On the Diophantine Equation $3^{x}+p 5^{y}=z^{2} \dagger$

Kittipong LAIPAPORN, Saeree WANANIYAKUL and Prathomjit KHACHORNCHAROENKUL*

School of Science, Walailak University, Nakhon Si Thammarat 80160 Thailand

(*Corresponding author’s e-mail: prathomjit@gmail.com)

Received: 30 November 2018, Revised: 11 February 2019, Accepted: 28 February 2019

Abstract

In this paper, we present new series of solutions of the Diophantine equation $3^{x}+p 5^{y}=z^{2}$ where p is a prime number and x, y and z are nonnegative integers using elementary techniques. Moreover, the equation has no solution if p is equivalent to 5 or 7 modulo 24 .

Keywords: Exponential Diophantine equation, Catalan's conjecture
Mathematics Subject Classification: 11D61

Introduction

In 2004, Catalan's conjecture was exhibited by Mihailescu [1]. During the past fifteen years, many researchers have studied the Diophantine equation of the form $a^{x}+b^{y}=z^{2}$ by considering a and b. In 2007, Acu [2] showed that $(3,0,3)$ and $(2,1,3)$ are the only two solutions (x, y, z) satistying the equation $2^{x}+5^{y}=z^{2}$. In 2011, Suvarnamani [3] considered in the form $2^{x}+p^{y}=z^{2}$ and found that solutions of this equation according to value of p for example, $(3,0,3)$ is a solution for $p>2$, besides, $(4,2,5)$ is another solution to the equation for $p=3$. If $p=2$, the solutions consist of three types. In 2012, Sroysang [4] found that $(1,0,2)$ is the unique solution to the equation $3^{x}+5^{y}=z^{2}$. In 2013, Ninrata [5] showed that there is no nonnegative solution to the modified Sroysang's equation as 5^{y} is added. In the same year, Sroysang [6] extended Suvarnamani's result in case $p=3$ that $(0,1,2),(3,0,3)$ and $(4,2,5)$ are the only three solutions satistying the equation $2^{x}+3^{y}=z^{2}$. In 2014, Bacani and Rabago [7] generalized the Diophantine equation as $3^{x}+5^{y}+7^{z}=w^{2}$ and showed that $(0,0,1,3),(1,1,0,3)$ and $(3,1,2,9)$ are the only three solutions (x, y, z, w) satistying this equation.

In this paper, we consider the Diophantine equation in the particular form of
$3^{x}+p 5^{y}=z^{2}$
where p is a prime number not equal to 2 or 5 and x, y and z are nonnegative integers.

Main Results

First, we begin this section by providing a lemma that is used through our discussion.
Lemma 1. [8] If lis an integer relatively prime to 24 , then there are infinitely many primes p such that $p \equiv l \bmod 24$.

We consider in case x is zero.

[^0]
Proposition 2. The solution of the equation

$1+p 5^{y}=z^{2}$
is $(y, z, p) \in\{(0,2,3),(1,4,3),(1,6,7),(2,24,23)\} \cup A \cup B$
where $A=\left\{\left(y, 5^{y}-1,5^{y}-2\right) \mid y\right.$ is even and a prime $5^{y}-2 \equiv 23 \bmod 24$ for $\left.y \geq 3\right\}$
and $B=\left\{\left(y, 5^{y}+1,5^{y}+2\right) \mid y\right.$ is odd and a prime $5^{y}+2 \equiv 7 \bmod 24$ for $\left.y \geq 3\right\}$.
Proof. From (1), we have $p 5^{y}=z^{2}-1=(z-1)(z+1)$. If $z-1=1$, then $y=0$ and $p=3$. Hence, $(y, z, p)=(0,2,3)$. Now, we attend to the case $z-1>1$. Clearly, in the case $y<3$, the solution of the equation (1) is $(y, z, p) \in\{(1,4,3),(1,6,7),(2,24,23)\}$. We consider in the case $y \geq 3$.
Case $1 p \mid z-1$. If $5 \mid z-1$, then $5 \nmid z+1$ and we conclude that $p 5^{y}=z-1<z+1=1$ which is impossible. Thus

