WALAILAK JOURNAL

http://wjst.wu.ac.th

On the Diophantine Equation $3^x + p5^y = z^2$ [†]

Kittipong LAIPAPORN, Saeree WANANIYAKUL and Prathomjit KHACHORNCHAROENKUL*

School of Science, Walailak University, Nakhon Si Thammarat 80160 Thailand

(*Corresponding author's e-mail: prathomjit@gmail.com)

Received: 30 November 2018, Revised: 11 February 2019, Accepted: 28 February 2019

Abstract

In this paper, we present new series of solutions of the Diophantine equation $3^x + p5^y = z^2$ where p is a prime number and x, y and z are nonnegative integers using elementary techniques. Moreover, the equation has no solution if p is equivalent to 5 or 7 modulo 24.

Keywords: Exponential Diophantine equation, Catalan's conjecture

Mathematics Subject Classification: 11D61

Introduction

In 2004, Catalan's conjecture was exhibited by Mihailescu [1]. During the past fifteen years, many researchers have studied the Diophantine equation of the form $a^x + b^y = z^2$ by considering a and b. In 2007, Acu [2] showed that (3, 0, 3) and (2, 1, 3) are the only two solutions (x, y, z) satisfying the equation $2^x + 5^y = z^2$. In 2011, Suvarnamani [3] considered in the form $2^x + p^y = z^2$ and found that solutions of this equation according to value of p for example, (3, 0, 3) is a solution for p > 2, besides, (4, 2, 5) is another solution to the equation for p = 3. If p = 2, the solutions consist of three types. In 2012, Sroysang [4] found that (1, 0, 2) is the unique solution to the equation $3^x + 5^y = z^2$. In 2013, Ninrata [5] showed that there is no nonnegative solution to the modified Sroysang's equation as 5^y is added. In the same year, Sroysang [6] extended Suvarnamani's result in case p = 3 that (0, 1, 2), (3, 0, 3) and (4, 2, 5) are the only three solutions satisfying the equation $2^x + 3^y = z^2$. In 2014, Bacani and Rabago [7] generalized the Diophantine equation as $3^x + 5^y + 7^z = w^2$ and showed that (0, 0, 1, 3), (1, 1, 0, 3) and (3, 1, 2, 9) are the only three solutions (x, y, z, w) satisfying this equation.

In this paper, we consider the Diophantine equation in the particular form of

$$3^x + p5^y = z^2$$

where p is a prime number not equal to 2 or 5 and x, y and z are nonnegative integers.

Main Results

First, we begin this section by providing a lemma that is used through our discussion.

Lemma 1. [8] If l is an integer relatively prime to 24, then there are infinitely many primes p such that $p \equiv l \mod 24$.

We consider in case x is zero.

Walailak J Sci & Tech 2019; 16(9): 647–653.

[†]Presented at the International Conference in Number Theory and Applications 2018: December 13th - 15th , 2018

Proposition 2. The solution of the equation

$$1 + p5^y = z^2$$

is $(y, z, p) \in \{(0, 2, 3), (1, 4, 3), (1, 6, 7), (2, 24, 23)\} \cup A \cup B$ where $A = \{(y, 5^y - 1, 5^y - 2) | y \text{ is even and a prime } 5^y - 2 \equiv 23 \mod 24 \text{ for } y \geq 3\}$ and $B = \{(y, 5^y + 1, 5^y + 2) \mid y \text{ is odd and a prime } 5^y + 2 \equiv 7 \mod 24 \text{ for } y \ge 3\}.$

Proof. From (1), we have $p5^y = z^2 - 1 = (z - 1)(z + 1)$. If z - 1 = 1, then y = 0 and p = 3. Hence, (y, z, p) = (0, 2, 3). Now, we attend to the case z - 1 > 1. Clearly, in the case y < 3, the solution of the equation (1) is $(y, z, p) \in \{(1, 4, 3), (1, 6, 7), (2, 24, 23)\}$. We consider in the case $y \ge 3$. **Case 1** p|z-1. If 5|z-1, then $5 \nmid z+1$ and we conclude that $p5^y = z-1 < z+1 = 1$ which is impossible. Thus

$$z = 5^{y} - 1$$
 and $p = 5^{y} - 2$

Since $5^y \equiv (-1)^y \mod 3$, we obtain that $5^y - 2$ is divisible by 3 if and only if y is odd. Thus, y = 2k for some $k \in \mathbb{Z}$. As a result, $p = 5^y - 2 = 5^{2k} - 2 = 25^k - 2 \equiv -1 \equiv 23 \mod 24$. Hence, this case may have infinitely many solutions in the form of $(y, z, p) = (y, 5^y - 1, 5^y - 2)$ where y is even and $5^y - 2$ is a prime number for $y \ge 3$ by Lemma 1.

