The Continued Fractions of Certain Exponentials ${ }^{\dagger}$

Pratchayaporn DOEMLIM ${ }^{\mathbf{1}}$, Vichian LAOHAKOSOL ${ }^{2}$ and Janyarak TONGSOMPORN ${ }^{1, *}$

${ }^{1}$ School of Science, Walailak University, Nakhon Si Thammarat 80160 Thailand
${ }^{2}$ Department of Mathematics, Kasetsart University, Bangkok 10900 Thailand
(*Corresponding author's e-mail: tjanyarak@gmail.com)
Received: 30 November 2018, Revised: 14 February 2019, Accepted: 28 February 2019

Abstract

In 1954, Perron constructed simple continued fractions of $e^{1 / k}$ and $e^{2 / k}$ where k is a positive integer. These are called Hurwitz continued fractions. Using the method given in Perron's book, we determine explicit shapes of simple continued fractions of $k e^{1 / k}, \frac{1}{k} e^{1 / k}$ and $2 e$.

Keywords: Hurwitz continued fraction,continued fraction expansion, exponential number,
Mathematics Subject Classification: 11A55, 11J70

Introduction

A simple continued fraction is an expression of form

$$
\begin{equation*}
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots}}}:=\left[a_{0}, a_{1}, a_{2}, \ldots\right], \tag{1}
\end{equation*}
$$

where $a_{0} \in \mathbb{Z}, a_{i} \in \mathbb{N}(i \geq 1)$. The a_{i} 's are called the partial quotients, the value $\left[a_{0}, a_{1}, \ldots, a_{n}\right]:=p_{n} / q_{n}$ is called the nth convergent, and the tail $\left[a_{n}, a_{n+1}, \ldots\right]$ is called the nth complete quotient of the continued fraction (1). Let

$$
\begin{align*}
& \varphi_{0}(0), \varphi_{0}(1), \varphi_{0}(2), \ldots \\
& \varphi_{1}(0), \varphi_{1}(1), \varphi_{1}(2), \ldots \\
& \quad \vdots \tag{2}\\
& \varphi_{k-1}(0), \varphi_{k-1}(1), \varphi_{k-1}(2), \ldots
\end{align*}
$$

be k arithmetic sequences. The continued fraction
$\left[a_{0}, \ldots, a_{k-1}, \varphi_{0}(0), \varphi_{1}(0), \ldots, \varphi_{k-1}(0), \varphi_{0}(1), \varphi_{1}(1), \ldots, \varphi_{k-1}(1), \varphi_{0}(2), \varphi_{1}(2), \ldots, \varphi_{k-1}(2), \ldots\right]$
is referred to as a Hurwitz continued fraction. We denote the continued fraction (3) for short by the symbol
$\left[a_{0}, \ldots, a_{k-1}, \overline{\varphi_{0}(\lambda), \varphi_{1}(\lambda), \ldots, \varphi_{k-1}(\lambda)}\right]_{\lambda=0}^{\infty}$.
There have already appeared several papers dealing with continued fraction expansions of $e, e^{1 / k}$ and $e^{2 / k}$ for positive odd integer k, e.g. [1-3]. Here we determine the explicit forms of the continued fractions of $2 e, k e^{1 / k}$ and $\frac{1}{k} e^{1 / k}$, which to our knowledge have never appeared before.

[^0]
Preliminaries

We shall make use of the following known facts about simple continued fractions whose proofs can be found in [4, Sections 28-29].

