Sequences Generated by Polynomials over Integral Domains ${ }^{\dagger}$

Veasna KIM ${ }^{1}$, Vichian LAOHAKOSOL ${ }^{2}$ and Supawadee PRUGSAPITAK ${ }^{1, *}$
${ }^{1}$ Department of Mathematics and Statistics, Prince of Songkla University, Hat Yai 90110 Thailand
${ }^{2}$ Department of Mathematics, Kasetsart University, Bangkok 10900 Thailand

(*Corresponding author’s e-mail: supawadee.p@psu.ac.th)
Received: 30 November 2018, Revised: 19 February 2019, Accepted: 28 February 2019

Abstract

Let D be an integral domain. For sequences $\bar{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $I=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ in D^{n} with distinct i_{j}, call \bar{a} a $\left(D^{n}, I\right)$-polynomial sequence if there exists $f(x) \in D[x]$ such that $f\left(i_{j}\right)=a_{j}(j=$ $1, \ldots, n)$. Criteria for a sequence to be a $\left(D^{n}, I\right)$-polynomial sequence are established and explicit structures of $D^{n} / P_{n, I}$ where $P_{n, I}$ is the set of all $\left(D^{n}, I\right)$-polynomial sequences are determined.

Keywords: Polynomial sequences, sequence over integral domain, interpolation polynomials
Mathematics Subject Classification: 11B83, 11C08, 13G05

Introduction

For a fixed $n \in \mathbb{N}$, by a polynomial sequence (of length n), we mean a sequence $\bar{a}:=\left(a_{1}, a_{2}, \ldots ., a_{n}\right)$ in \mathbb{Z}^{n} for which there exists $f(x) \in \mathbb{Z}[x]$ such that $f(i)=a_{i}$ for all $i=1,2, \ldots, n$; we refer to $f(x)$ as a polynomial which generates the sequence \bar{a}. Denote by P_{n} the set of all polynomial sequences. Cornelius, Jr. and Schultz in [1] characterized P_{n} using Lagrange and (implicitly) Newton interpolation polynomials and determined the structure of \mathbb{Z}^{n} / P_{n}.

The main objectives of this work are first to extend the characterization of Cornelius-Schultz from \mathbb{Z} to an integral domain D and second, to determine their corresponding structure.

Throughout, let $I=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in D^{n}$ with distinct i_{j} and let
$P_{n, I}=\left\{\bar{a}=\left(a_{1}, \ldots, a_{n}\right) \in D^{n} \mid\right.$ there exists $f(x) \in D[x]$ such that $f\left(i_{j}\right)=a_{j}$ for all $\left.1 \leq j \leq n\right\}$
be the set of all $\left(D^{n}, I\right)$-polynomial sequences. It is easy to see that the set $P_{n, I}$ is a group under addition and if $\bar{a} \in P_{n, I}$ then $c \bar{a} \in P_{n, I}$ for any $c \in D$.

Characterization

For a fixed sequence I as above and a sequence $\bar{a}:=\left(a_{1}, \ldots, a_{n}\right) \in D^{n}$, the Lagrange interpolation polynomial, [2, page 33], which interpolates the points $\left(i_{j}, a_{j}\right)(1 \leq j \leq n)$, is defined by
$L_{a, I}(x):=\sum_{j=1}^{n} a_{j} \prod_{m=1, m \neq j}^{n} \frac{x-i_{m}}{i_{j}-i_{m}} \in D_{Q}[x] \quad\left(D_{Q}\right.$ the quotient field of $\left.D\right)$
and satisfies
$L_{a, I}\left(i_{j}\right)=a_{j}(1 \leq j \leq n)$.
${ }^{\dagger}$ Presented at the International Conference in Number Theory and Applications 2018: December $13^{\text {th }}-15^{\text {th }}, 2018$

Theorem 1. Let $I=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in D^{n}$ with distinct i_{j}. Then $\bar{a}=\left(a_{1}, \ldots, a_{n}\right) \in D^{n}$ is a $\left(D^{n}, I\right)$ polynomial sequence if and only if $L_{a, I}(x) \in D[x]_{n}$, the set of all polynomials in $D[x]$ of degree $<n$. Furthermore, $L_{a, I}(x)$ is the unique polynomial of degree $<n$ in $D_{Q}[x]$ that generates \bar{a}.

Proof. If $\bar{a} \in P_{n, I}$, then there is $f(x) \in D[x]$ such that $f\left(i_{j}\right)=a_{j}(1 \leq j \leq n)$. We next let a polynomial $p(x):=\left(x-i_{1}\right) \cdots\left(x-i_{n}\right) \in D[x], \operatorname{deg} p(x)=n$. Since $p(x)$ is monic, by the division algorithm, $f(x)=q(x) p(x)+r(x)$, where $q, r \in D[x]$ with $\operatorname{deg} r<n$. Evaluating at the points $i_{j}(1 \leq j \leq n)$, we see that $r(x)$ generates the sequence \bar{a} which shows that both $r(x)$ and $L_{a, I}(x)$ are polynomials in $D_{Q}[x]$ of degree $<n$ which agree at n distinct points and so both must be identical. The remaining assertions are trivial.