Case 2 p|z + 1. By the same manner as in Case 1, we obtain that

 $z = 5^y + 1$ and $p = 5^y + 2$.

Moreover, y = 2k + 1 for some $k \in \mathbb{Z}$, and hence, $p = 5^y + 2 = 5^{2k+1} + 2 = 5(25^k) + 2 \equiv 5 + 2 \equiv 7$ mod 24. Therefore, this case may have infinitely many solutions in the form of $(y, z, p) = (y, 5^y + 1, 5^y + 2)$ where y is odd and $5^y + 2$ is a prime number for $y \ge 3$ by Lemma 1.

From now on, we consider in case x is greater than zero and y is zero.

Proposition 3. The solution of the equation

$$3^x + p = z^2$$

is $(x, z, p) \in A \cup B \cup C$ where $A = \{(x, 3^{\frac{x}{2}} + 1, 2(3^{\frac{x}{2}}) + 1) \mid x \text{ is even and a prime } 2(3^{\frac{x}{2}}) + 1 \equiv 7, 19 \mod 24\},\$ $B = \{(x, 4u + 2, 24v + 1) \mid x \text{ is odd and } u, v \in \mathbb{Z}\} \text{ and } C = \{(x, 4u, 24v + 13) \mid x \text{ is odd and } u, v \in \mathbb{Z}\}.$

Proof. Case 1 x is even. Then, x = 2k for some $k \in \mathbb{N}$. Moreover, $p = z^2 - 3^{2k} = (z - 3^k)(z + 3^k)$. But $z + 3^k \neq 1$ so that

$$z = 1 + 3^k$$
 and $p = 2(3^k) + 1$.

Hence, $(x, z, p) = (x, 3^{\frac{x}{2}} + 1, 2(3^{\frac{x}{2}}) + 1)$ where $2(3^{\frac{x}{2}}) + 1$ is a prime number. Moreover, $p \equiv -1 \mod 4$ from (2) and $p \equiv 1 \mod 3$ from (3). By the Chinese remainder theorem, we obtain $p \equiv 7 \mod 24$ or $p \equiv 19 \mod 24$. Consequently, this case may have infinitely many solutions in the form of (x, z, p) = $(x, 3^{\frac{x}{2}} + 1, 2(3^{\frac{x}{2}}) + 1)$ where x is even and $2(3^{\frac{x}{2}}) + 1$ is a prime number by Lemma 1. **Case 2** x is odd. Then, x = 2k + 1 for some $k \in \mathbb{N}_0$. Now,

$$3^{2k+1} + p = z^2.$$

Thus, p = 3 or $p \equiv 1 \mod 3$. Subcase 2.1 p = 3. Obviously, $9|3^{2k+1} + 3$ which is impossible. Hence, there is no solution.

Walailak J Sci & Tech 2019; 16(9)

(2)

(3)

(4)

648

<u>Subcase 2.2</u> $p \equiv 1 \mod 3$. Then, $p \equiv 1 \mod 12$ because of $p = z^2 - 3^{2k+1} \equiv -(-1)^{2k+1} \equiv 1 \mod 4$. It implies that $p \equiv 1 \mod 24$ or $p \equiv 13 \mod 24$. By Lemma 1, the prime p may be infinitely many terms satisfying the equation (4). If $p \equiv 1 \mod 24$, then $p \equiv 1 \mod 8$ and $z^2 \equiv 4 \mod 8$ by (4). Thus, $4 \nmid z$. Since z is even, we have z = 4u + 2 for some $u \in \mathbb{Z}$. Similarly, if $p \equiv 13 \mod 24$, then $p \equiv 5 \mod 8$ and $z^2 \equiv 0 \mod 8$, and hence, z = 4u for some $u \in \mathbb{Z}$. Hence, this case may have infinitely many solutions in the form of (x, z, p) = (x, 4u + 2, 24v + 1) or (x, z, p) = (x, 4u, 24v + 13) for some u and $v \in \mathbb{Z}$ by Lemma 1.