Lemma 1. Let ξ_{0}, η_{0} be two irrational numbers such that
$\eta_{0}=\frac{a \xi_{0}+b}{c \xi_{0}+d} \quad\left(c \xi_{0}+d>0, \quad a d-b c=n>0\right)$
where $a, b, c, d \in \mathbb{Z}$. Let A_{ν}, B_{ν} be the numerator and denominator of the ν th convergent of
$\xi_{0}=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$.
For a suitable fixed index ν_{0}, if
$B_{\nu_{0}-1}\left(c \xi_{0}+d\right) \geq 1$ and $a_{\nu_{0}} \geq 2 n+|c|$,
then the fraction $\frac{a A_{v_{0}-1}+b B_{v_{0}-1}}{c A_{v_{0}-1}+d B_{v_{0}-1}}$ has a positive denominator and its value is equal to a convergent of η_{0}.
Lemma 2. Let ξ_{0}, η_{0} be two irrational numbers satisfying
$\eta_{0}=\frac{a \xi_{0}+b}{c \xi_{0}+d} \quad\left(c \xi_{0}+d>0, \quad a d-b c=n>0\right)$,
where $a, b, c, d \in \mathbb{Z}$. Let the simple continued fraction of ξ_{0} be
$\xi_{0}=\left[a_{0}, a_{1}, a_{2}, \ldots\right]$.
If there are increasing indices $\nu_{0}, \nu_{1}, \nu_{2}, \ldots$ such that
$B_{\nu_{0}-1}\left(c \xi_{0}+d\right) \geq 1, \quad a_{\nu_{0}} \geq 2 n+|c|, \quad$ and $\quad a_{\nu_{i}} \geq 2 n \quad(i=1,2,3, \ldots)$,
then the simple continued fractions for ξ_{0} and η_{0} correspond in sections as
$\xi_{0}=\left[a_{0}, a_{1}, \ldots, a_{\nu_{0}-1}\left|a_{\nu_{0}}, a_{\nu_{0}+1}, \ldots, a_{\nu_{1}-1}\right| a_{\nu_{1}}, a_{\nu_{1}+1}, \ldots, a_{\nu_{2}-1} \mid \ldots\right]$,
$\eta_{0}=\left[d_{0}, d_{1}, \ldots, d_{\mu_{0}-1}\left|d_{\mu_{0}}, d_{\mu_{0}+1}, \ldots, d_{\mu_{1}-1}\right| d_{\mu_{1}}, d_{\mu_{1}+1}, \ldots, d_{\mu_{2}-1} \mid \ldots\right]$,
in such a way that $\mu_{i} \equiv \nu_{i}(\bmod 2)$ and

$$
\begin{align*}
\frac{a\left[a_{0}, a_{1}, \ldots, a_{\nu_{0}-1}\right]+b}{c\left[a_{0}, a_{1}, \ldots, a_{\nu_{0}-1}\right]+d} & =\left[d_{0}, d_{1}, \ldots, d_{\mu_{0}-1}\right], \tag{13}\\
\frac{r_{i}\left[a_{\nu_{i}}, a_{\nu_{i}+1}, \ldots, a_{\nu_{i+1}-1}\right]-t_{i}}{s_{i}} & =\left[d_{\mu_{i}}, d_{\mu_{i}+1}, \ldots, d_{\mu_{i+1}-1}\right], \tag{14}
\end{align*}
$$

