 𝜁𝑚−1)𝑠 +
1
2

(𝜁𝑚 + 𝜁𝑚−1) 
 
and 𝜂 ∈ [0,∞] is transformed to 𝑥 ∈ [−1,1] using; 
 

𝜂 =
1
2
𝐶(𝑥 + 1) 

 
where 𝐶 is a number large enough to represent the condition at infinity. For collocation, we use the 
Gauss-Lobatto collocation points, defined as; 
 

𝑥𝑖 = cos �
𝜋𝑖
𝑁𝑥
� ,        𝑠𝑗 = cos �

𝜋𝑗
𝑁𝑠
� ,        𝑖 = 0,1, … ,𝑁𝑥 ,        𝑗 = 0,1, … ,𝑁𝑠. 

 
The PDE is then arranged into matrix form using the Chebyshev differentiation matrix as defined in 

[28], where D denotes differentiation with respect to 𝜂 and d denotes differentiation with respect to 𝜁. If 
we denote the order of the differential by 𝑛, then the general form can be expressed as; 
 

 �∂
𝑛𝑓(𝑚)

∂𝑥𝑛
�

(𝑠𝑗,𝑥𝑖)
= 𝐃𝑛𝐹𝑖

(𝑚) ,    �∂𝑓
(𝑚)

∂𝑠
�

(𝑠𝑗,𝑥𝑖)
= ∑  𝑁𝑠

𝑞=0 𝐝𝑖𝑞
(𝑚)𝐹𝑞

(𝑚), �∂
𝑛𝜗(𝑚)

∂𝑥𝑛
�

(𝑠𝑗,𝑥𝑖)
= 𝐃𝑛𝑇𝑖

(𝑚) ,    �∂𝜗
(𝑚)

∂𝑠
�

(𝑠𝑗,𝑥𝑖)
=

∑  𝑁𝑠
𝑞=0 𝐝𝑖𝑞

(𝑚)𝑇𝑞
(𝑚), �∂

𝑛𝜑(𝑚)

∂𝑥𝑛
�

(𝑠𝑗,𝑥𝑖)
= 𝐃𝑛𝑃𝑖

(𝑚) ,    �∂𝜑
(𝑚)

∂𝑠
�

(𝑠𝑗,𝑥𝑖)
= ∑  𝑁𝑠

𝑞=0 𝐝𝑖𝑞
(𝑚)𝑃𝑞

(𝑚),        𝑖 = 0,1, … ,𝑁𝑥,    (26) 

 
where 
 
𝐹𝑖 = [𝑓(𝑠𝑗 , 𝑥0), 𝑓(𝑠𝑗 , 𝑥1), … , 𝑓(𝑠𝑗 , 𝑥𝑁𝑥)]𝑇 ,    𝑇𝑖 = [𝜗(𝑠𝑗 , 𝑥0),𝜗(𝑠𝑗 , 𝑥1), … ,𝜗(𝑠𝑗 , 𝑥𝑁𝑥)]𝑇 ,  

𝑃𝑖 = [𝜑(𝑠𝑗 , 𝑥0),𝜑(𝑠𝑗 , 𝑥1), … ,𝜑(𝑠𝑗 , 𝑥𝑁𝑥)]𝑇 ,    𝐝 =
2𝑑

𝜁𝑚 − 𝜁𝑚−1
,    𝐃 =

2𝐷
𝐶

. 

 
Applying Eq. (26) to Eq. (11) we obtain; 
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�𝑎0,𝑒𝐃3 + 𝐚𝟏,𝐞𝐃2 + 𝐚𝟐,𝐞𝐃 + 𝐚𝟑,𝐞𝐼 + 𝐚𝟒,𝐞𝐝𝑖𝑖
(𝑚)(𝐃) + 𝐚𝟓,𝐞𝐝𝑖𝑖

(𝑚)𝐼�𝐹𝑖,𝑒+1
(𝑚) + 𝐚𝟒,𝐞 �  

𝑁𝑠−1

𝑞=0
𝑞≠𝑖

𝐝𝑖𝑞
(𝑚)(𝐃)𝐹𝑞,𝑒+1

(𝑚)  