Theorem 4. The solutions of this equation

$$3^x + p5^y = z^2 (5)$$

where p is a prime number not equal to 2 or 5 and x, y and z are nonnegative integers satisfy the following:

- 1. If x = 0 and y = 0, then (x, y, z, p) = (0, 0, 2, 3) is a solution.
- 2. If x = 0 and y > 0, then $(x, y, z, p) \in \{(0, 1, 4, 3), (0, 1, 6, 7), (0, 2, 24, 23)\} \cup A \cup B$ where $A = \{(0, y, 5^y - 1, 5^y - 2) | y \text{ is even and a prime } 5^y - 2 \equiv 23 \mod 24 \text{ for } y \geq 3\}$ and $B = \{(0, y, 5^y + 1, 5^y + 2) | y \text{ is odd and a prime } 5^y + 2 \equiv 7 \mod 24 \text{ for } y \geq 3\}.$
- 3. If x > 0 and y = 0, then $(x, y, z, p) \in A \cup B \cup C$ where $A = \{(x, 0, 3^{\frac{x}{2}} + 1, 2(3^{\frac{x}{2}}) + 1) \mid x \text{ is even and a prime } 2(3^{\frac{x}{2}}) + 1 \equiv 7, 19 \mod 24\}$, $B = \{(x, 0, 4u + 2, 24v + 1) \mid x \text{ is odd and } u, v \in \mathbb{Z}\}$ and $C = \{(x, 0, 4u, 24v + 13) \mid x \text{ is odd and } u, v \in \mathbb{Z}\}$.
- $\begin{array}{l} \text{4. If } x > 0 \text{ and } y > 0, \text{ then } x \text{ is even and } (x,y,z,p) \in A \cup B \cup C \cup D \\ \text{ where } A = \{(x,y,1+3^{\frac{x}{2}},\frac{2(3^{\frac{x}{2}})+1}{5^{y}}) \mid y \text{ is even and a prime } \frac{2(3^{\frac{x}{2}})+1}{5^{y}} \equiv 7,19 \mod 24\}, \\ B = \{(x,y,1+3^{\frac{x}{2}},\frac{2(3^{\frac{x}{2}})+1}{5^{y}}) \mid y \text{ is odd and a prime } \frac{2(3^{\frac{x}{2}})+1}{5^{y}} \equiv 11,23 \mod 24\}, \\ C = \{(x,y,5^{y}\pm3^{\frac{x}{2}},5^{y}\pm2(3^{\frac{x}{2}})) \mid y \text{ is even and a prime } 5^{y}\pm2(3^{\frac{x}{2}}) \equiv 7,19 \mod 24\} \text{ and } \\ D = \{(x,y,5^{y}\pm3^{\frac{x}{2}},5^{y}\pm2(3^{\frac{x}{2}})) \mid y \text{ is odd and a prime } 5^{y}\pm2(3^{\frac{x}{2}}) \equiv 11,23 \mod 24\}. \end{array}$

Proof. For the other cases, by Proposition 2 and Proposition 3, we obtain the corresponding solution form. It remains to consider in case x > 0 and y > 0.

Case 1 p = 3. If x = 1, then we consider $z^2 = 3 + 3(5^y)$. It implies that $3 + 3(5^y) \equiv 3 + 3 \equiv 2 \mod 4$. However, $z^2 \equiv 0 \mod 4$ leads to a contradiction. If x > 1, then we consider $z^2 = 3^x + 3(5^y)$ and conclude that z = 3r for some $r \in \mathbb{Z}$. Then, $5^y = 3r^2 - 3^{x-1} \equiv 0 \mod 3$ which is a contradiction.

Case 2 p > 5. If x is odd, then $3^x \equiv 3,7 \mod 10$ and $p5^y \equiv 5 \mod 10$. It implies that $z^2 = 3^x + p5^y \equiv 8,2 \mod 10$, which contradicts with $z^2 \equiv 0,4,6 \mod 10$.