where $r_{i}, s_{i}, t_{i} \in \mathbb{Z}$ are defined recursively by
$r_{0}=\operatorname{gcd}\left(a A_{v_{0}-1}+b B_{v_{0}-1}, c A_{v_{0}-1}+d B_{v_{0}-1}\right)$,
$s_{0}=\frac{n}{r_{0}}, \quad t_{0}=s_{0} \frac{D_{\mu_{0}-2}}{D_{\mu_{0}-1}}-r_{0} \frac{c A_{\nu_{0}-2}+d B_{\nu_{0}-2}}{c A_{\nu_{0}-1}+d B_{\nu_{0}-1}} ;$
in general, $r_{i+1}=\operatorname{gcd}\left(r_{i} A_{\nu_{i+1}-\nu_{i}-1, \nu_{i}}-t_{i} B_{\nu_{i+1}-\nu_{i}-1, \nu_{i}}, s_{i} B_{\nu_{i+1}-\nu_{i}-1, \nu_{i}}\right)$,
$s_{i+1}=\frac{n}{r_{i+1}}, \quad t_{i+1}=s_{i+1} \frac{D_{\mu_{i+1}-\mu_{i}-2, \mu_{i}}}{D_{\mu_{i+1}-\mu_{i}-1, \mu_{i}}}-r_{i+1} \frac{B_{\nu_{i+1}-\nu_{i}-2, \nu_{i}}}{B_{\nu_{i+1}-\nu_{i}-1, \nu_{i}}}$,
where $A_{\nu} / B_{\nu}, C_{\nu} / D_{\nu}$ are the ν th convergents of $\xi_{0}:=\left[a_{0}, a_{1}, \ldots\right], \eta_{0}:=\left[d_{0}, d_{1}, \ldots\right]$, respectively, and $A_{\nu, \nu_{i}} / B_{\nu, \nu_{i}}, C_{\nu, \mu_{i}} / D_{\nu, \mu_{i}}$ denote the ν th convergents of $\xi_{\nu_{i}}:=\left[a_{\nu_{i}}, a_{\nu_{i}+1}, \ldots\right], \eta_{\mu_{i}}:=\left[d_{\mu_{i}}, d_{\mu_{i}+1}, \ldots\right]$, respectively.

Lemma 3. Under the hypothesis of Lemma 2, both sections
$\left|a_{\nu_{i}}, a_{\nu_{i}+1}, \ldots, a_{\nu_{i_{+1}-1}}\right| \quad$ and $\quad\left|a_{\nu_{j}}, a_{\nu_{j}+1}, \ldots, a_{\nu_{j+1}-1}\right|$
differ only in the starting element, which are congruent modulo n. If $r_{i}=r_{j}, \quad s_{i}=s_{j}, \quad t_{i}=t_{j}$, then the two corresponding sections
$\left|d_{\mu_{i}}, d_{\mu_{i}+1}, \ldots, d_{\mu_{i+1}-1}\right| \quad$ and $\quad\left|d_{\mu_{j}}, d_{\mu_{j}+1}, \ldots, d_{\mu_{j+1}-1}\right|$
differ only in the starting element, with
$d_{\mu_{i}}=d_{\mu_{j}}+r_{i}^{2} \frac{a_{\nu_{i}}-a_{\nu_{j}}}{n}$.
Moreover, we have
$r_{i+1}=r_{j+1}, \quad s_{i+1}=s_{j+1}, \quad t_{i+1}=t_{j+1}$.

Theorem 4. (Hurwitz) Let ξ_{0}, η_{0} be two irrational numbers such that
$\eta_{0}=\frac{a \xi_{0}+b}{c \xi_{0}+d} \quad\left(c \xi_{0}+d>0, \quad a d-b c=n>0\right)$
where $a, b, c, d \in \mathbb{Z}$, and if the simple continued fraction for ξ_{0} is a Hurwitz continued faction, then the simple continued fraction for η_{0} is also a Hurwitz continued faction, and the order of arithmetic sequence for η_{0} is equal to that of ξ_{0}, except the order 0 that appear in a continued fraction many fail in the other.

Results and discussion

The simple continued fraction of $2 e$

Theorem 5. We have
$2 e=\left[5,2,3, \overline{2+2 \lambda, 3,1,2+2 \lambda, 1,3}_{\lambda=0}^{\infty}\right.$.
Proof. From [4, Section 31], we have
$\xi_{0}=\frac{e-1}{e+1}=[0,2,6,10,14,18, \ldots]=[0,2,6, \overline{8 \lambda+10,8 \lambda+14}]_{\lambda=0}^{\infty}$,
From
$\eta_{0}:=2 e=\frac{2 \xi_{0}+2}{-\xi_{0}+1}$,
we have $a=2, b=2, c=-1, d=1$. Thus, $n=a d-b c=2(1)-2(-1)=4>0$, and
$c \xi_{0}+d=-\xi_{0}+1=-\frac{e-1}{e+1}+1=\frac{-e-1}{e+1}+\frac{2}{e+1}+1=\frac{2}{e+1}>0$.
The 0 th, 1 st and 2 nd convergents of $[0,2,6,10,14, \ldots]$ are, respectively,
$\frac{A_{0}}{B_{0}}=[0]=\frac{0}{1}, \quad \frac{A_{1}}{B_{1}}=[0,2]=\frac{1}{2}, \quad \frac{A_{2}}{B_{2}}=[0,2,6]=\frac{6}{13}$.

