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Abstract 

All machines in power plants need high reliability and to be continuous run at all times in the 
production process. The Remaining Useful Life (RUL) prediction of machines is an estimation for 
planning maintenance activities in advance to save the cost of corrective and preventive maintenance. 
Most existing models analyze sensor data separately. This univariate analysis never considers the 
relationship between sensors and time simultaneously. In this paper, we applied a Convolutional Neural 
Network (CNN), which considered both dimensions of and sensors; a multivariate time series analysis. 
Furthermore, we applied many techniques to enhance the framework of deep learning, including dropout, 
L2 Regularization, and the Adaptive Gradient Descent (AdaGrad). For the experiment, we conducted our 
method and showed the performance in term of Root Mean Square Error (RMSE) on a standard 
benchmark and for real-case datasets. 
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Introduction 

Any power plant requires higher efficiency, but unwanted downtime is often caused by machine 
fault problems. Thus, predictive maintenance is the most important activity for solving this problem, 
producing cost savings over corrective and preventive maintenance. The remaining useful life (RUL) 
prediction has become a major scientific challenge, a prognostic technique that aims to accurately 
estimate the RUL. All machine components have many points of sensor data. Existing algorithms, such as 
linear models, cannot capture the complex relationship between the sensor data and the RUL. Moreover, 
Multilayer Perceptron (MLP) cannot learn the salient features automatically because of its network 
structure. Therefore, estimating the RUL uses a Convolutional Neural Network (CNN) based regression 
approach.  

Baraldi et al. [1] proposed an original method to extend Particle Filtering (PF) in the case of an 
analytical measurement model. The PF scheme was applied to a case study regarding the prediction of the 
RUL of a structure which was degrading, according to a stochastic fatigue crack growth model from the 
literature. Porotsky [2] presented the Cross-Entropy method for controlling parameter optimization, based 
on the Cross-Validation procedure. The solution was recognized as a winner in when used in competition. 
The results demonstrated the effectiveness of the approach for the RUL estimation for system parameters 
with non-trend ability behavior. Javed et al. [3] applied wavelet-extreme learning machine and 
subtractive-maximum entropy fuzzy clustering to predict the RUL of a machine using simultaneous 
predictions and discrete state estimation. The model objectively assigned dynamic failure threshold 
procedure to estimate the RUL. 

Yang et al. [4] compared the 2 RUL prediction approaches, which were the Back Propagation-
Artificial Neural Network (BP-ANN) and the Extreme Learning Machine (ELM), on the popular turbofan 
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engine degradation dataset, and evaluated the performance to show that the BP-ANN outperformed ELM, 
but took more time to train the model. Ren et al. [5] combined time and frequency domain features, using 
a deep learning approach, to predict the RUL of multi-bearing, which could extract high-quality 
degradation patterns from vibration signals of the rolling bearings using a neural network-based model 
and rectified linear and sigmoid activation function. Root Mean Square Propagation (RMSprop) 
optimization was used for minimizing the loss function in their proposed model. The performance was 
evaluated on real datasets with other commonly used prediction methods to demonstrate the effectiveness 
of the model. Zhao et al. [6] proposed Adjacent Difference Neural Network (ADNN), which added the 
adjacent term in loss function to smooth the weight in the network for the RUL prediction model. Babu et 
al.[7] firstly proposed a novel CNN based regression approach. They applied it along the temporal 
dimension over the multi-channel sensor data through the deep architecture. The feature learning and the 
RUL estimation were mutually enhanced by the supervised feedback. The results were more efficient and 
accurate than several state-of-the-art algorithms. 

In this paper, an RUL prediction model, using a data-driven approach called enhanced CNN, which 
is suitable for multivariate time series data from machines or equipment with continuous in timely order 
data and multi-sensors, is proposed. The structure of the prediction model consists of deep learning 
architecture with many optimization techniques, such as dropout, L2 Regularization, and the AdaGrad. 
Moreover, this model has efficient feature selection and temporal at the same time point, which is 
significant for the RUL prediction task in order to maintain the machine for efficiency in power plants or 
manufacturing. 

This paper is organized as follows. Section I is the introduction, and Section II presents background 
knowledge about CNN. Section III is the proposed method. Section IV describes the experimental data, 
composed of 4 datasets, and Section V presents the experiments and results. Finally, Section VI is the 
conclusion. 
 