+𝐚𝟓,𝐞 �  
𝑁𝑠−1

𝑞=0
𝑞≠𝑖

𝐝𝑖𝑞
(𝑚)𝐹𝑞,𝑒+1

(𝑚) + 𝑎6,𝑒𝑇𝑖,𝑒+1
(𝑚) + 𝑎7,𝑒𝑃𝑖,𝑒+1

(𝑚) = 𝑅𝑅1,𝑒, 

�𝑏0,𝑒𝐃2 + 𝐛𝟏,𝐞𝐃 + 𝑏2,𝑒𝐼 + 𝐛𝟑,𝐞𝐝𝑖𝑖
(𝑚)𝐼�𝑇𝑖,𝑒+1

(𝑚) + 𝐛𝟑,𝐞 ∑  𝑁𝑠−1
𝑞=0
𝑞≠𝑖

𝐝𝑖𝑞
(𝑚)𝑇𝑞,𝑒+1

(𝑚) + �𝐛𝟒,𝐞𝐃2 + 𝐛𝟓,𝐞𝐃 + 𝐛𝟔,𝐞𝐼 +

𝐛𝟕,𝐞𝐝𝑖𝑖(𝑚)𝐼𝐹𝑖,𝑒+1(𝑚)+𝐛𝟕,𝐞𝑞=0𝑞≠𝑖𝑁𝑠−1𝐝𝑖𝑞(𝑚)𝐹𝑞,𝑒+1(𝑚)+𝑏8,𝑒𝐃2+𝐛𝟗,𝐞𝐃𝑃𝑖,𝑒+1(𝑚)=𝑅𝑅2,𝑒,  
�𝑐0,𝑒𝐃2 + 𝐜𝟏,𝐞𝐃 + 𝑐2,𝑒𝐼 + 𝐜𝟑,𝐞𝐝𝑖𝑖

(𝑚)�𝑃𝑖,𝑒+1
(𝑚) + 𝐜𝟑,𝐞 ∑  𝑁𝑠−1

𝑞=0
𝑞≠𝑖

𝐝𝑖𝑞
(𝑚)𝑃𝑞,𝑒+1

(𝑚) + �𝐜𝟒,𝐞𝐃 + 𝐜𝟓,𝐞𝐼 + 𝐜𝟔,𝐞𝐝𝑖𝑖
(𝑚)𝐼�𝐹𝑖,𝑒+1

(𝑚) +

𝐜𝟔,𝐞 ∑  𝑁𝑠−1
𝑞=0
𝑞≠𝑖

𝐝𝑖𝑞
(𝑚)𝐹𝑞,𝑒+1

(𝑚) + 𝑐7,𝑒𝐃2𝑇𝑖,𝑒+1
(𝑚) = 𝑅𝑅3,𝑒,      

      (27)  
where the bold variable coefficients represent diagonal matrices; 
 
𝑅𝑅1,𝑒 = 𝑅1,𝑒 − �𝐚𝟒,𝐞𝐝𝑖𝑁𝑠

(𝑚)(𝐃) + 𝐚𝟓,𝐞𝐝𝑖𝑁𝑠
(𝑚)𝐼�𝐹𝑁𝑠,𝑒

(𝑚),   
 𝑅𝑅2,𝑒 = 𝑅2,𝑒 − 𝐛𝟑,𝐞𝐝𝑖𝑁𝑠

(𝑚)𝑇𝑁𝑠,𝑟
(𝑚) − 𝐛𝟕,𝐞𝐝𝑖𝑁𝑠

(𝑚)𝐹𝑁𝑠,𝑒
(𝑚),     and 

 𝑅𝑅3,𝑒 = 𝑅3,𝑒 − 𝐜𝟑,𝐞𝐝𝑖𝑁𝑠
(𝑚)𝑃𝑁𝑠,𝑟

(𝑚) − 𝐜𝟔,𝐞𝐝𝑖𝑁𝑠
(𝑚)𝐹𝑁𝑠,𝑒

(𝑚),         (28) 
 
and I is an (𝑁𝑥 + 1) × (𝑁𝑥 + 1) identity matrix. The equation is then expressed in matrix form as; 
 