We subdivide the continued fraction of ξ_{0} into sections in the following way
$\xi_{0}=[0,2,6|10| 14|18| \ldots]=\left[0, a_{1}, a_{2}\left|a_{3}\right| a_{4}\left|a_{5}\right| \ldots\right]=\left[0, a_{1}, a_{2}\left|a_{\nu_{0}}\right| a_{\nu_{1}}\left|a_{\nu_{2}}\right| \ldots\right]$.
Thus,

$$
\begin{align*}
B_{\nu_{0}-1}\left(c \xi_{0}+d\right) & =B_{2}\left(c \xi_{0}+d\right)=\frac{26}{e+1} \geq 1, a_{\nu_{0}}=10 \geq 9=2(4)+1=2 n+|c| \tag{29}\\
a_{\nu_{i}} & \geq 14 \geq 8=2(4)=2 n \quad(i=1,2,3, \ldots) \tag{30}
\end{align*}
$$

From Lemma 2, we obtain
$\frac{a\left[a_{0}, a_{1}, a_{2}\right]+b}{c\left[a_{0}, a_{1}, a_{2}\right]+d}=\frac{2[0,2,6]+2}{-[0,2,6]+1}=[5,2,3]$.
Since it has an odd number of terms, the 1st section of η_{0} is $5,2,3$ and we find that the 1 st and the 2 nd convergents of $[5,2,3]$, are, respectively,
$\frac{C_{1}}{D_{1}}=[5,2]=\frac{11}{2}, \quad \frac{C_{2}}{D_{2}}=[5,2,3]=\frac{38}{7}$.
Thus,
$r_{0}=\operatorname{gcd}\left(a A_{\nu_{0}-1}+b B_{\nu_{0}-1}, c A_{\nu_{0}-1}+d B_{\nu_{0}-1}\right)=\operatorname{gcd}(38,7)=1, \quad s_{0}=\frac{n}{r_{0}}=\frac{4}{1}=4$.
For t_{0}, we get
$t_{0}=s_{0} \frac{D_{\mu_{0}-2}}{D_{\mu_{0}-1}}-r_{0} \frac{c A_{\nu_{0}-2}+d B_{\nu_{0}-2}}{c A_{\nu_{0}-1}+d B_{\nu_{0}-1}}=4\left(\frac{2}{7}\right)-1\left(\frac{-1(1)+1(2)}{-1(6)+1(13)}\right)=1$.
We proceed to the 2 nd section $\left([10]=\left[a_{\nu_{0}}\right]\right)$. We have

$$
\begin{equation*}
\frac{r_{0}\left[a_{\nu_{0}}\right]-t_{0}}{s_{0}}=\frac{1[10]-1}{4}=[2,3,1] \tag{35}
\end{equation*}
$$

which has an odd number of terms, and the second section of η_{0} is $2,3,1$. Then we get