Background Knowledge 

Convolutional neural network 
CNN is a special kind of multi-layer neural networks, designed to recognize visual patterns directly 

from pixel images with minimal preprocessing. It can recognize patterns with extreme variability, and 
with robustness to distortions and simple geometric transformations. The structure of a CNN, shown in 
Figure 1, is a simple, well-known architecture called “LeNet”, introduced by Lecu et al. in 1998 [8]. 

 

 
 
Figure 1 Structure of the well-known CNN, LeNet [8]. 
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The structure of CNN consists of 4 important layers, as per the following. 
1) Convolutional Layer: The first layer is connected after the input. The array of numbers, known as 

the “Kernel Filter”, which may be weighted or use parameters in this layer, will compute a dot product of 
input and weight for the output for the next layer. 

2) Activation Function: The non-linearity function performs a mathematical operation on a single 
number. There are several activation functions which provide outputs for various problem solving. 

 I) Rectified Linear Unit Function (ReLU): The result of this activation function is I+ or zero, as 
in (1). 

 

𝑓(𝑥) =  �0, 𝑖𝑓 𝑥 < 0
𝑥, 𝑖𝑓 𝑥 ≥ 0

� (1) 

II) Exponential Linear Unit Function (ELU): This activation function is computed with an 
exponential function, as in (2). 

 

𝑓(𝛼, 𝑥) = �𝛼
(𝑒𝑥 − 1) , 𝑖𝑓 𝑥 < 0 

               𝑥 , 𝑖𝑓 𝑥 ≥  0
� (2) 

3) Pooling Layer: This layer performs a down sampling operation along the dimensions of the input 
by computing a maximum or average value, called “Max Pooling” or “Average Pooling”. 

4) Fully Connected Layer: The final layer of the convoluted structure will compute the result, class, 
or score. All neurons in this layer are connected to the neurons in the previous layer. 

 
Loss function 
The Mean Square Error (MSE) is commonly used to compute the loss function, which measures the 

quality of a particular set of weights or parameters. The equation is indicated in (3). 
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where J  is the loss function, ŷi is the predicted value of dataset I and yi  is the actual value of dataset i. 
 

Optimization 
The purpose of optimization is to find the weight that minimizes the loss function. 
1) Stochastic Gradient Descent (SGD): The learning with SGD will adjust the weight using 

previous information, according to (4). 
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where w is the adjusting weight, α is the learning rate and 
w

I

∂
∂  is the gradient of loss function to w. 

2) The Adaptive Gradient Descent (AdaGrad): This method will adjust the learning rate by itself. 
Then, all the previous gradients will be used to adjust the learning rate in (5) and (6). 
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where tg  is the gradient at the time t and tw  is the adjusting weight of time t.  
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Overfitting problem  
This problem occurs when the model learns the detail and noise in the training data too well. 

Therefore, it impacts the performance of the model with new data, which means that the model cannot be 
applied to new data and be generalized. 

1) L2 Regularization: The most common form of regularization, by adding the sum of squared weight 
values to the loss function term while training, is shown in (7).  
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where  C0 is the initial loss function and λ is the regularization parameter. 
 

2) Dropout: This technique prevents overfitting by making the co-adaptations on training data more 
complex. The dropout will randomly remove some of the units to create a different network, which is 
trained by backpropagation. 

 
Proposed method 

Our prediction procedure is composed of training data, preprocessing, prediction model, and 
performance evaluation, as shown in Figure 2. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Process of the RUL prediction model. 
 
 

Preprocessing 
It is necessary to normalize the input data, because each variable has a very different range of value; 

for example, the 1st sensor point is the main range, while the 8th sensor point is the thousands range. To 
find a correlation, or multivariate analysis, in the next step, the normalization method, we apply the z-
score according to (8), which represents the distance between the single values and the population mean 
in units of the standard deviation. 
 

Training Data 

Preprocessing 

The RUL Prediction Model 

The CNN Model 

Start 

Processed Data 

End 
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𝑧 = (𝑥 − 𝜇)/𝜎 (8) 

where µ is the mean of the input x and σ is the standard deviation of the input x. 
 