$$
z=5^{y}-1 \text { and } p=5^{y}-2 .
$$

Since $5^{y} \equiv(-1)^{y} \bmod 3$, we obtain that $5^{y}-2$ is divisible by 3 if and only if y is odd. Thus, $y=2 k$ for some $k \in \mathbb{Z}$. As a result, $p=5^{y}-2=5^{2 k}-2=25^{k}-2 \equiv-1 \equiv 23 \bmod 24$. Hence, this case may have infinitely many solutions in the form of $(y, z, p)=\left(y, 5^{y}-1,5^{y}-2\right)$ where y is even and $5^{y}-2$ is a prime number for $y \geq 3$ by Lemma 1 .
Case $2 p \mid z+1$. By the same manner as in Case 1, we obtain that

$$
z=5^{y}+1 \text { and } p=5^{y}+2 .
$$

Moreover, $y=2 k+1$ for some $k \in \mathbb{Z}$, and hence, $p=5^{y}+2=5^{2 k+1}+2=5\left(25^{k}\right)+2 \equiv 5+2 \equiv 7$ $\bmod 24$. Therefore, this case may have infinitely many solutions in the form of $(y, z, p)=\left(y, 5^{y}+1,5^{y}+2\right)$ where y is odd and $5^{y}+2$ is a prime number for $y \geq 3$ by Lemma 1 .

From now on, we consider in case x is greater than zero and y is zero.
Proposition 3. The solution of the equation
$3^{x}+p=z^{2}$
is $(x, z, p) \in A \cup B \cup C$
where $A=\left\{\left.\left(x, 3^{\frac{x}{2}}+1,2\left(3^{\frac{x}{2}}\right)+1\right) \right\rvert\, x\right.$ is even and a prime $\left.2\left(3^{\frac{x}{2}}\right)+1 \equiv 7,19 \bmod 24\right\}$,
$B=\{(x, 4 u+2,24 v+1) \mid x$ is odd and $u, v \in \mathbb{Z}\}$ and $C=\{(x, 4 u, 24 v+13) \mid x$ is odd and $u, v \in \mathbb{Z}\}$.
Proof. Case $1 x$ is even. Then, $x=2 k$ for some $k \in \mathbb{N}$. Moreover, $p=z^{2}-3^{2 k}=\left(z-3^{k}\right)\left(z+3^{k}\right)$. But $z+3^{k} \neq 1$ so that
$z=1+3^{k}$ and $p=2\left(3^{k}\right)+1$.
Hence, $(x, z, p)=\left(x, 3^{\frac{x}{2}}+1,2\left(3^{\frac{x}{2}}\right)+1\right)$ where $2\left(3^{\frac{x}{2}}\right)+1$ is a prime number. Moreover, $p \equiv-1 \bmod 4$ from (2) and $p \equiv 1 \bmod 3$ from (3). By the Chinese remainder theorem, we obtain $p \equiv 7 \bmod 24$ or $p \equiv 19 \bmod 24$. Consequently, this case may have infinitely many solutions in the form of $(x, z, p)=$ $\left(x, 3^{\frac{x}{2}}+1,2\left(3^{\frac{x}{2}}\right)+1\right)$ where x is even and $2\left(3^{\frac{x}{2}}\right)+1$ is a prime number by Lemma 1 .
Case $2 x$ is odd. Then, $x=2 k+1$ for some $k \in \mathbb{N}_{0}$. Now,
$3^{2 k+1}+p=z^{2}$.
Thus, $p=3$ or $p \equiv 1 \bmod 3$.
Subcase $2.1 p=3$. Obviously, $9 \mid 3^{2 k+1}+3$ which is impossible. Hence, there is no solution.

Subcase $2.2 p \equiv 1 \bmod 3$. Then, $p \equiv 1 \bmod 12$ because of $p=z^{2}-3^{2 k+1} \equiv-(-1)^{2 k+1} \equiv 1 \bmod 4$. It implies that $p \equiv 1 \bmod 24$ or $p \equiv 13 \bmod 24$. By Lemma 1 , the prime p may be infinitely many terms satisfying the equation (4). If $p \equiv 1 \bmod 24$, then $p \equiv 1 \bmod 8$ and $z^{2} \equiv 4 \bmod 8$ by (4). Thus, $4 \nmid z$. Since z is even, we have $z=4 u+2$ for some $u \in \mathbb{Z}$. Similarly, if $p \equiv 13 \bmod 24$, then $p \equiv 5 \bmod 8$ and $z^{2} \equiv 0 \bmod 8$, and hence, $z=4 u$ for some $u \in \mathbb{Z}$. Hence, this case may have infinitely many solutions in the form of $(x, z, p)=(x, 4 u+2,24 v+1)$ or $(x, z, p)=(x, 4 u, 24 v+13)$ for some u and $v \in \mathbb{Z}$ by Lemma 1.