Taking $I=(1,2, \ldots, n)$ in Theorem 1, we recover [1, Theorem 2.1].
Given a set of n points $\left(i_{k}, a_{k}\right)(k=1, \ldots, n)$, with distinct i_{k} and a_{k} being in D, the Newton interpolation polynomial corresponding to the points $\left(i_{k}, a_{k}\right)(k=1, \ldots, n)$ is defined as
$N_{a, I}(x)=b_{0, I}+b_{1, I}\left(x-i_{1}\right)+b_{2, I}\left(x-i_{1}\right)\left(x-i_{2}\right)+\cdots+b_{n-1, I}\left(x-i_{1}\right)\left(x-i_{2}\right) \cdots\left(x-i_{n-1}\right)$,
where $b_{k, I}=\sum_{j=0}^{k} \frac{a_{j+1}}{\prod_{m=1, m \neq j+1}^{k+1}\left(i_{j+1}-i_{m}\right)} \quad(0 \leq k \leq n-1)$. Note that the Newton interpolation polynomial can be obtained by solving the system of equations
$N_{a, I}\left(i_{k}\right)=a_{k} \quad(1 \leq k \leq n)$
which can be done inductively. The elements
$1, p_{i_{1}}:=\left(x-i_{1}\right), p_{i_{2}}:=\left(x-i_{1}\right)\left(x-i_{2}\right), \ldots, p_{i_{n-1}}:=\left(x-i_{1}\right)\left(x-i_{2}\right) \cdots\left(x-i_{n}\right)$
are referred to as the corresponding Newton basis polynomials [2, page 39-40].
Theorem 2. With the above notations, we have
$N_{a, I}(x)=L_{a, I}(x)$.

Proof. By Theorem 1, $L_{a, I}(x)$ is the unique polynomial with coefficients in D_{Q} of degree less than n generating \bar{a}. Since $N_{a, I}\left(i_{j}\right)=a_{j}=L_{a, I}\left(i_{j}\right)$ for $1 \leq j \leq n$ and $\operatorname{deg} N_{a, I}<n$, they are identical.

Corollary 3. Let $\bar{a} \in D^{n}$. Then $\bar{a} \in P_{n, I}$ if and only if
$b_{k, I}=\sum_{j=0}^{k} \frac{a_{j+1}}{\prod_{m=1, m \neq j+1}^{k+1}\left(i_{j+1}-i_{m}\right)} \quad(k=0,1, \ldots, n-1)$
is an element in D.

Proof. The result follows immediately from Theorems 1 and 2.

Taking $I=(1,2,3, \ldots, n)$ in Theorems 1 and 2 , we get the following corollary.

Corollary 4. Let $\bar{a} \in \mathbb{Z}^{n}$.
A) ([1, Lemma 2.2]) If $N_{a}(x)=b_{0} p_{0}(x)+b_{1} p_{1}(x)+\cdots+b_{n-1} p_{n-1}(x), b_{k}=\sum_{j=0}^{k} \frac{(-1)^{k+j}}{j!(k-j)!} a_{j+1}$ $(k=0, \ldots, n-1)$, then
$N_{a}(x)=L_{a}(x)$.
B) ([1, Corollary 2.4]) A sequence \bar{a} is a polynomial sequence if and only if each number
$b_{k}=\sum_{j=0}^{k} \frac{(-1)^{k+j} a_{j+1}}{j!(k-j)!} \quad(k=0,1, \ldots, n-1)$
is an integer.
It is of interest to investigate the above results for small values of n. Thus we obtain the following result.

Lemma 5. With the above notations, the following statements hold:
A) For any $I=\left(i_{1}\right) \in \mathbb{Z}$, we have $P_{1, I}=\mathbb{Z}$.
B) For any $\bar{a}=\left(a_{1}, a_{2}\right), I=\left(i_{1}, i_{2}\right) \in \mathbb{Z}^{2}$ where $i_{1}<i_{2}$, we have

$$
\bar{a} \in P_{2, I} \quad \text { if and only if } \quad a_{1} \equiv a_{2} \quad \bmod \left(i_{1}-i_{2}\right) .
$$