�
𝐴11𝑖,𝑗 𝐴12𝑖,𝑗 𝐴13𝑖,𝑗
𝐴21𝑖,𝑗 𝐴22𝑖,𝑗 𝐴23𝑖,𝑗
𝐴31𝑖,𝑗 𝐴32𝑖,𝑗 𝐴33𝑖,𝑗

� �
𝐹𝑖

(𝑚)

𝑇𝑖
(𝑚)

𝑃𝑖
(𝑚)

� =

⎣
⎢
⎢
⎡𝑅𝑅1,𝑒

(𝑚)

𝑅𝑅2,𝑒
(𝑚)

𝑅𝑅3,𝑒
(𝑚)

⎦
⎥
⎥
⎤
         (29) 

 
where  
 
𝐴11𝑖,𝑖 = 𝑎0,𝑒𝐃3 + 𝐚𝟏,𝐞𝐃2 + 𝐚𝟐,𝐞𝐃 + 𝐚𝟑,𝐞𝐼 + 𝐚𝟒,𝐞𝐝𝑖𝑖

(𝑚)(𝐃) + 𝐚𝟓,𝐞𝐝𝑖𝑖
(𝑚)𝐼,  

𝐴11𝑖,𝑗 = 𝐚𝟒,𝐞𝐝𝑖𝑗
(𝑚)(𝐃) + 𝐚𝟓,𝐞𝐝𝑖𝑗

(𝑚)𝐼,𝐴12𝑖,𝑖 = 𝑎6,𝑒𝐼,𝐴13𝑖,𝑖 = 𝑎7,𝑒𝐼,   𝐴12𝑖,𝑗 = 𝐴13𝑖,𝑗 = 𝟎,  
𝐴21𝑖,𝑖 = 𝐛𝟒,𝐞𝐃2 + 𝐛𝟓,𝐞𝐃 + 𝐛𝟔,𝐞𝐼 + 𝐛𝟕,𝐞𝐝𝑖𝑖

(𝑚)𝐼,𝐴21𝑖,𝑗 = 𝐛𝟕,𝐞𝐝𝑖𝑗
(𝑚)𝐼,  

𝐴22𝑖,𝑖 = 𝑏0,𝑒𝐃2 + 𝐛𝟏,𝐞𝐃 + 𝑏2,𝑒𝐼 + 𝐛𝟑,𝐞𝐝𝑖𝑖
(𝑚)𝐼,𝐴22𝑖,𝑗 = 𝐛𝟑,𝐞𝐝𝑖𝑗

(𝑚)𝐼,  
𝐴23𝑖,𝑖 = 𝑏8,𝑒𝐃2 + 𝐛𝟗,𝐞𝐃,   𝐴23𝑖,𝑗 = 𝟎, 
𝐴31𝑖,𝑖 = 𝐜𝟒,𝐞𝐃 + 𝐜𝟓,𝐞𝐼 + 𝐜𝟔,𝐞𝐝𝑖𝑖

(𝑚)𝐼,    𝐴31𝑖,𝑗 = 𝐜𝟔,𝐞𝐝𝑖𝑗
(𝑚)𝐼 ,   𝐴32𝑖,𝑖 = 𝑐7,𝑒𝐃2,𝐴32𝑖,𝑗 = 𝟎 

𝐴33𝑖,𝑖 = 𝑐0,𝑒𝐃2 + 𝐜𝟏,𝐞𝐃 + 𝑐2,𝑒𝐼 + 𝐜𝟑,𝐞𝐝𝑖𝑖
(𝑚)𝐼,𝐴33𝑖,𝑗 = 𝐜𝟑,𝐞𝐝𝑖𝑗

(𝑚)𝐼.       (30) 
 
Here, 𝐴𝑟𝑠(𝑖, 𝑖) is the diagonal of each 𝐴𝑟𝑠(𝑖, 𝑗) matrix, where (𝑟 = 𝑠 = 1,2,3). 
 