Theorem 4. The solutions of this equation

$3^{x}+p 5^{y}=z^{2}$
where p is a prime number not equal to 2 or 5 and x, y and z are nonnegative integers satisfy the following:

1. If $x=0$ and $y=0$, then $(x, y, z, p)=(0,0,2,3)$ is a solution.
2. If $x=0$ and $y>0$, then $(x, y, z, p) \in\{(0,1,4,3),(0,1,6,7),(0,2,24,23)\} \cup A \cup B$
where $A=\left\{\left(0, y, 5^{y}-1,5^{y}-2\right) \mid y\right.$ is even and a prime $5^{y}-2 \equiv 23 \bmod 24$ for $\left.y \geq 3\right\}$ and $B=\left\{\left(0, y, 5^{y}+1,5^{y}+2\right) \mid y\right.$ is odd and a prime $5^{y}+2 \equiv 7 \bmod 24$ for $\left.y \geq 3\right\}$.
3. If $x>0$ and $y=0$, then $(x, y, z, p) \in A \cup B \cup C$ where $A=\left\{\left.\left(x, 0,3^{\frac{x}{2}}+1,2\left(3^{\frac{x}{2}}\right)+1\right) \right\rvert\, x\right.$ is even and a prime $\left.2\left(3^{\frac{x}{2}}\right)+1 \equiv 7,19 \bmod 24\right\}$, $B=\{(x, 0,4 u+2,24 v+1) \mid x$ is odd and $u, v \in \mathbb{Z}\}$ and $C=\{(x, 0,4 u, 24 v+13) \mid x$ is odd and $u, v \in \mathbb{Z}\}$.
4. If $x>0$ and $y>0$, then x is even and $(x, y, z, p) \in A \cup B \cup C \cup D$
where $A=\left\{\left.\left(x, y, 1+3^{\frac{x}{2}}, \frac{2\left(3^{\frac{x}{2}}\right)+1}{5^{y}}\right) \right\rvert\, y\right.$ is even and a prime $\left.\frac{2\left(3^{\frac{x}{2}}\right)+1}{5^{y}} \equiv 7,19 \bmod 24\right\}$,
$B=\left\{\left.\left(x, y, 1+3^{\frac{x}{2}}, \frac{2\left(3^{\frac{x}{2}}\right)+1}{5^{y}}\right) \right\rvert\, y\right.$ is odd and a prime $\left.\frac{2\left(3^{\frac{x}{2}}\right)+1}{5^{y}} \equiv 11,23 \bmod 24\right\}$,
$C=\left\{\left.\left(x, y, 5^{y} \pm 3^{\frac{x}{2}}, 5^{y} \pm 2\left(3^{\frac{x}{2}}\right)\right) \right\rvert\, y\right.$ is even and a prime $\left.5^{y} \pm 2\left(3^{\frac{x}{2}}\right) \equiv 7,19 \bmod 24\right\}$ and $D=\left\{\left.\left(x, y, 5^{y} \pm 3^{\frac{x}{2}}, 5^{y} \pm 2\left(3^{\frac{x}{2}}\right)\right) \right\rvert\, y\right.$ is odd and a prime $\left.5^{y} \pm 2\left(3^{\frac{x}{2}}\right) \equiv 11,23 \bmod 24\right\}$.