In fact, if $I=(1,2)$, then $P_{2}=\mathbb{Z}^{2}$.
C) For any $\bar{a}=\left(a_{1}, a_{2}, a_{3}\right), I=\left(i_{1}, i_{2}, i_{3}\right) \in \mathbb{Z}^{3}$ where $i_{1}<i_{2}<i_{3}$, we have

$$
\bar{a} \in P_{3, I} \quad \text { if and only if } \quad \frac{\left(a_{3}-a_{2}\right)+m\left(i_{2}-i_{3}\right)}{\left(i_{1}-i_{3}\right)\left(i_{2}-i_{3}\right)} \quad \text { and } \quad m=\frac{a_{1}-a_{2}}{i_{1}-i_{2}} \quad \text { are integers. }
$$

In fact, if $I=(1,2,3)$, then $P_{3}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{Z}^{3} \mid a_{1} \equiv a_{3} \bmod 2\right\}$.
Proof. We prove the above results as follows:
A) For any $a \in \mathbb{Z}$ there exists $f(x)=a$ such that $f\left(i_{1}\right)=a$. Thus $P_{1, I}=\mathbb{Z}$.
B) Let $\bar{a}=\left(a_{1}, a_{2}\right) \in \mathbb{Z}^{2}$. By Corollary $3, \bar{a} \in P_{2, I}$ if and only if $b_{0, I}=a_{1}$ and $b_{1, I}=\frac{a_{1}}{i_{1}-i_{2}}+\frac{a_{2}}{i_{2}-i_{1}}=$ $\frac{a_{1}-a_{2}}{i_{1}-i_{2}}$ are integers. Hence, $\bar{a} \in P_{2, I}$ if and only if $a_{1} \equiv a_{2} \bmod \left(i_{1}-i_{2}\right)$. If $I=(1,2)$, then $i_{1}-i_{2}=1$, and so $P_{2}=\mathbb{Z}^{2}$.
C) Let $\bar{a}=\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{Z}^{3}$. Then
$b_{0, I}=a_{1}$,
$b_{1, I}=\frac{a_{1}}{i_{1}-i_{2}}+\frac{a_{2}}{i_{2}-i_{1}}=\frac{a_{1}-a_{2}}{i_{1}-i_{2}}$,
$b_{2, I}=\frac{a_{1}}{\left(i_{1}-i_{2}\right)\left(i_{1}-i_{3}\right)}+\frac{a_{2}}{\left(i_{2}-i_{1}\right)\left(i_{2}-i_{3}\right)}+\frac{a_{3}}{\left(i_{3}-i_{1}\right)\left(i_{3}-i_{2}\right)}=\frac{\left(a_{3}-a_{2}\right)+m\left(i_{2}-i_{3}\right)}{\left(i_{1}-i_{3}\right)\left(i_{2}-i_{3}\right)}$,
where $\quad m=\frac{a_{1}-a_{2}}{i_{1}-i_{2}}$.
By Corollary $3, \bar{a} \in P_{3, I}$ if and only if $m=\frac{a_{1}-a_{2}}{i_{1}-i_{2}} \in \mathbb{Z}$ and $\frac{\left(a_{3}-a_{2}\right)+m\left(i_{2}-i_{3}\right)}{\left(i_{1}-i_{3}\right)\left(i_{2}-i_{3}\right)}$ are integers. If $I=(1,2,3)$, then $m=\frac{a_{1}-a_{2}}{1-2}=a_{2}-a_{1}$ is an integer. Hence,
$\frac{\left(a_{3}-a_{2}\right)+m(2-3)}{(1-3)(2-3)}=\frac{\left(a_{3}-a_{2}\right)+\left(a_{2}-a_{1}\right)(-1)}{2}=\frac{a_{3}-a_{1}}{2}-a_{2}$
is an integer if and only if $2 \mid a_{3}-a_{1}$. Thus $\bar{a} \in \mathbb{Z}^{3}$ is a polynomial sequence of length 3 if and only if a_{1} and a_{3} are of the same parity.

The next result shows how to turn a sequence into a $\left(D^{n}, I\right)$-polynomial sequence.
Theorem 6. Let $I=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in D^{n}$ with distinct i_{j}, let $\bar{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in D^{n}$ and let
$M=\prod_{j=0}^{n-1} M_{j}, \quad$ where $\quad M_{j}=\prod_{m=1, m \neq j+1}^{n}\left(i_{j+1}-i_{m}\right)(j=0,1,2, \ldots, n-1)$.
Then $M \bar{a}=\left(M a_{1}, M a_{2}, \ldots, M a_{n}\right) \in P_{n, I}$.
Moreover, if D is a unique factorization domain, then $M^{\prime} \bar{a}=\left(M^{\prime} a_{1}, M^{\prime} a_{2}, \ldots, M^{\prime} a_{n}\right) \in P_{n, I}$ where $M^{\prime}=\operatorname{lcm}\left\{M_{j}\right\}_{j=0}^{n-1}$ and M^{\prime} is the minimal element in D for which this is true for every sequence of length n. The element M^{\prime} is the minimal in the sense that if $L \bar{a} \in P_{n, I}$ for all n then $M^{\prime} \mid L$.