Results and discussion 

The governing equations in this study were solved using the multi-domain bivariate spectral 
quasi-linearization method, as described above. The equations were solved in the interval 𝜁 ∈ [0,40], 
which was divided into 40 non-overlapping sub-intervals. 
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Table 1 Comparison of result for −𝝑′(𝟎) with those of existing literature for various values of 𝑷𝒓 when 
𝜷 → ∞ , 𝒇𝒘 = 𝟎,𝝀 = 𝟎, 𝑵𝟏 = 𝟎, 𝑬𝒄 = 𝟎, 𝑫𝒇 = 𝟎, 𝑳𝒆 = 𝟎, 𝑺𝒓 = 𝟎, 𝑯𝒆 = 𝟎, and 𝑹 = 𝟎 , in the 
absence of nanoparticles. 
 

Pr Present result ref([29]) ref([30]) 

0.7 0.35082 0.3508 0.35005 

1 0.44387 − 0.44403 

2 0.68310 0.6831 0.68316 

7 1.38635 − 1.38625 

10 1.67916 1.6808 1.68011 
 

 
Table 2 Table of values showing values of 𝑪𝒇𝒙 and 𝑵𝒖𝒙 for large values of 𝜻. 
 

𝜁 𝐶𝑓𝑥 𝑁𝑢𝑥 

5 1.28518451 0.31579130 

10 1.30437685 0.26738413 

15 1.34130402 0.18237793 

20 1.39733684 0.05400245 

25 1.47642042 −0.12921402 

30 1.58476582 −0.38595703 

35 1.73157090 −0.74660041 

40 1.93019264 −1.26105318 
 

 
Table 1 shows the comparison of the present research result for the Prandtl number 𝑃𝑟 with those of 

Soundalgekar and Murty [29] and Patil et al. [30]. The table displays values of the Nusselt number for 
different values of 𝑃𝑟. A good agreement is achieved. We note also that the heat transfer coefficient 
increases as the 𝑃𝑟 number increases. 

Table 2 shows the skin friction coefficient and Nusselt number for different values of 𝜁. The mass 
transfer is not considered here due to the fact that we have assumed the nanoparticle flux to vanish at the 
boundary. This point was noted by Kuznetsov and Nield [16], who pointed out that the dimensionless mass 
flux, represented by the Sherwood number, is zero at this point. We note that, as we approach 𝜁, the skin 
friction coefficient increases, while the reduced Nusselt number decreases. This shows that the 
non-similarity parameter has an effect on the fluid flow and heat transfer characteristics, even at large 𝜁. 
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Figure 2 Effect of Prandtl number 𝑃𝑟 on temperature profile 𝜗(𝜁, 𝜂) when 𝑟 = 0.5, 𝑁𝑡 = 0.1, 𝑁𝑏 =
0.5 , 𝑓𝑤 = 1 , 𝛽 = 2 , 𝜆 = 0.5 , 𝑁1 = 0.5 , 𝐸𝑐 = 1 , 𝐷𝑓 = 0.1 , 𝐿𝑒 = 5 , 𝑆𝑟 = 0.1 , 𝐻𝑒 = 0.001 , and 
𝑅 = 0.5. 
 

 
Figure 3 Velocity profile at different values of 𝜁  when 𝑃𝑟 = 0.7 , 𝑟 = 0.5 , 𝑁𝑡 = 0.1 , 𝑁𝑏 = 0.5 , 
𝑓𝑤 = 1, 𝛽 = 2, 𝜆 = 0.5, 𝑁1 = 0.5, 𝐸𝑐 = 1, 𝐷𝑓 = 0.1, 𝐿𝑒 = 5, 𝑆𝑟 = 0.1, 𝐻𝑒 = 0.001, and 𝑅 = 0.5. 
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Figure 4 Temperature profile at different values of 𝜁 when 𝑟 = 0.5, 𝑁𝑡 = 0.1, 𝑁𝑏 = 0.5, 𝑓𝑤 = 1, 
𝛽 = 1, 𝜆 = 0.5, 𝑁1 = 0.5, 𝐸𝑐 = 0.1, 𝐷𝑓 = 0.1, 𝐿𝑒 = 1, 𝑆𝑟 = 0.1, 𝐻𝑒 = 0.001, and 𝑅 = 0.3. 
 