Now, we consider in case x is even. Then, $3^{2k} + p5^y = z^2$ for some $k \in \mathbb{N}$. This implies that

$$p5^y = z^2 - 3^{2k} = (z - 3^k)(z + 3^k).$$
(6)

Subcase 3.1 $p|z-3^k$. Since $z-3^k \neq 1$, we get $5|z+3^k$ and so $z \equiv -3^k \mod 5$. Beside, $5 \nmid z-3^k$ because $z-3^k \equiv -2(3^k) \equiv 3^{k+1} \mod 5$ and k > 0. It follows that $p = z-3^k$ and $5^y = z+3^k$. Hence, $(x, y, z, p) = (x, y, 5^y - 3^{\frac{x}{2}}, 5^y - 2(3^{\frac{x}{2}}))$ where $5^y - 2(3^{\frac{x}{2}})$ is a prime number.

Subcase 3.2 $p|z+3^k$ and $z-3^k = 1$. Then, $(x, y, z, p) = (x, y, 1+3^{\frac{x}{2}}, \frac{2(3^{\frac{x}{2}})+1}{5^y})$ where $\frac{2(3^{\frac{x}{2}})+1}{5^y}$ is a prime number. Since $p5^y = 2(3^k) + 1$, we get $p \equiv 2(-1)^k + 1 \equiv 3 \mod 4$ and it is clear that

$$p \equiv \begin{cases} 1 \mod 6 \text{ if } y \text{ is even} \\ 5 \mod 6 \text{ if } y \text{ is odd} \end{cases}$$

Walailak J Sci & Tech 2019; 16(9)

649

Consequently, $p \equiv 7 \mod 24$ or $p \equiv 19 \mod 24$ where y is even, and $p \equiv 11 \mod 24$ or $p \equiv 23 \mod 24$ where y is odd. By Lemma 1, this case may have infinitely many solutions.

Subcase 3.3 $p|z+3^k$ and $z-3^k > 1$. By (6), we have $5|z-3^k$ and then $z \equiv 3^k \mod 5$. Similarly, since $z+3^k \equiv 2(3^k) \neq 0 \mod 5$, we get $p=z+3^k$ and $5^y=z-3^k$. Hence, $(x,y,z,p)=(x,y,5^y+3^{\frac{x}{2}},5^y+2(3^{\frac{x}{2}}))$ where $5^y+2(3^{\frac{x}{2}})$ is a prime number.

Furthermore, from the form of solutions in Subcase 3.1 and 3.3, we focus on the pattern of p:

$$p = \begin{cases} 5^y - 2(3^k) \\ 5^y + 2(3^k) \end{cases} \equiv \begin{cases} 1 - 2(-1)^k \mod 4 \\ 1 + 2(-1)^k \mod 4 \end{cases} \equiv -1 \mod 4.$$

Besides, $p \equiv (-1)^y \mod 3 \equiv \begin{cases} 1 \mod 3 & \text{if } y \text{ is even} \\ -1 \mod 3 & \text{if } y \text{ is odd} \end{cases}$. Thus, in the case y is even, $p \equiv 7 \mod 24$ or $p \equiv 19 \mod 24$; moreover, in the case y is odd, $p \equiv 11 \mod 24$ or $p \equiv 23 \mod 24$. For these results, we conclude that these cases may have infinitely many solutions by Lemma 1.

More preciously in details of the proof of all propositions and the theorem, we guarantee that $3^x + p5^y = z^2$ has the solution if p must be in the form 24n + l where l is a positive remainder and gcd(24, l) = 1 except l = 5, 17. This completes the proof of the following corollary.

Corollary 5. *1.* If $p \equiv 5 \mod 24$ or $p \equiv 17 \mod 24$, then the equation (5) has no nonnegative integer solution.

2. For any remainder l modulo 24 with a coprime of 24 except 5 and 17, there exists $p \equiv l \mod 24$ which the equation (5) has a nonnegative integer solution.

Example 1. In order to understand deeply Corollary 5, some equations having no nonnegative integer solution are provided: $3^x + 17(5^y) = z^2$, $3^x + 29(5^y) = z^2$, $3^x + 41(5^y) = z^2$ and $3^x + 53(5^y) = z^2$.

Appendices

This section is provided to advocate the existence of infinite primes of the form in Theorem 4. The following tables show some solutions satisfying the above patterns and guaranteeing these p's being prime numbers by using Python codes.

Remark. Solutions in case x = 0 and y > 0 satisfy the condition of A and B in Theorem 4 (2.). The following y satisfies this pattern and makes its p to be a prime number for $y \le 20000$, that is, **14**, **26**, **50**, 126, 144, 260, 624, 1424, 10472, 19784 for the set A, and **3**, **17**, **143**, 261, 551, 2285, 18731, 18995, 19751 for another set. The solutions for a specific y are given in **Table 1** and **Table 2**, respectively.