Proof. Using the above notation, since
$b_{k, I}=\sum_{j=0}^{k} \frac{a_{j+1}}{\prod_{m \neq j+1, m=1}^{k+1}\left(i_{j+1}-i_{m}\right)}=\sum_{j=0}^{k} \frac{a_{j+1}}{M_{j} / \prod_{m=k+2, m \neq j+1}^{n}\left(i_{j+1}-i_{m}\right)}(0 \leq k \leq n-1)$,
we see that $M b_{k, I} \in \mathbb{Z}$ and so $M \bar{a}$ is a $\left(D^{n}, I\right)$-polynomial sequence.
If D is a unique factorization domain, then letting $M^{\prime}=\operatorname{lcm}\left\{M_{j}\right\}_{j=0}^{n-1}$, it is easy to see that $M^{\prime} b_{k, I}$ is in D.

To see that M^{\prime} is the minimal element with the stated property, consider the following sequences in Table 1.

Table 1 Sequences and its corresponding coefficients in the Newton interpolation polynomial

Sequence \bar{a}	$b_{0, I}$	$b_{1, I}$	$b_{2, I}$	\cdots	$b_{n-1, I}$
$\bar{a}_{1}=(1,0,0, \ldots, 0)$	1	$\frac{1}{i_{1}-i_{2}}$	$\frac{1}{\left(i_{1}-i_{2}\right)\left(i_{1}-i_{3}\right)}$	\cdots	$\frac{1}{\left(i_{1}-i_{2}\right)\left(i_{1}-i_{3}\right) \cdots\left(i_{1}-i_{n}\right)}$
$\bar{a}_{2}=(0,1,0, \ldots, 0)$	0	$\frac{1}{i_{2}-i_{1}}$	$\frac{1}{\left(i_{2}-i_{1}\right)\left(i_{2}-i_{3}\right)}$	\cdots	$\frac{1}{\left(i_{2}-i_{1}\right)\left(i_{2}-i_{3}\right) \cdots\left(i_{2}-i_{n}\right)}$
$\bar{a}_{3}=(0,0,1, \ldots, 0)$	0	0	$\frac{1}{\left(i_{3}-i_{1}\right)\left(i_{3}-i_{2}\right)}$	\cdots	$\frac{\left(i_{3}-i_{1}\right)\left(i_{3}-i_{2}\right)\left(i_{3}-i_{4}\right) \cdots\left(i_{3}-i_{n}\right)}{}$
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
$\bar{a}_{n}=(0,0,0, \ldots, 1)$	0	0	0	\cdots	$\frac{1}{\left(i_{n}-i_{1}\right)\left(i_{n}-i_{2}\right) \cdots\left(i_{n}-i_{n-1}\right)}$

For each $\bar{a}_{i}(1 \leq i \leq n)$, we see that $M_{i-1} \bar{a}_{i} \in P_{n, I}$ and for any element $L \in D$ such that $L \bar{a}_{i} \in P_{n, I}$, we have $M_{i-1} \mid L(1 \leq i \leq n)$. Therefore, by the definition of M^{\prime}, we have $M^{\prime} \mid L$, showing that M^{\prime} is the minimal element such that $M^{\prime} \bar{a} \in P_{n, I}$.

Before proceeding, let us work out two examples.
Example 1. a) Let $D=\mathbb{Z}, \bar{a}=(2,8,12)$ and $I=(5,6,8)$. We see that
$N_{a, I}(x)=-\frac{4}{3} x^{2}+\frac{62}{3} x-68 \notin \mathbb{Z}[x]$.

So $\bar{a} \notin P_{3, I}$ over \mathbb{Z}. Since $M_{0}=3, M_{1}=2$ and $M_{2}=6, M^{\prime}=6$. We deduce that $M^{\prime} \bar{a}=(12,48,72)$ is a polynomial sequence generated by $-8 x^{2}+24 x-408$ with respect to $I=(5,6,8)$ in \mathbb{Z}.
b) Let $\bar{c}=(4-i, 5,6+2 i) \in \mathbb{Z}[i]^{3}$ and $I=(i, 3 i, 2+i) \in \mathbb{Z}[i]^{3}$. We see that
$N_{c, I}(x)=\frac{-9+13 i}{8} x^{2}+(7+4 i) x+\frac{55-51 i}{8} \notin \mathbb{Z}[i][x]$.
So $\bar{c} \notin P_{3, I}$ over $\mathbb{Z}[i]$. Since $M_{0}=-4 i, M_{1}=-4(1+i)$ and $M_{2}=4(1-i), M^{\prime}=8$, we get that $M^{\prime} \bar{c}=(32-8 i, 40,48+16 i)$ is a polynomial sequence generated by $(-3+5 i) x^{2}+(24+8 i) x+(37-27 i)$ with respect to $I=(i, 3 i, 2+i)$ in $\mathbb{Z}[i]$.