 

 
Figure 5 Concentration profile at different values of 𝜁  when 𝑟 = 0.5, 𝑁𝑡 = 0.1, 𝑁𝑏 = 0.5, 𝑓𝑤 = 1, 
𝛽 = 1, 𝜆 = 0.5, 𝑁1 = 0.5, 𝐸𝑐 = 0.1, 𝐷𝑓 = 0.1, 𝐿𝑒 = 1, 𝑆𝑟 = 0.1, 𝐻𝑒 = 0.001, and 𝑅 = 0.3. 
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Figure 2 shows the effect of the Prandtl number 𝑃𝑟 on the boundary layer temperature profiles. The 
Prandtl number is the ratio of viscosity to diffusivity, and thus gives an insight into the physics of the fluid. 
In this particular problem, increasing the Prandtl number reduces the temperature profiles so that the 
thermal boundary layer thickness becomes thinner. The reduction is due to the increase in the viscosity, 
which in turn enhances the momentum boundary layer thickness. This attribute of 𝑃𝑟 is similar to the 
observations in Soundalgekar and Murty [29]. 

Figures 3 - 5 give a visual display of the velocity, temperature and concentration profiles for different 
𝜁. In Figure 3, we note that there is an increase in the velocity profiles with 𝜁. This implies a local 
maximum value of the velocity profile in the boundary layer region when 𝜁 is increased. The same trend is 
obtainable for the temperature profiles in Figure 4, while in Figure 5, the concentration profiles are 
reduced with an increase in 𝜁. 

In Figures 6 and 7, we show the effect of the Casson parameter on the velocity and temperature 
profiles. When Casson parameter is increased, the yield stress is suppressed and the velocity reduces, but in 
the scenario observed in Figure 6, there is an enhancement of the velocity profiles near the wall, while 
away from the wall it is reduced. This suggests that the resistance to the flow as a result of an increase in the 
Casson parameter is reduced closer to the wall, and at this point the yield stress is not suppressed. The 
momentum boundary layer thickness is initially enhanced at the wall, but away from the wall it is reduced. 
In Figure 6 there is a decrease in the temperature profiles as the Casson parameter is increased; the yield 
stress is suppressed here as well, and the fluid temperature is reduced, thereby leading to a decrease in the 
thermal boundary layer thickness. This trend was also observed in [31]. 

Figures 8 and 9 depict temperature profiles for the heat generation 𝐻𝑒 and viscous dissipation 𝐸𝑐 
parameters. We note that the temperature profiles are enhanced when 𝐻𝑒 is increased. The effect of heat 
generation parameter is to release heat energy to the fluid flow. This energy release increases the 
temperature profiles as the parameter values are increased, and thus lead to an increase in the thermal 
boundary layer thickness. In Figure 9, we observe that increasing 𝐸𝑐 also increases the temperature 
profiles. The viscous dissipation parameter measures heat production due to friction and viscous heating. 
As expected, this produces an increase in the temperature profile and thermal boundary layer thickness. 

We show the effect of thermophoresis parameter 𝑁𝑡  on the temperature profile in Figure 10. 
Thermophoresis is associated with the movement of nanoparticles from a hot wall to a cold wall, and 
because this movement is generated by temperature gradients, this creates a fast flow away from the 
moving plate. Thus more fluid is heated away from the surface and this leads to an increase in the 
temperature within the boundary layer. The nanoparticle concentration profiles are negative at the wall for 
all parameters considered. This is due to the nanoparticle flux condition at the boundary, and this outcome 
is consistent with recent studies, see [16,18]. 

The effect of the thermophoresis parameter 𝑁𝑡 on the concentration profile is shown in Figure 11. 
As 𝑁𝑡  increases, the concentration profiles increase as well. This is due to the fact that higher 
thermophoresis values suggest a higher concentration of the nanoparticles in the fluid, hence increasing the 
concentration boundary layer thickness. It was observed that there is no significant difference in varying the 
values of the Brownian motion with the temperature profile. As suggested by Khan et al. [18], this point is 
understood better when we substitute 𝜑′(𝜁, 0) = −(𝑁𝑡/𝑁𝑏)𝜗′(𝜁, 0) into the dimensionless energy Eq. 
(12). The thermophoresis term ideally goes to zero, thus, the alteration in temperature profile for different 
values of 𝑁𝑏 is inconsequential [16]. 