The remaining useful life prediction model 
From a study of relevant research, it can be seen that the neural network which is the best method to 

predict the RUL is CNN. The structure uses the exponential rectified function as an activation function in 
the feature map, max pooling, and adaptive gradient descent as a loss function. Moreover, we use L2 
regularization to prevent overfitting of the model. The structure of the prediction is shown in Figure 3. 
The input is a 2-dimension array in S×T when S is the number of sensor signals which depends on 
datasets and T is the number of time points; 15 time points are used. The convolutional, pooling, and fully 
connected layers are set in the structure according to the standard VGG-16 model. After the convolutional 
layers, we apply the following techniques; dropout, L2 regularization, and the AdaGrad. From Figure 3, 
the prediction of the RUL values is calculated after the CNN model. Our approach focuses on introducing 
new techniques to reduce predictive errors, as follows: 

• Restructuring the CNN in convolutional, pooling, and fully connected layers for the 
appropriation of multivariate and time series data. 

• Model optimization by changing the activation function from the commonly used sigmoid 
function as an exponential linear unit function, which will help to cut the core down because, if the value 
is less than zero, the values from this function will be negative, according to the exponential trend. 

• Implementing techniques to prevent referencing with learning information or dropout is used to 
randomly cut out unnecessary links. The L2 regularization reduces replication of the model after finding 
the feature extraction. These 2 overfitting prevention techniques are only done while training the model, 
and not in the testing process. 

• Applying the AdaGrad to optimize the loss function by adjusting the weights using all the 
previous gradients, which provide a preferable learning rate. This will affect the loss function and the 
predicted output. 

 
Model configuration 
In this step, we explain how to configure and adjust our CNN model for the RUL prediction. The 

model training is an important step. The dimension of input is S×T; the number of sensors S and 15 time 
points T. The setting of batch size is 10 and number batches per epoch are 800. Moreover, the numbers of 
training are 2,000, 2,500, and 5,000 epochs per cycle to evaluate the number of rounds, which gives the 
least error. The execution time in each round of epoch depends on the size of input datasets and models. 

For the testing, we evaluate the most efficient model by measuring the RMSE to indicate the 
difference between the actual and predicted values for performance evaluation of the model. 

 
 

 
 
Figure 3 Structure of proposed CNN for remaining useful life prediction. 
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Experimental data 

In our experiment, there are 4 time series datasets on remaining useful life prediction, comprising of 
(i) 3 public datasets, which are reliable and well-known in the prognostic fields, and (ii) one real-cases 
from a power plant, for empirical prediction in real world situations. 

 
Prognostic data challenge dataset 
This dataset was used for a prognostics challenge competition at the International Conference on 

Prognostics and Health Management (PHM08) [9]. Data sets consist of multiple multivariate time series.  
Input data was a Turbofan Engine Degradation Simulation, which was prepared by the Prognostics 

Center of Excellence, or PCoE, at the NASA Ames Research Center. It was made by Commercial 
Modular Aero-Propulsion System Simulation, or C-MPASS. The dataset was collected under the 
conditions of several sensor points, symptoms of equipment failure, and working environment. It 
certainly included disturbing information. Figure 4 shows the components of the turbofan and the 
variable names and additional metric description of the turbofan series. 

 
 

 
Figure 4 Components of turbofan [10]. 
 
 

Each engine starts with different initial conditions and manufacturing variations. The engine 
operates normally until it starts to degrade at some time point during the simulation. The degradation 
grows until it reaches a setting threshold, where it is not preferable to continue to operate the machine 
during the simulation. 

For the information of the datasets, Tables 1 and 2 show the variable names and their descriptions. 
There are 3 operational settings that affect engine performance, and 21 sensors. Table 3 contains a 
number of observed turbofans in each sub-dataset. 
 

PHM08 pronostic data challenge 
This dataset is similar to A. The dataset was used for the prognostics challenge competition at the 

International Conference on Prognostics and Health Management (PHM08). This challenge is open for 
the researchers to develop and compare their model and performance against others with score function; 
the Mean Square Error (MSE). 
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Table 1 Name and description database of input data. 
 