If $D=\mathbb{Z}$ and $I=(1,2, \ldots, n)$, then we have the following result which is [1, Theorem 2.5].
Corollary 7. If $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$, then
$(n-1)!a=\left((n-1)!a_{1},(n-1)!a_{2}, \ldots,(n-1)!a_{n}\right) \in P_{n, I}$.
Moreover, $(n-1)$! is the least positive integer for which this is true for every sequence of length n.

Proof. Take $I=(1,2,3, \ldots, n)$. Using the same notation as in Theorem 6, we compute
$M_{j}=\prod_{m=1, m \neq j+1}^{n}(j+1-m)=(-1)^{n-j-1}(j)!(n-j-1)!(0 \leq j \leq n-1)$.
Since $(n-1)!=(j)!(n-j-1)!\binom{n-1}{j}(0 \leq j \leq n-1)$, the integer M_{j} is a divisor of $(n-1)$! for all $0 \leq j \leq n-1$ and $M_{n-1}=(n-1)!$. Hence, $M=\operatorname{lcm}\left(M_{1}, M_{2}, \ldots, M_{n}\right)=(n-1)$!.

Structure

In this section, we show that $P_{n, I}$ is a rank n subgroup of the free abelian group D^{n}. We first show that for any $I \in D^{n}$, we have $P_{n, I} \cong D[x]_{n}$ as a group where $D[x]_{n}$ is the set of polynomial in $D[x]$ of degree less than n.

Theorem 8. The group $P_{n, I}$ is isomorphic to $D[x]_{n}$.

Proof. Define $v: D[x] \longrightarrow D^{n}$ by $v(f(x))=\left(f\left(i_{1}\right), f\left(i_{2}\right), \ldots, f\left(i_{n}\right)\right)$. Let $f_{1}, f_{2} \in D[x]_{n}$. Then

$$
\begin{align*}
v\left(\left(f_{1}+f_{2}\right)(x)\right) & =\left(\left(f_{1}+f_{2}\right)\left(i_{1}\right),\left(f_{1}+f_{2}\right)\left(i_{2}\right), \ldots,\left(f_{1}+f_{2}\right)\left(i_{n}\right)\right) \tag{22}\\
& =\left(f_{1}\left(i_{1}\right)+f_{2}\left(i_{1}\right), f_{1}\left(i_{2}\right)+f_{2}\left(i_{2}\right), \ldots, f_{1}\left(i_{n}\right)+f_{2}\left(i_{n}\right)\right)=v\left(f_{1}(x)\right)+v\left(f_{2}(x)\right) . \tag{23}
\end{align*}
$$

Thus v is an additive homomorphism. We next show that v restricted to $D[x]_{n}$ is an isomorphism from $D[x]_{n}$ to $P_{n, I}$. Let $\bar{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in P_{n, I}$. Then there exists $f(x) \in D[x]$ such that $f(x)$ generates \bar{a}. Again as in Theorem 1, $f(x)=q(x) p(x)+r(x)$ where $p(x)=\left(x-i_{1}\right) \cdots\left(x-i_{n}\right), q, r \in D[x]$ with $r=0$ or $\operatorname{deg} r<n$. Evaluating at the points $i_{j}(1 \leq j \leq n)$, we see that $r(x)$ generates the sequence \bar{a}. So v is onto.

Let $f, g \in D[x]_{n}$. Suppose $v(f(x))=v(g(x))$. Then $f\left(i_{k}\right)=g\left(i_{k}\right)$ for all $1 \leq k \leq n$. Since both $\operatorname{deg}(f)$ and $\operatorname{deg}(g)$ are $<n$ and the polynomials f, g agree at n distinct points, they are identical, i.e., v is one-to-one. Therefore v is an isomorphism from $D[x]_{n}$ onto $P_{n, I}$.

We next consider the structure of $\mathbb{Z}^{n} / P_{n, I}$. For $I=(1,2, \ldots, n) \in \mathbb{Z}^{n}$, it was shown in [1, Theorem 3.2] that
$\mathbb{Z}^{n} / P_{n} \cong \mathbb{Z} / 2!\mathbb{Z} \oplus \mathbb{Z} / 3!\mathbb{Z} \oplus \cdots \oplus \mathbb{Z} /(n-1)!\mathbb{Z}$.
We use the technique similar to that in [1] to generalize the above result to $D^{n} / P_{n, I}$.
Theorem 9. For $n \geq 2$, let $I=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in D^{n}$. If
$\prod_{m=1}^{k-1}\left(i_{j}-i_{m}\right) / \prod_{m=1}^{k-1}\left(i_{k}-i_{m}\right) \in D \quad(1<k<j \leq n)$,
then
$D^{n} / P_{n, I} \cong D /\left(i_{2}-i_{1}\right) D \oplus D /\left(i_{3}-i_{1}\right)\left(i_{3}-i_{2}\right) D \oplus \cdots \oplus D /\left(i_{n}-i_{1}\right)\left(i_{n}-i_{2}\right) \cdots\left(i_{n}-i_{n-1}\right) D$.