Figure 12 shows the effect of the Brownian motion parameter 𝑁𝑏 on the concentration profiles. It 
was observed that the concentration profiles decrease with 𝑁𝑏 . 

Figures 13 and 14 show the effects of the Dufour number and the Soret number on the temperature 
and concentration profiles, respectively. In Figure 13, we note how the thermal energy flux is affected by 
the concentration gradients, due to the decrease in the temperature profile. The effect of the temperature 
gradient is reduced and, thus, there is a cooling of the boundary layer region. In effect, this implies the 
thermal boundary layer thickness is decreased as the parameter is increased. The effect of the Soret number 
can be observed in Figure 14. The Soret number is the ratio of thermal diffusion coefficient and diffusion 
coefficient. This ratio represents the mass flux produced by temperature gradients. As the Soret number 
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increases, the concentration profiles are also enhanced. This suggests that the temperature gradients 
produce a mass flux which enhances the concentration profiles and, hence, increases the nanoparticle 
concentration boundary layer thickness. 

Figure 15 shows the effect of the chemical reaction parameter 𝑅 on the concentration profiles. It is 
observed that increasing 𝑅 decreases the concentration profiles. This implies that higher values of 𝑅 lead 
to a decrease in the chemical molecular diffusivity, causing a decrease in the concentration of the diffusing 
species and reduction in mass diffusion, and this effect leads to the thinning of the concentration boundary 
layer. 

 
Figure 6 Effect of Casson parameter 𝛽 on velocity profile 𝑓′(𝜁, 𝜂) when 𝑃𝑟 = 0.7, 𝑟 = 0.5, 𝑁𝑡 = 0.1, 
𝑁𝑏 = 0.5 , 𝑓𝑤 = 1 , 𝜆 = 0.5 , 𝑁1 = 0.5 , 𝐸𝑐 = 1 , 𝐷𝑓 = 0.1 , 𝐿𝑒 = 5 , 𝑆𝑟 = 0.1 , 𝐻𝑒 = 0.001 , and 
𝑅 = 0.5. 

 
Figure 7 Effect of Casson parameter 𝛽  on temperature profile 𝜗(𝜁, 𝜂)  when 𝑃𝑟 = 0.7 , 𝑟 = 0.5 , 
𝑁𝑡 = 0.1, 𝑁𝑏 = 0.5, 𝑓𝑤 = 1, 𝜆 = 0.5, 𝑁1 = 0.5, 𝐸𝑐 = 1, 𝐷𝑓 = 0.1, 𝐿𝑒 = 5, 𝑆𝑟 = 0.1, 𝐻𝑒 = 0.001, 
and 𝑅 = 0.5. 
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Figure 8 Effect of heat generation parameter 𝐻𝑒  on temperature profile 𝜗(𝜁, 𝜂)  when 𝑃𝑟 = 0.7 , 
𝑟 = 0.5, 𝑁𝑡 = 0.1 , 𝑁𝑏 = 0.5 , 𝑓𝑤 = 1 , 𝛽 = 1 , 𝜆 = 0.5, 𝑁1 = 0.5, 𝐸𝑐 = 1, 𝐷𝑓 = 0.1, 𝐿𝑒 = 5, 𝑆𝑟 =
0.1, and 𝑅 = 0.5. 
 

 
Figure 9 Effect of viscous dissipation parameter 𝐸𝑐  on temperature profile 𝜗(𝜁, 𝜂) when 𝑃𝑟 = 0.7, 
𝑟 = 0.5 , 𝑁𝑡 = 0.1 , 𝑁𝑏 = 0.5 , 𝑓𝑤 = 1 , 𝛽 = 1 , 𝜆 = 0.5 , 𝑁1 = 0.5 , 𝐷𝑓 = 0.1 , 𝐿𝑒 = 5 , 𝑆𝑟 = 0.1 , 
𝐻𝑒 = 0.001, and 𝑅 = 0.5. 
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Figure 10 Effect of thermophoresis parameter 𝑁𝑡  on temperature profile 𝜗(𝜁, 𝜂)  when 𝑃𝑟 = 0.7 , 
𝑟 = 0.5, 𝑁𝑏 = 0.5, 𝑓𝑤 = 1, 𝛽 = 1, 𝜆 = 0.5, 𝑁1 = 0.5, 𝐸𝑐 = 1, 𝐷𝑓 = 0.1, 𝐿𝑒 = 5, 𝑆𝑟 = 0.1, 𝐻𝑒 =
0.001, and 𝑅 = 0.5. 
 