Proof. For the other cases, by Proposition 2 and Proposition 3, we obtain the corresponding solution form. It remains to consider in case $x>0$ and $y>0$.
Case $1 p=3$. If $x=1$, then we consider $z^{2}=3+3\left(5^{y}\right)$. It implies that $3+3\left(5^{y}\right) \equiv 3+3 \equiv 2 \bmod 4$. However, $z^{2} \equiv 0 \bmod 4$ leads to a contradiction. If $x>1$, then we consider $z^{2}=3^{x}+3\left(5^{y}\right)$ and conclude that $z=3 r$ for some $r \in \mathbb{Z}$. Then, $5^{y}=3 r^{2}-3^{x-1} \equiv 0 \bmod 3$ which is a contradiction.
Case $2 p>5$. If x is odd, then $3^{x} \equiv 3,7 \bmod 10$ and $p 5^{y} \equiv 5 \bmod 10$. It implies that $z^{2}=3^{x}+p 5^{y} \equiv$ $8,2 \bmod 10$, which contradicts with $z^{2} \equiv 0,4,6 \bmod 10$.
Now, we consider in case x is even. Then, $3^{2 k}+p 5^{y}=z^{2}$ for some $k \in \mathbb{N}$. This implies that
$p 5^{y}=z^{2}-3^{2 k}=\left(z-3^{k}\right)\left(z+3^{k}\right)$.
Subcase $3.1 p \mid z-3^{k}$. Since $z-3^{k} \neq 1$, we get $5 \mid z+3^{k}$ and so $z \equiv-3^{k} \bmod 5$. Beside, $5 \nmid z-3^{k}$ because $z-3^{k} \equiv-2\left(3^{k}\right) \equiv 3^{k+1} \bmod 5$ and $k>0$. It follows that $p=z-3^{k}$ and $5^{y}=z+3^{k}$. Hence, $(x, y, z, p)=\left(x, y, 5^{y}-3^{\frac{x}{2}}, 5^{y}-2\left(3^{\frac{x}{2}}\right)\right)$ where $5^{y}-2\left(3^{\frac{x}{2}}\right)$ is a prime number.
Subcase $3.2 p \mid z+3^{k}$ and $z-3^{k}=1$. Then, $(x, y, z, p)=\left(x, y, 1+3^{\frac{x}{2}}, \frac{2\left(3^{\frac{x}{2}}\right)+1}{5^{y}}\right)$ where $\frac{2\left(3^{\frac{x}{2}}\right)+1}{5^{y}}$ is a prime number. Since $p 5^{y}=2\left(3^{k}\right)+1$, we get $p \equiv 2(-1)^{k}+1 \equiv 3 \bmod 4$ and it is clear that

$$
p \equiv \begin{cases}1 & \bmod 6 \text { if } y \text { is even } \\ 5 & \bmod 6 \text { if } y \text { is odd }\end{cases}
$$

Consequently, $p \equiv 7 \bmod 24$ or $p \equiv 19 \bmod 24$ where y is even, and $p \equiv 11 \bmod 24$ or $p \equiv 23 \bmod 24$ where y is odd. By Lemma 1, this case may have infinitely many solutions.
Subcase $3.3 p \mid z+3^{k}$ and $z-3^{k}>1$. By (6), we have $5 \mid z-3^{k}$ and then $z \equiv 3^{k} \bmod 5$. Similarly, since $z+3^{k} \equiv 2\left(3^{k}\right) \not \equiv 0 \bmod 5$, we get $p=z+3^{k}$ and $5^{y}=z-3^{k}$. Hence, $(x, y, z, p)=\left(x, y, 5^{y}+3^{\frac{x}{2}}, 5^{y}+\right.$ $\left.2\left(3^{\frac{x}{2}}\right)\right)$ where $5^{y}+2\left(3^{\frac{x}{2}}\right)$ is a prime number.

Furthermore, from the form of solutions in Subcase 3.1 and 3.3, we focus on the pattern of p :

$$
p=\left\{\begin{array} { l }
{ 5 ^ { y } - 2 (3 ^ { k }) } \\
{ 5 ^ { y } + 2 (3 ^ { k }) }
\end{array} \equiv \left\{\begin{array}{ll}
1-2(-1)^{k} & \bmod 4 \\
1+2(-1)^{k} & \bmod 4
\end{array} \equiv-1 \quad \bmod 4 .\right.\right.
$$

Besides, $p \equiv(-1)^{y} \bmod 3 \equiv\left\{\begin{array}{ll}1 \bmod 3 & \text { if } y \text { is even } \\ -1 \bmod 3 & \text { if } y \text { is odd }\end{array}\right.$. Thus, in the case y is even, $p \equiv 7 \bmod 24$ or $p \equiv 19 \bmod 24$; moreover, in the case y is odd, $p \equiv 11 \bmod 24$ or $p \equiv 23 \bmod 24$. For these results, we conclude that these cases may have infinitely many solutions by Lemma 1.