Table 1 Some solutions in case x = 0 and y > 0 which satisfying the condition of A in Theorem 4 (2.).

x	y	2	p
0	14	6 103 515 624	6 103 515 623
0	26	1 490 116 119 384 765 624	1 490 116 119 384 765 623
0	50	88 817 841 970 012	88 817 841 970 012
		523 233 890 533 447 265 624	523 233 890 533 447 265 623

\overline{x}	y	2	<i>p</i>
0	3	126	127
0	17	762 939 453 126	762 939 453 127
0	143	8 968 310 171 678 829 253 911	8 968 310 171 678 829 253 911
		869 333 055 463 240 193 676 428	869 333 055 463 240 193 676 428
		009 700 939 245 237 016 894 662 929	009 700 939 245 237 016 894 662 929
		189 507 849 514 484 405 517 578 126	189 507 849 514 484 405 517 578 127

Table 2 Some solutions in case x = 0 and y > 0 which satisfying the condition of B in Theorem 4 (2.).

Remark. Solutions in case x > 0 and y = 0 satisfy the condition of A in Theorem 4 (3.). The following x satisfies this pattern and makes its p to be a prime number for $x \le 20000$, that is, 2, 4, 8, **10**, 12, **18**, 32, **34**, 60, 108, 114, 120, 130, 264, 360, 640, 1392, 1564, 1644, 1794, 2504, 2908, 8434, 10960, 12450, 15684. The solutions for a specific x are given in **Table 3**.

Solutions in case x > 0 and y = 0 satisfy the condition of B in Theorem 4 (3.). The following x and z satisfy this pattern and make their p to be a prime number for $x \le 13$ and $z \le 2000$, for example, if x = 1, then z can be 14, 110, 586, 626, 878, 934, 998, 1450, 1786, 1978 etc. If x = 3, then z can be 10, 22, 34, 50, 206, 346, 578, 614, 706, 842, 958, 1922 etc. If x = 5, then z can be 22, 38, 46, 58, 422, 502, 658, 710, 994, 1886 etc. If x = 7, then z can be 50, 62, 70, 86, 98, 106, 242, 422, 650, 974, 1970 etc. The solutions for a specific z are given in Table 4.

Solutions in case x > 0 and y = 0 satisfy the condition of C in Theorem 4 (3.). The following x and z satisfy this pattern and make their p to be a prime number for $x \le 13$ and $z \le 2000$, for example, if x = 1, then z can be 4, 8, 80, 92, 112, 296, 340, 580, 764, 884 etc. If x = 3, then z can be 8, 32, 52, 56, 68, 112, 388, 592, 760, 992, 1900 etc. If x = 5, then z can be 16, 20, 28, 44, 64, 92, 356, 440, 688, 988, 1976 etc. If x = 7, then z can be 68, 88, 92, 104, 112, 232, 572, 736, 988, 1000, 1940 etc. The solutions for a specific z are given in Table 5.

Table 3 Some solutions in case x > 0 and y = 0 which satisfying the condition of A in Theorem 4 (3.).

\overline{x}	y	z	<i>p</i>
10	0	244	487
18	0	19 684	39 367
34	0	129 140 164	258 280 327

Table 4 Some solutions in case x > 0 and y = 0 which satisfying the condition of B in Theorem 4 (3.).

x	y	z	p
1	0	110	12 097
1	0	1978	3 912 481
3	0	706	498 409
3	0	1922	3 694 057
5	0	502	251 761
5	0	1886	3 556 753
7	0	422	175 897
7	0	1970	3 878 713

Walailak J Sci & Tech 2019; 16(9)

x	y	z	p
1	0	4	13
1	0	340	115 597
3	0	388	150 517
3	0	1900	3 609 973
5	0	988	975 901
5	0	1976	3 904 333
7	0	988	973 957
7	0	1940	3 761 413

Table 5 Some solutions in case x > 0 and y = 0 which satisfying the condition of C in Theorem 4 (3.).

Remark. Solutions in case x > 0 and y > 0 satisfy the condition of A and B, respectively in Theorem 4 (4.). The following x satisfies this pattern and makes its p to be a prime number for $x \le 42000$, that is, **6**, **14**, **30**, **118**, 142, 198, 390, 550, 3478, 4510, 6150. The solutions for a specific x are given in Table 6.