 

 
Figure 11 Effect of thermophoresis parameter 𝑁𝑡  on concentration profile 𝜑(𝜁, 𝜂)  when 𝑃𝑟 = 0.7 , 
𝑟 = 0.5, 𝑁𝑏 = 0.5, 𝑓𝑤 = 1, 𝛽 = 1, 𝜆 = 0.5, 𝑁1 = 0.5, 𝐸𝑐 = 1, 𝐷𝑓 = 0.1, 𝐿𝑒 = 5, 𝑆𝑟 = 0.1, 𝐻𝑒 =
0.001, and 𝑅 = 0.5. 
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Figure 12 Effect of Brownian motion parameter 𝑁𝑏 on concentration profile 𝜑(𝜁, 𝜂) when 𝑃𝑟 = 0.7, 
𝑟 = 0.5, 𝑁𝑡 = 0.1, 𝑓𝑤 = 1 , 𝛽 = 1, 𝜆 = 0.5, 𝑁1 = 0.5, 𝐸𝑐 = 1, 𝐷𝑓 = 0.1 , 𝐿𝑒 = 5, 𝑆𝑟 = 0.1, 𝐻𝑒 =
0.001, and 𝑅 = 0.5. 
 

 
Figure 13 Effect of Dufour number 𝐷𝑓  on temperature profile 𝜗(𝜁, 𝜂)  when 𝑃𝑟 = 0.7 , 𝑟 = 0.5 , 
𝑁𝑡 = 0.1, 𝑁𝑏 = 0.5, 𝑓𝑤 = 1, 𝛽 = 1, 𝜆 = 0.5, 𝑁1 = 0.5, 𝐸𝑐 = 1, 𝐿𝑒 = 5, 𝑆𝑟 = 0.1, 𝐻𝑒 = 0.001, and 
𝑅 = 0.5. 
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Figure 14 Effect of Soret number 𝑆𝑟  on concentration profile 𝜑(𝜁, 𝜂)  when 𝑃𝑟 = 0.7 , 𝑟 = 0.5 , 
𝑁𝑡 = 0.1, 𝑁𝑏 = 0.5, 𝑓𝑤 = 1, 𝛽 = 1, 𝜆 = 0.5, 𝑁1 = 0.5, 𝐸𝑐 = 1, 𝐷𝑓 = 0.1, 𝐿𝑒 = 5, 𝐻𝑒 = 0.001, and 
𝑅 = 0.5. 
 
 

 
Figure 15 Effect of chemical reaction parameter 𝑅 on concentration profile 𝜑(𝜁,𝜂) when 𝑃𝑟 = 0.7, 
𝑟 = 0.5, 𝑁𝑡 = 0.1 , 𝑁𝑏 = 0.5 , 𝑓𝑤 = 1 , 𝛽 = 1 , 𝜆 = 0.5, 𝑁1 = 0.5, 𝐸𝑐 = 1, 𝐷𝑓 = 0.1, 𝐿𝑒 = 5, 𝑆𝑟 =
0.1, and 𝐻𝑒 = 0.001. 
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Conclusions 

In this work, we have studied the boundary layer flow of a Casson nanofluid with a chemical reaction, 
heat generation, viscous dissipation, and thermo and thermal diffusion effects using the multi-domain 
bivariate spectral quasi-linearization method to solve the model equations. The qualitative influence of the 
different fluid parameters on the Casson fluid properties has been analyzed in detail. It was observed that 
the velocity boundary is enhanced by an increase in the non-similarity parameter; the thermal boundary 
increased with an increase in the Casson, heat generation, viscous dissipation and the thermophoresis 
parameters, while it decreased with an increase in the Dufour number. 

We have showed that thermophoresis and the Soret parameter enhanced the nanoparticle 
concentration boundary, while the boundary was reduced by increasing the Brownian motion and the 
chemical reaction parameters. 
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