$$
\begin{align*}
A_{\nu_{1}-\nu_{0}-2, \nu_{0}}=A_{4-3-2, \nu_{0}} & =A_{-1, \nu_{0}}=1, B_{\nu_{1}-\nu_{0}-2, \nu_{0}}=B_{4-3-2, \nu_{0}}=B_{-1, \nu_{0}}=0 \tag{36}\\
\frac{A_{\nu_{1}-\nu_{0}-1, \nu_{0}}}{B_{\nu_{1}-\nu_{0}-1, \nu_{0}}} & =\frac{A_{4-3-1, \nu_{0}}}{B_{4-3-1, \nu_{0}}}=\frac{A_{0, \nu_{0}}}{B_{0, \nu_{0}}}=[10]=\frac{10}{1} \tag{37}\\
\frac{C_{\mu_{1}-\mu_{0}-2, \mu_{0}}}{D_{\mu_{1}-\mu_{0}-2, \mu_{0}}} & =\frac{C_{6-3-2, \mu_{0}}}{D_{6-3-2, \mu_{0}}}=\frac{C_{1, \mu_{0}}}{D_{1, \mu_{0}}}=[2,3]=\frac{7}{3} \tag{38}\\
\frac{C_{\mu_{1}-\mu_{0}-1, \mu_{0}}}{D_{\mu_{1}-\mu_{0}-1, \mu_{0}}} & =\frac{C_{6-3-1, \mu_{0}}}{D_{6-3-1, \mu_{0}}}=\frac{C_{2, \mu_{0}}}{D_{2, \mu_{0}}}=[2,3,1]=\frac{9}{4} . \tag{39}
\end{align*}
$$

Furthermore,
$r_{1}=\operatorname{gcd}\left(r_{0} A_{\nu_{1}-\nu_{0}-1, \nu_{0}}-t_{0} B_{\nu_{1}-\nu_{0}-1, \nu_{0}}, s_{0} B_{\nu_{1}-\nu_{0}-1, \nu_{0}}\right)=1, s_{1}=\frac{n}{r_{1}}=\frac{4}{1}=4$.
For t_{1}, we obtain
$t_{1}=s_{1} \frac{D_{\mu_{1}-\mu_{0}-2, \mu_{0}}}{D_{\mu_{1}-\mu_{0}-1, \mu_{0}}}-r_{1} \frac{B_{\nu_{1}-\nu_{0}-2, \nu_{0}}}{B_{\nu_{1}-\nu_{0}-1, \nu_{0}}}=4\left(\frac{3}{4}\right)-1\left(\frac{0}{1}\right)=3$.

We proceed to the 3rd section of $\left.\eta_{0}([14])=\left[a_{\nu_{1}}\right]\right)$. We compute
$\frac{r_{1}\left[a_{\nu_{1}}\right]-t_{1}}{s_{1}}=\frac{1[14]-3}{4}=[2,1,3]$,
which has an odd number of terms and the third section of η_{0} is $2,1,3$. Thus,

$$
\begin{align*}
A_{\nu_{2}-\nu_{1}-2, \nu_{1}}=A_{5-4-2, \nu_{1}} & =A_{-1, \nu_{1}}=1, B_{\nu_{2}-\nu_{1}-2, \nu_{1}}=B_{5-4-2, \nu_{1}}=B_{-1, \nu_{1}}=0 \tag{43}\\
\frac{A_{\nu_{2}-\nu_{1}-1, \nu_{1}}}{B_{\nu_{2}-\nu_{1}-1, \nu_{1}}} & =\frac{A_{5-4-1, \nu_{1}}}{B_{5-4-1, \nu_{1}}}=\frac{A_{0, \nu_{1}}}{B_{0, \nu_{1}}}=[14]=\frac{14}{1} \tag{44}\\
\frac{C_{\mu_{2}-\mu_{1}-2, \mu_{1}}}{D_{\mu_{2}-\mu_{1}-2, \mu_{1}}} & =\frac{C_{9-6-2, \mu_{1}}}{D_{9-6-2, \mu_{1}}}=\frac{C_{1, \mu_{1}}}{D_{1, \mu_{1}}}=[2,1]=\frac{3}{1} \tag{45}\\
\frac{C_{\mu_{2}-\mu_{1}-1, \mu_{1}}}{D_{\mu_{2}-\mu_{1}-1, \mu_{1}}} & =\frac{C_{9-6-1, \mu_{1}}}{D_{9-6-1, \mu_{1}}}=\frac{C_{2, \mu_{1}}}{D_{2, \mu_{1}}}=[2,1,3]=\frac{11}{4} \tag{46}
\end{align*}
$$