Solutions in case x > 0 and y > 0 satisfy the condition of C and D, respectively in Theorem 4 (4.). The following x and y satisfy this pattern and make their p to be a prime number in the form $p = 5^y + 2(3^{\frac{x}{2}})$ for $x \le 50$ and $y \le 3000$, for example, if x = 2, then y can be 1, 2, 3, 4, 13, 88, 177, 297, 310, 562, 892 etc. If x = 6, then y can be 1, 3, 7, 14, 18, 27, 86, 162, 179, 224 etc. If x = 12, then y can be 2, 5, 14, 18, 34, 62, 72, 112, 335, 435 etc. If x = 20, then y can be 6, 17, 26, 43, 72, 97, 162, 295, 775 etc. The solutions for a specific y are given in Table 7.

Moreover, the following x and y satisfy this pattern and make their p to be a prime number in the form $p = 5^y - 2(3^{\frac{x}{2}})$ for $x \le 50$ and $y \le 3000$, for example, if x = 4, then y can be 2, 3, 4, **15**, 31, 75, 127, 203, 358, 599, 939 etc. If x = 6, then y can be 3, 4, **12**, 21, 22, 40, 81 etc. If x = 12, then y can be 5, **8**, 17, 104, 139, 373, 481, 839, 907 etc. If x = 20, then y can be 9, 10, 14, **19**, 53, 59, 75, 110, 161, 164, 429, 501, 703 etc. The solutions for a specific y are given in **Table 8**.

Table 6 Some solutions in case x > 0 and y > 0 which satisfying the condition of A and B, respectively in Theorem 4 (4.).

x	y	z	p
14	4	2188	7
6	1	28	11
30	1	14 348 908	5 739 563
118	1	14 130 386 091 738 734 504 764 811 068	5 652 154 436 695 493 801 905 924 427

Table 7 Some solutions in case x > 0, y > 0 and $p = 5^y + 2(3^{\frac{x}{2}})$ which satisfying the condition of C and D, respectively in Theorem 4 (4.).

\overline{x}	y	z	$p = 5^y + 2(3^{\frac{x}{2}})$
6	18	3 814 697 265 652	3 814 697 265 679
12	14	6 103 516 354	6 103 517 083
2	13	1 220 703 128	1 220 703 131
20	17	762 939 512 174	762 939 571 223

Table 8 Some solutions in case x > 0, y > 0 and $p = 5^y - 2(3^{\frac{x}{2}})$ which satisfying the condition of C and D, respectively in Theorem 4 (4.).

\overline{x}	y	2	$p = 5^y - 2(3^{\frac{x}{2}})$
6	12	244 140 598	244 140 571
12	8	389 896	389 167
4	15	30 517 578 116	30 517 578 107
20	19	19 073 486 269 076	19 073 486 210 027

Acknowledgements

We would like to express our appreciation to Janyarak Tongsomporn, Tararat Ninrata and Kanokwan Burimas for their hearty support. The proof of our results were improved due to the referee's valuable comments and suggestions. Besides, we would like to thank Walailak University for the financial support (Grant no. WU62225).

References

- [1] P Mihailescu. Primary cycolotomic units and a proof of Catalan's conjecture. J. Reine Angew. Math. 2004; 27, 167-95.
- [2] D Acu. On a Diophantine equation $2^{x} + 5^{y} = z^{2}$. Gen. Math. 2007; 15, 145-8.
- [3] A Suvarnamani. Solutions of the Diophantine equation $2^x + p^y = z^2$. Int. J. Math. Sci. Appl. 2011; 1, 1415-9.
- [4] B Sroysang. On the Diophantine equation $3^x + 5^y = z^2$. Int. J. Pure Appl. Math. 2012; 81, 605-8.
- [5] T Ninrata. 2013, On the Diophantine equation $3^x + 2(5^y) = z^2$, Bachelor's project. Thaksin University, Thailand.
- [6] B Sroysang. More on the Diophantine equation $2^x + 3^y = z^2$. Int. J. Pure Appl. Math. 2013; 84, 133-7.
- [7] BJ Bacani and JFT Rabago. On the Diophantine equation $3^x + 5^y + 7^z = w^2$. Konuralp J. Math. 2014; 2, 64-9.
- [8] PT Bateman and ME Low. Prime numbers in arithmetic progressions with difference 24. Am. Math. Monthly 1965; 72, 139-43.