No. Attribute Description 

1 unit no. the engine number 
2 Time the operational cycle number 
3 opt.set1 the 3 operating settings 
4 opt.set2 
5 opt.set3 
6 sensor1 the 21 sensor values 
7 sensor2 
8 sensor3 
… … 
26 sensor21 

 
Table 2 Symbols and description of sensor signals for turbofan engine degradation dataset. 
 

NO. Symbol Description Units 
1 T2 Total temperature at fan inlet °R 
2 T24 Total temperature at LPC outlet °R 
3 T30 Total temperature at HPC outlet °R 
4 T50 Total temperature at LPT outlet °R 
5 P2 Pressure at fan inlet psia 
6 P15 Total pressure in bypass duct psia 
7 P30 Total pressure at HPC outlet psia 
8 Nf Physical fan speed rpm 
9 Nc Physical core speed rpm 

10 Epr Engine Pressure ratio - 
11 Ps30 Static pressure at HPC outlet psia 
12 Phi Ratio of fuel flow to Ps30 pps/psi 
13 NRf Corrected fan speed rpm 
14 NRc Corrected core speed rpm 
15 BPR Bypass ratio - 
16 farB Burner fuel-air ratio - 
17 htBleed Bleed enthalpy - 
18 Nf_dmd Demanded fan speed rpm 
19 PCNfR_dmd Demanded corrected fan speed rpm 
20 W31 HPT coolant bleed lpm/s 
21 W32 LPT coolant bleed lbm/s 

 
°R refers to the Rankine temperature scale. 
psia refers to Pounds per square inch absolute. 
rpm refers to Revolutions per minute. 
pps refers to Pulse per second. 
psi refers to Pounds per square inch. 
lbm/s refers to Pound mass per second. 
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Table 3 Numbers of input for each sub-dataset. 
 

Dataset 
C-MAPSS 

PHM08 
FD001 FD002 FD003 FD004 

Training 100 260 100 249 218 
Testing 100 259 100 248 218 

 
 

Virkler dataset 
The dataset is fatigue crack growth under homogeneous cyclic stress for statistical analysis [11]. 

The amplitude test dataset in aluminum alloy was carried out to investigate fatigue crack propagation with 
69 replicate constants, which were crack lengths in mm. and the observed series. The crack lengths were 
observed from the number of cycles, while testing was as shown in Figure 5. 
 

Circulating water pump (CWP) 
In a steam turbine generator system, there is a heat exchange medium that supplies through a 

condenser, which is the main function of circulating water. The Circulating Water Pump (CWP), shown 
in Figure 6, will pump the circulating water to absorb heat from the system, then return it to the cooling 
tower. 

Each CWP will be monitored by many sensor points, like 1 current, 3 temperatures and 4 vibration 
sensor points. Sensor data of CWP equipment are collected from a real-time data management tool called 
the PI system, which is used for data collection, historicizing, analyzing, delivering, and visualizing in 
plant maintenance tasks. Signals would have been collected at hourly of one year; one sensor point will 
have 8,760 (24×365) values. In this case, we collect 8 sensor points for a CWP. Finally, the sensor signal 
will have 61,320 input values. Sensor data of CWP equipment are collected from a real-time data 
management tool called the PI system, which is used for data collection, historicizing, analyzing, 
delivering, and visualizing in plant maintenance tasks. Signals are collected hourly for one year. One 
sensor has 8,760 (24×365) values. We collect 61,320 input values of 8 sensor points for a CWP for the 
experiment in our proposed method. 

 

 
 
Figure 5 Crack length propagation samples under same loading conditions [12]. 
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Figure 6 Structure of CWP components [13]. 
 
 
Experiments and results 

In the experiment, the 4 datasets are used to predict the remaining useful life. We conduct 2 
statistical methods for the univariate forecasting, the standard CNN, and our proposed method; 
multivariate forecasting, to predict the time series data. The univariate forecasting only predicts the RUL 
value as a single time series data, while multivariate forecasting predicts the RUL with the analysis of the 
correlation between input sensors. 

 
Univariate forecasting 
The experiment is performed by calculating the appropriate model equation using the well-known 

statistical Autoregressive Integrated Moving Average (ARIMA) and Exponential Smoothing methods in 
forecasting the RUL value according to the consistency of the data and time. The analysis takes 30 days; 
720 h or time points of input to predict the RUL values for one day; 24 time points. Then, we evaluate the 
performance by using the RMSE value, which calculates the difference between the predicted and actual 
values. 