yielding
$r_{2}=\operatorname{gcd}\left(r_{1} A_{\nu_{2}-\nu_{1}-1, \nu_{1}}-t_{1} B_{\nu_{2}-\nu_{1}-1, \nu_{1}}, s_{1} B_{\nu_{2}-\nu_{1}-1, \nu_{1}}\right)=\operatorname{gcd}(11,4)=1, \quad s_{2}=\frac{n}{r_{2}}=\frac{4}{1}=4$.
For t_{2}, we have
$t_{2}=s_{2} \frac{D_{\mu_{2}-\mu_{1}-2, \mu_{1}}}{D_{\mu_{2}-\mu_{1}-1, \mu_{1}}}-r_{2} \frac{B_{\nu_{2}-\nu_{1}-2, \nu_{1}}}{B_{\nu_{2}-\nu_{1}-1, \nu_{1}}}=s_{2} \frac{D_{1, \mu_{1}}}{D_{2, \mu_{1}}}-r_{2} \frac{B_{-1, \nu_{1}}}{B_{0, \nu_{1}}}=4\left(\frac{1}{4}\right)-1\left(\frac{0}{1}\right)=1$.
We proceed to the 4 th section of $\left.\eta_{0}([18])=\left[a_{\nu_{2}}\right]\right)$ by computing
$\frac{r_{2}\left[a_{\nu_{2}}\right]-t_{2}}{s_{2}}=\frac{1[18]-1}{4}=4+\frac{1}{3+\frac{1}{1}}=[4,3,1]$
which has an odd number of terms, and the 4th section of η_{0} is $4,3,1$. Then we get

$$
\begin{align*}
A_{\nu_{3}-\nu_{2}-2, \nu_{2}}=A_{6-5-2, \nu_{2}} & =A_{-1, \nu_{2}}=1, B_{\nu_{3}-\nu_{2}-2, \nu_{2}}=B_{6-5-2, \nu_{2}}=B_{-1, \nu_{2}}=0 \tag{50}\\
\frac{A_{\nu_{3}-\nu_{2}-1, \nu_{2}}}{B_{\nu_{3}-\nu_{2}-1, \nu_{2}}} & =\frac{A_{6-5-1, \nu_{2}}}{B_{6-5-1, \nu_{2}}}=\frac{A_{0, \nu_{2}}}{B_{0, \nu_{2}}}=[18]=\frac{18}{1} \tag{51}\\
\frac{C_{\mu_{3}-\mu_{2}-2, \mu_{2}}}{D_{\mu_{3}-\mu_{2}-2, \mu_{2}}} & =\frac{C_{12-9-2, \mu_{2}}}{D_{12-9-2, \mu_{2}}}=\frac{C_{1, \mu_{2}}}{D_{1, \mu_{2}}}=[4,3]=\frac{13}{3} \tag{52}\\
\frac{C_{\mu_{3}-\mu_{2}-1, \mu_{2}}}{D_{\mu_{3}-\mu_{2}-1, \mu_{2}}} & =\frac{C_{12-9-1, \mu_{2}}}{D_{12-9-1, \mu_{2}}}=\frac{C_{2, \mu_{2}}}{D_{2, \mu_{2}}}=[4,3,1]=\frac{17}{4} \tag{53}
\end{align*}
$$

yielding
$r_{3}=\operatorname{gcd}\left(r_{2} A_{\nu_{3}-\nu_{2}-1, \nu_{2}}-t_{2} B_{\nu_{3}-\nu_{2}-1, \nu_{2}}, s_{2} B_{\nu_{3}-\nu_{2}-1, \nu_{2}}\right)=\operatorname{gcd}(17,4)=1, s_{3}=\frac{n}{r_{3}}=\frac{4}{1}=4$.
For t_{3}, we have
$t_{3}=s_{3} \frac{D_{\mu_{3}-\mu_{2}-2, \mu_{2}}}{D_{\mu_{3}-\mu_{2}-1, \mu_{2}}}-r_{3} \frac{B_{\nu_{3}-\nu_{2}-2, \nu_{2}}}{B_{\nu_{3}-\nu_{2}-1, \nu_{2}}}=4\left(\frac{3}{4}\right)-1\left(\frac{0}{1}\right)=3$,
and so
$\frac{r_{3}\left[a_{\nu_{3}}\right]-t_{3}}{s_{3}}=\frac{1[22]-3}{4}=[4,1,3]$.