More preciously in details of the proof of all propositions and the theorem, we guarantee that $3^{x}+$ $p 5^{y}=z^{2}$ has the solution if p must be in the form $24 n+l$ where l is a positive remainder and $\operatorname{gcd}(24, l)=1$ except $l=5,17$. This completes the proof of the following corollary.

Corollary 5. 1. If $p \equiv 5 \bmod 24$ or $p \equiv 17 \bmod 24$, then the equation (5) has no nonnegative integer solution.
2. For any remainder l modulo 24 with a coprime of 24 except 5 and 17 , there exists $p \equiv l \bmod 24$ which the equation (5) has a nonnegative integer solution.

Example 1. In order to understand deeply Corollary 5, some equations having no nonnegative integer solution are provided: $3^{x}+17\left(5^{y}\right)=z^{2}, 3^{x}+29\left(5^{y}\right)=z^{2}, 3^{x}+41\left(5^{y}\right)=z^{2}$ and $3^{x}+53\left(5^{y}\right)=z^{2}$.

Appendices

This section is provided to advocate the existence of infinite primes of the form in Theorem 4. The following tables show some solutions satisfying the above patterns and guaranteeing these p 's being prime numbers by using Python codes.

Remark. Solutions in case $x=0$ and $y>0$ satisfy the condition of A and B in Theorem 4 (2.). The following y satisfies this pattern and makes its p to be a prime number for $y \leq 20000$, that is, $\mathbf{1 4}, \mathbf{2 6}, \mathbf{5 0}, 126,144$, $260,624,1424,10472,19784$ for the set A, and $\mathbf{3}, \mathbf{1 7}, \mathbf{1 4 3}, 261,551,2285,18731,18995,19751$ for another set. The solutions for a specific y are given in Table 1 and Table 2, respectively.

Table 1 Some solutions in case $x=0$ and $y>0$ which satisfying the condition of A in Theorem 4 (2.).

x	y	z	p
0	$\mathbf{1 4}$	6103515624	6103515623
0	$\mathbf{2 6}$	1490116119384765624	1490116119384765623
0	$\mathbf{5 0}$	88817841970012	88817841970012
		523233890533447265624	523233890533447265623

Table 2 Some solutions in case $x=0$ and $y>0$ which satisfying the condition of B in Theorem 4 (2.).

| x | y | z | p | |
| :---: | :---: | :--- | :--- | :--- | :--- |
| 0 | $\mathbf{3}$ | 126 | 127 | 762939453127 |
| 0 | $\mathbf{1 7}$ | 762939453126 | 8968310171678829253911 | |
| 0 | $\mathbf{1 4 3}$ | 8968310171678829253911 | 869333055463240193676428 | |
| | | 869333055463240193676428 | 009700939245237016894662929 | |
| | | 009700939245237016894662929 | | |
| | | 189507849514484405517578126 | 189507849514484405517578127 | |

Remark. Solutions in case $x>0$ and $y=0$ satisfy the condition of A in Theorem 4 (3.). The following x satisfies this pattern and makes its p to be a prime number for $x \leq 20000$, that is, $2,4,8, \mathbf{1 0}, 12, \mathbf{1 8}, 32, \mathbf{3 4}, 60$, $108,114,120,130,264,360,640,1392,1564,1644,1794,2504,2908,8434,10960,12450,15684$. The solutions for a specific x are given in Table 3.

Solutions in case $x>0$ and $y=0$ satisfy the condition of B in Theorem 4 (3.). The following x and z satisfy this pattern and make their p to be a prime number for $x \leq 13$ and $z \leq 2000$, for example, if $x=\mathbf{1}$, then z can be $14, \mathbf{1 1 0}, 586,626,878,934,998,1450,1786, \mathbf{1 9 7 8}$ etc. If $x=\mathbf{3}$, then z can be $10,22,34,50,206,346,578,614, \mathbf{7 0 6}, 842,958, \mathbf{1 9 2 2}$ etc. If $x=\mathbf{5}$, then z can be $22,38,46,58,422$, $\mathbf{5 0 2}, 658,710,994, \mathbf{1 8 8 6}$ etc. If $x=\mathbf{7}$, then z can be $50,62,70,86,98,106,242, \mathbf{4 2 2}, 650,974, \mathbf{1 9 7 0}$ etc. The solutions for a specific z are given in Table 4.