Proof. For $j, k \in\{1,2, \ldots, n\}$, let
$a_{j k}= \begin{cases}\prod_{m=1}^{k-1}\left(i_{j}-i_{m}\right) / \prod_{m=1}^{k-1}\left(i_{k}-i_{m}\right) & \text { if } j \geq k>1 \\ 1 & \text { if } k=1 \\ 0 & \text { if } j<k,\end{cases}$
so that
$A_{n}=\left(a_{j k}\right)=\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & \ldots & 0 \\ 1 & 1 & 0 & 0 & \ldots & 0 \\ 1 & \frac{i_{3}-i_{1}}{i_{2}-i_{1}} & 1 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \frac{i_{n}-i_{1}}{i_{2}-i_{1}} & \frac{\left(i_{n}-i_{1}\right)\left(i_{n}-i_{2}\right)}{\left(i_{3}-i_{1}\right)\left(i_{3}-i_{2}\right)} & \frac{\left(i_{n}-i_{1}\right)\left(i_{n}-i_{2}\right)\left(i_{n}-i_{3}\right)}{\left(i_{4}-i_{1}\right)\left(i_{4}-i_{2}\right)\left(i_{4}-i_{3}\right)} & \ldots & 1\end{array}\right]$.
Let $e_{I}(j-1)$ be the $j^{\text {th }}$ column of $A_{n}(j=1,2, \ldots, n)$. Since $\operatorname{det} A_{n}=1$ and
$a_{j k}=\prod_{m=1}^{k-1}\left(i_{j}-i_{m}\right) / \prod_{m=1}^{k-1}\left(i_{k}-i_{m}\right) \in D \quad(1<k<j)$,
the matrix A_{n} is a unimodular [3, Lemma 1.15]. In this case, we see that $\left\{e_{I}(j-1), j=1,2, \ldots, n\right\}$ forms a D-basis for D^{n}. Now let
$C_{n}=\left(c_{j k}\right)=\left[\begin{array}{ccccc}1 & 0 & 0 & \ldots & 0 \\ 1 & i_{2}-i_{1} & 0 & \ldots & 0 \\ 1 & i_{3}-i_{1} & \left(i_{3}-i_{1}\right)\left(i_{3}-i_{2}\right) & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & i_{n}-i_{1} & \left(i_{n}-i_{1}\right)\left(i_{n}-i_{2}\right) & \ldots & \left(i_{n}-i_{1}\right) \\ \ldots\left(i_{n}-i_{n-1}\right)\end{array}\right]$,
$c_{j k}= \begin{cases}\left(i_{j}-i_{1}\right)\left(i_{j}-i_{2}\right) \cdots\left(i_{j}-i_{k-1}\right) & \text { if } 1<k \leq j \\ 1 & \text { if } k=1 \\ 0 & \text { if } j<k,\end{cases}$
and let D_{n} be the diagonal matrix whose $j^{t h}$ diagonal entries are
$d_{j, I}=\left(i_{j}-i_{1}\right)\left(i_{j}-i_{2}\right) \cdots\left(i_{j}-i_{j-1}\right) \quad(j=1,2, \ldots, n)$.

It is easy to see that $C_{n}=A_{n} D_{n}$. Since $\left\{1, p_{i_{1}}(x), \ldots, p_{i_{n-1}}(x)\right\}$ forms a D-basis for $D[x]_{n}$, by Theorem 8 , the map $v: D[x]_{n} \longrightarrow P_{n, I}$ is an isomorphism. So the image
$\left\{v(1), v\left(p_{i_{1}}(x)\right), \ldots, v\left(p_{i_{n-1}}(x)\right)\right\}$
forms a D-basis for $P_{n, I}$. From
$v\left(p_{i_{0}}(x)\right)=\left[\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right], v\left(p_{i_{1}}(x)\right)=\left[\begin{array}{c}0 \\ i_{2}-i_{1} \\ i_{3}-i_{1} \\ \vdots \\ i_{n}-i_{1}\end{array}\right], \ldots, v\left(p_{i_{n-1}}(x)\right)=\left[\begin{array}{c}0 \\ 0 \\ 0 \\ \vdots \\ \left(i_{n}-i_{1}\right)\left(i_{n}-i_{2}\right) \ldots\left(i_{n}-i_{n-1}\right)\end{array}\right]$,
we see that $v\left(p_{i_{j-1}}(x)\right)$ is the $j^{t h}$ column of $C_{n}(j=1,2, \ldots, n)$. Since $C_{n}=A_{n} D_{n}$, we have
$\left(p_{i_{j-1}}(x)\right)=\left(i_{j}-i_{1}\right)\left(i_{j}-i_{2}\right) \cdots\left(i_{j}-i_{j-1}\right) e_{I}(j-1)=\prod_{m=1}^{j-1}\left(i_{j}-i_{m}\right) e_{I}(j-1) \quad(j=1,2, \ldots, n)$.