 
Convolutional neural network 
The experiments are conducted in accordance with the presented method by the convolutional 

layers. This uses the sigmoid function to calculate the output data and the pooling twice and continue with 
the fully-connected layer. In the training phase, the optimized value is achieved with the AdaGrad in the 
evaluation of network parameters, and the back-propagation algorithm to reduce the loss function value. 
The error of prediction are summarized from all 3 methods, which are standard statistical time series 
forecasting: the ARIMA and Exponential Smoothing; the baseline methods: the standard CNN model, 
and the proposed methods: enhanced CNN. The enhanced techniques we apply in each CNN method in 
our experiments is described in Table 4. We apply the AdaGrad in every method, because the loss 
function cannot be optimized with the SGD. 
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The RMSE of prediction is calculated to measure the difference between the predicted and real 
values. Table 5 represents the RMSE of each method, showing that our proposed method outperformed 
others, with the comparison of 3 public datasets and one real-case dataset, which makes the model more 
applicable.  

Based on the experiment, we compare the efficiency of our proposed method with the standards; the 
statistical and CNN models. The predicted result with CNN gives less error than the statistic models, but 
our proposed enhanced CNN gives the least error, as shown in Table 5. In this work, we will focus on 
network restructuring and the application of methods such as dropout, L2 regularization, and the AdaGrad 
to reduce the error of prediction. 

 
Table 4 Techniques applied in each CNN method. 
 

 Methods Activation function Dropout L2 regularization Optimization 

Standard CNN 
Lenet-5 Lite ReLU   AdaGrad 
Alexnet Lite ReLU   AdaGrad 
VGG-16 Lite ReLU   AdaGrad 

Enhanced 
CNN 

Enhanced 
Lenet-5 ELU   AdaGrad 

Enhanced 
Lenet-5-2 ELU   AdaGrad 

Enhanced 
VGG-16 ELU   AdaGrad 

 
 
Table 5 RMSE of each dataset and methods An asterisk symbol (*) refers to the winning methods. 
 

 Method C-MAPSS1 C-MAPSS2 C-MAPSS3 C-MAPSS4 PHM08 Virkler CWP 

Univariate 
Forecasting 

ARIMA 6.93 15.59 15.70 16.36 15.94 30.27 19.05 
Exponential Smoothing 7.16 16.56 16.66 17.37 16.87 31.94 20.15 

Multivariate 
Forecasting 

Lenet-5 Lite 19.52 29.41 20.93 31.16 31.01 6.68 48.44 
Alexnet Lite 8.89 10.77 11.76 15.74 17.51 5.59 45.24 
VGG-16 Lite 13.85 24.39 29.06 48.46 23.37 8.53 21.75 
Enhanced Lenet-5 18.24 28.72 18.83 30.34 32.19 18.91 49.04 
Enhanced Lenet-5-2 17.57 26.98 18.04 28.84 29.17 17.08 48.54 
Enhanced VGG-16 2.5* 6.41* 3.25E-03* 10.72* 6.26* 3.12* 19.02* 

 
 
Conclusions 

In this paper, we proposed the RUL prediction model, which helps future maintenance tasks to be 
more predictable and more accurate, using a machine learning method called CNN. The model is enhanced 
from the basic structure of deep learning and improves performance of prediction by using some 
techniques. The experiments were conducted with 3 standard benchmarks and one real-case dataset. Then, 
we compared the predicted result of each dataset with 8 prediction methods and evaluated the performance 
of a model using the standard evaluation RMSE, which compares the differences between the predicted 
and the real RUL values. Our proposed method outperformed others, with small prediction error. 
Therefore, we can have precise estimation.  

From the results, we can apply our proposed model embedded in the real-world system to help as a 
pre-warning for equipment breakdown or malfunction which may occur in the future. Therefore, 



Prediction on Time Series Data Manassakan SANAYHA and Peerapon VATEEKUL 
http://wjst.wu.ac.th 

Walailak J Sci & Tech 2019; 16(9) 
 

679 

maintenance engineers can prepare resources to inspect or check the equipment, which can reduce the 
cost of maintenance. 
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