Solutions in case $x>0$ and $y=0$ satisfy the condition of C in Theorem 4 (3.). The following x and z satisfy this pattern and make their p to be a prime number for $x \leq 13$ and $z \leq 2000$, for example, if $x=\mathbf{1}$, then z can be $\mathbf{4}, 8,80,92,112,296, \mathbf{3 4 0}, 580,764,884$ etc. If $x=\mathbf{3}$, then z can be $8,32,52,56,68,112, \mathbf{3 8 8}, 592,760,992, \mathbf{1 9 0 0}$ etc. If $x=\mathbf{5}$, then z can be $16,20,28,44,64,92,356,440$, $688, \mathbf{9 8 8}, \mathbf{1 9 7 6}$ etc. If $x=\mathbf{7}$, then z can be $68,88,92,104,112,232,572,736, \mathbf{9 8 8}, 1000, \mathbf{1 9 4 0}$ etc. The solutions for a specific z are given in Table 5 .

Table 3 Some solutions in case $x>0$ and $y=0$ which satisfying the condition of A in Theorem 4 (3.).

x	y	z	p
$\mathbf{1 0}$	0	244	487
$\mathbf{1 8}$	0	19684	39367
$\mathbf{3 4}$	0	129140164	$258 \quad 280327$

Table 4 Some solutions in case $x>0$ and $y=0$ which satisfying the condition of B in Theorem 4 (3.).

x	y	z	p
1	0	$\mathbf{1 1 0}$	12097
1	0	$\mathbf{1 9 7 8}$	3912481
3	0	$\mathbf{7 0 6}$	498409
3	0	$\mathbf{1 9 2 2}$	3694057
5	0	$\mathbf{5 0 2}$	251761
5	0	$\mathbf{1 8 8 6}$	3556753
7	0	$\mathbf{4 2 2}$	175897
7	0	$\mathbf{1 9 7 0}$	3878713

Table 5 Some solutions in case $x>0$ and $y=0$ which satisfying the condition of C in Theorem 4 (3.).

x	y	z	p
1	0	$\mathbf{4}$	13
1	0	$\mathbf{3 4 0}$	115597
3	0	$\mathbf{3 8 8}$	150517
3	0	$\mathbf{1 9 0 0}$	3609973
5	0	$\mathbf{9 8 8}$	975901
5	0	$\mathbf{1 9 7 6}$	3904333
7	0	$\mathbf{9 8 8}$	973957
7	0	$\mathbf{1 9 4 0}$	3761413

Remark. Solutions in case $x>0$ and $y>0$ satisfy the condition of A and B, respectively in Theorem 4 (4.). The following x satisfies this pattern and makes its p to be a prime number for $x \leq 42000$, that is, $\mathbf{6}, \mathbf{1 4}, \mathbf{3 0}, \mathbf{1 1 8}, 142,198,390,550,3478,4510,6150$. The solutions for a specific x are given in Table $\mathbf{6}$.

Solutions in case $x>0$ and $y>0$ satisfy the condition of C and D, respectively in Theorem 4 (4.). The following x and y satisfy this pattern and make their p to be a prime number in the form $p=5^{y}+2\left(3^{\frac{x}{2}}\right)$ for $x \leq 50$ and $y \leq 3000$, for example, if $x=\mathbf{2}$, then y can be $1,2,3,4, \mathbf{1 3}, 88,177,297,310,562,892$ etc. If $x=\mathbf{6}$, then y can be $1,3,7,14, \mathbf{1 8}, 27,86,162,179,224$ etc. If $x=\mathbf{1 2}$, then y can be $2,5, \mathbf{1 4}, 18,34,62,72$, $112,335,435$ etc. If $x=\mathbf{2 0}$, then y can be $6, \mathbf{1 7}, 26,43,72,97,162,295,775$ etc. The solutions for a specific y are given in Table 7 .