Thus,

$$
\begin{align*}
D^{n} / P_{n, I} & =\frac{\left\langle e_{I}(0)\right\rangle \oplus\left\langle e_{I}(1)\right\rangle \oplus\left\langle e_{I}(2)\right\rangle \oplus \cdots \oplus\left\langle e_{I}(n-1)\right\rangle}{\left\langle e_{I}(0)\right\rangle \oplus \prod_{m=1}^{1}\left(i_{2}-i_{m}\right)\left\langle e_{I}(1)\right\rangle \oplus \cdots \oplus \prod_{m=1}^{n-1}\left(i_{n}-i_{m}\right)\left\langle e_{I}(n-1)\right\rangle} \tag{34}\\
& =\frac{\left\langle e_{I}(0)\right\rangle}{\left\langle e_{I}(0)\right\rangle} \oplus \frac{\left\langle e_{I}(1)\right\rangle}{\prod_{m=1}^{1}\left(i_{2}-i_{m}\right)\left\langle e_{I}(1)\right\rangle} \oplus \cdots \oplus \frac{\left\langle e_{I}(n-1)\right\rangle}{\prod_{m=1}^{n-1}\left(i_{n}-i_{m}\right)\left\langle e_{I}(n-1)\right\rangle} \tag{35}\\
& \cong D /\left(i_{2}-i_{1}\right) D \oplus D / \prod_{m=1}^{2}\left(i_{3}-i_{m}\right) D \oplus \cdots \oplus D / \prod_{m=1}^{n-1}\left(i_{n}-i_{m}\right) D . \tag{36}
\end{align*}
$$

By Theorem 9, for $1 \leq j \leq n$, if $a_{j k}=\prod_{m=1}^{k-1}\left(i_{j}-i_{m}\right) / \prod_{m=1}^{k-1}\left(i_{k}-i_{m}\right) \in D(1<k \leq j)$, choosing $k=j-1$, we get
$a_{j, j-1}=\prod_{m=1}^{j-2}\left(i_{j}-i_{m}\right) / \prod_{m=1}^{j-2}\left(i_{j-1}-i_{m}\right) \in D \quad(j=0,1, \ldots, n-1)$.
Thus, $d_{j, I}=\prod_{m=1}^{j-1}\left(i_{j}-i_{m}\right)=a_{j, j-1} \cdot\left(i_{j}-i_{j-1}\right) \cdot d_{j-1, I}$, i.e., $d_{j-1, I}$ is the factor of $d_{j, I}(j=1,2, \ldots, n)$, yielding

Corollary 10. With the set up above, $D^{n} / P_{n, I}$ is a finite abelian group of the form
$D / d_{n-1} D \oplus \cdots \oplus D / d_{2} D \oplus D / d_{1} D$
where $d_{1}\left|d_{2}\right| \cdots \mid d_{n-1}$.
If we take $D=\mathbb{Z}$ and $I=(1,2, \ldots, n)$, we deduce the following result.
Corollary 11. [1, Corollary 3.3] If $I=(1,2, \ldots, n)(n \geq 3)$, then \mathbb{Z}^{n} / P_{n} is a finite abelian group with Smith normal form
$\mathbb{Z} /(n-1)!\mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / 3!\mathbb{Z} \oplus \mathbb{Z} / 2!\mathbb{Z}$
and Smith invariant $\left((n-1)!, \ldots, 3\right.$!, 2!). Moreover, $\left|\mathbb{Z}^{n} / P_{n}\right|=\prod_{i=1}^{n-1} i$!.

We pause to look at one simple example.
Example 2. Let $D=\mathbb{Z}[i]$ and $I=(2+i, 3+4 i, 2+11 i)$. Since
$a_{3,2}=\frac{i_{3}-i_{1}}{i_{2}-i_{1}}=\frac{(2+11 i)-(2+i)}{(3+4 i)-(2+i)}=3+i \in \mathbb{Z}[i]$,
all the elements $a_{j k}$ of the matrix A_{3} are in $\mathbb{Z}[i]$. By Theorem 9 we get
$\mathbb{Z}[i]^{3} / P_{3, I} \cong \frac{\mathbb{Z}[i]}{(1+3 i) \mathbb{Z}[i]} \oplus \frac{\mathbb{Z}[i]}{(10 i)(-1+7 i) \mathbb{Z}[i]}=\frac{\mathbb{Z}[i]}{(1+3 i) \mathbb{Z}[i]} \oplus \frac{\mathbb{Z}[i]}{(-70-10 i) \mathbb{Z}[i]}$.

The quotient condition in Theorem 9 simplifies for some particular sets I as witnessed in the next corollary.

Corollary 12. The following statments hold:

A) Let a, q be elements in D and $n \geq 2$. If $i_{k}=a q^{k}(1 \leq k \leq n)$, then
$D^{n} / P_{n, I} \cong D / a q(q-1) D \oplus D / a^{2} q^{1+2}\left(q^{2}-1\right)(q-1) D \oplus \cdots \oplus D / a^{n-1} q^{1+2+3+\cdots+(n-1)} \prod_{i=1}^{n-1}\left(q^{i}-1\right) D$.
B) For $n \geq 2,1 \leq k \leq n-1$, if $i_{k+1}-i_{k}=c$ for some $c \in D$, then
$D^{n} / P_{n, I} \cong D / c \cdot D \oplus D / 2!c^{2} D \oplus D / 3!c^{3} D \oplus \cdots \oplus D /(n-1)!c^{n-1} D$.
Proof. A) Since $i_{k}=a q^{k}, i_{k+1}-i_{k}=a q^{k}(q-1)(1 \leq k \leq n-1)$, we have $i_{j}-i_{k}=a q^{j}-a q^{k}=$ $a q^{k}\left(q^{j-k}-1\right)(j>k)$. By the proof of Theorem 9, we get
$A_{n}=\left(a_{j k}\right), \quad a_{j k}= \begin{cases}\frac{\prod_{m=1}^{k-1}\left(i_{j}-i_{m}\right)}{\prod_{m=1}^{k-1}\left(i_{k}-i_{m}\right)}=\frac{\prod_{m=1}^{k-1}\left(q^{j-m}-1\right)}{\prod_{m=1}^{k-1}\left(q^{m}-1\right)} & \text { if } j \geq k>1 \\ 1 & \text { if } k=1 \\ 0 & \text { if } j<k .\end{cases}$
For $1 \leq k \leq j \leq n$, since $\prod_{m=1}^{k-1}\left(q^{j-m}-1\right) / \prod_{m=1}^{k-1}\left(q^{m}-1\right)$ is a q-binomial coefficient, it is in D and by Theorem 9 we have
$D^{n} / P_{n, I} \cong D / a q(q-1) D \oplus D / a^{2} q^{3}\left(q^{2}-1\right)(q-1) D \oplus \cdots \oplus D / a^{n-1} q^{\frac{n(n-1)}{2}} \prod_{i=1}^{n-1}\left(q^{i}-1\right) D$.
B) Since $i_{k+1}-i_{k}=c(1 \leq k \leq n-1)$, we have
$i_{j}-i_{k}=\left(i_{j}-i_{j-1}\right)+\left(i_{j-1}-i_{j-2}\right)+\cdots+\left(i_{k+1}-i_{k}\right)=(j-k) c(j>k)$.
By the proof of Theorem 9, we get
$A_{n}=\left(a_{j k}\right), \quad a_{j k}= \begin{cases}\prod_{m=1}^{k-1}\left(i_{j}-i_{m}\right) / \prod_{m=1}^{k-1}\left(i_{k}-i_{m}\right)=\binom{j-1}{k-1} & \text { if } j \geq k>1 \\ 1 & \text { if } k=1 \\ 0 & \text { if } j<k .\end{cases}$

Thus, $a_{j k} \in D$ and by Theorem 9, it is easy to see that
$D^{n} / P_{n, I} \cong D / c D \oplus D / 2!c^{2} D \oplus \cdots \oplus D /(n-1)!c^{n-1} D$.

Taking $D=\mathbb{Z}, I=\{1,2, \ldots, n\}$ and $c=1$ in Corollary 12 B), we recover [1, Theorem 3.2].

Acknowledgements

We are grateful to the referees for their valuable comments and suggestions to improve this article. The research is supported by Faculty of Science, Prince of Songkla University, Thailand.

References

[1] EF Cornelius Jr and P Schultz. Sequences generated by polynomials. Amer. Math. Monthly 2008; 115, 154-8.
[2] PJ Davis. Interpolation and Approximation. Dover, New York, 1975.
[3] I Stewart and D Tall. Algebraic Number Theory and Fermat's Last Theorem. CRC Press, 2001.