Moreover, the following x and y satisfy this pattern and make their p to be a prime number in the form $p=5^{y}-2\left(3^{\frac{x}{2}}\right)$ for $x \leq 50$ and $y \leq 3000$, for example, if $x=\mathbf{4}$, then y can be $2,3,4, \mathbf{1 5}, 31,75,127,203$, $358,599,939$ etc. If $x=\mathbf{6}$, then y can be $3,4, \mathbf{1 2}, 21,22,40,81$ etc. If $x=\mathbf{1 2}$, then y can be $5, \mathbf{8}, 17,104$, $139,373,481,839,907$ etc. If $x=\mathbf{2 0}$, then y can be $9,10,14, \mathbf{1 9}, 53,59,75,110,161,164,429,501,703$ etc. The solutions for a specific y are given in Table 8.

Table 6 Some solutions in case $x>0$ and $y>0$ which satisfying the condition of A and B, respectively in Theorem 4 (4.).

x	y	z		
$\mathbf{1 4}$	4	2188	7	
$\mathbf{6}$	1	28	11	5
$\mathbf{3 0}$	1	14348908	5739563	
$\mathbf{1 1 8}$	1	14130386091738734504764811068	5652154436695493801905924427	

Table 7 Some solutions in case $x>0, y>0$ and $p=5^{y}+2\left(3^{\frac{x}{2}}\right)$ which satisfying the condition of C and D, respectively in Theorem 4 (4.).

x	y	z	$p=5^{y}+2\left(3^{\frac{x}{2}}\right)$
6	$\mathbf{1 8}$	3814697265652	3814697265679
12	$\mathbf{1 4}$	6103516354	6103517083
2	$\mathbf{1 3}$	1220703128	1220703131
20	$\mathbf{1 7}$	762939512174	762939571223

Table 8 Some solutions in case $x>0, y>0$ and $p=5^{y}-2\left(3^{\frac{x}{2}}\right)$ which satisfying the condition of C and D, respectively in Theorem 4 (4.).

x	y	z	$p=5^{y}-2\left(3^{\frac{x}{2}}\right)$
6	$\mathbf{1 2}$	244140598	244140571
12	$\mathbf{8}$	389896	389167
4	$\mathbf{1 5}$	30517578116	30517578107
20	$\mathbf{1 9}$	19073486269076	19073486210027

Acknowledgements

We would like to express our appreciation to Janyarak Tongsomporn, Tararat Ninrata and Kanokwan Burimas for their hearty support. The proof of our results were improved due to the referee's valuable comments and suggestions. Besides, we would like to thank Walailak University for the financial support (Grant no. WU62225).

References

[1] P Mihailescu. Primary cycolotomic units and a proof of Catalan's conjecture. J. Reine Angew. Math. 2004; 27, 167-95.
[2] D Acu. On a Diophantine equation $2^{x}+5^{y}=z^{2}$. Gen. Math. 2007; 15, 145-8.
[3] A Suvarnamani. Solutions of the Diophantine equation $2^{x}+p^{y}=z^{2}$. Int. J. Math. Sci. Appl. 2011; 1, 1415-9.
[4] B Sroysang. On the Diophantine equation $3^{x}+5^{y}=z^{2}$. Int. J. Pure Appl. Math. 2012; 81, 605-8.
[5] T Ninrata. 2013, On the Diophantine equation $3^{x}+2\left(5^{y}\right)=z^{2}$, Bachelor's project. Thaksin University, Thailand.
[6] B Sroysang. More on the Diophantine equation $2^{x}+3^{y}=z^{2}$. Int. J. Pure Appl. Math. 2013; 84, 133-7.
[7] BJ Bacani and JFT Rabago. On the Diophantine equation $3^{x}+5^{y}+7^{z}=w^{2}$. Konuralp J. Math. 2014; 2, 64-9.
[8] PT Bateman and ME Low. Prime numbers in arithmetic progressions with difference 24. Am. Math. Monthly 1965; 72, 139-43.

[^0]: \dagger Presented at the International Conference in Number Theory and Applications 2018: December $13^{\text {th }}-15^{\text {th }}, 2018$