Since $t_{0}=t_{2}, s_{0}=s_{2}, r_{0}=r_{2}$ and $t_{1}=t_{3}, s_{1}=s_{3}, r_{1}=r_{3}$, by Lemma 3, we get $t_{i}=t_{j}, s_{i}=$ $s_{j}, r_{i}=r_{j}$ for $j=i+2$. Therefore,
$\eta_{0}=[5,2,3,2,3,1,2,1,3,4,3,1,4,1,3, \ldots]=\left[5,2,3, \overline{\left.\chi_{0}(\lambda), 3,1, \chi_{1}(\lambda), 1,3\right]_{\lambda=0}^{\infty},}\right.$
i.e., from
$\xi_{0}=[0,2,6,10,14,18, \ldots]=[0,2,6, \overline{8 \lambda+10,8 \lambda+14}]_{\lambda=0}^{\infty}=\left[0,2,6,{\overline{\psi_{0}}(\lambda), \psi_{1}(\lambda)}_{]_{\lambda=0}^{\infty},}\right.$,
we have found that
$2 e=\left[5,2,3, \overline{\chi_{0}(\lambda), 3,1, \chi_{1}(\lambda), 1,3}\right]_{\lambda=0}^{\infty}$,
where
$\chi_{0}(\lambda)=d_{\mu_{0}}+r_{0}^{2} \frac{\psi_{0}(\lambda)-\psi_{0}(0)}{n}=2+\frac{8 \lambda+10-10}{4}=2+2 \lambda$
$\chi_{1}(\lambda)=d_{\mu_{1}}+r_{1}^{2} \frac{\psi_{1}(\lambda)-\psi_{1}(0)}{n}=2+\frac{8 \lambda+14-14}{4}=2+2 \lambda$.

The simple continued fraction of $k e^{1 / k}$

Theorem 6. For $k \in \mathbb{N}$, we have
$k e^{1 / k}=[k+1,2 k-1, \overline{2+2 \lambda, 1,2 k-1}]_{\lambda=0}^{\infty}$.
Proof. From [4, Section 31], we have
$\xi_{0}=\frac{e^{1 / k}-1}{e^{1 / k}+1}=[0,2 k, 6 k, 10 k, 14 k, \ldots]=[0,2 k, \overline{(4 \lambda+6) k}]_{\lambda=0}^{\infty}$.
Putting
$\eta_{0}=k e^{1 / k}=\frac{k \xi_{0}+k}{-\xi_{0}+1}$,
we get $a=k, b=k, c=-1, d=1$. Thus, $n=a d-b c=k-(-k)=2 k$, and
$c \xi_{0}+d=-\xi_{0}+1=\frac{-e^{1 / k}+1}{e^{1 / k}+1}+1=\frac{-e^{1 / k}-1}{e^{1 / k}+1}+\frac{2}{e^{1 / k}+1}+1=\frac{2}{e^{1 / k}+1}>0$.
The 0th and 1st convergents of $[0,2 k, 6 k, 10 k, 14 k, \ldots]$ are, respectively,
$\frac{A_{0}}{B_{0}}=[0]=\frac{0}{1} \quad, \quad \frac{A_{1}}{B_{1}}=[0,2 k]=\frac{1}{2 k}$.
We subdivide the continued fraction of ξ_{0} into sections in the following way
$\xi_{0}=[0,2 k|6 k| 10 k|14 k| \ldots]=\left[a_{0}, a_{1}\left|a_{2}\right| a_{3}\left|a_{4}\right| \ldots\right]=\left[a_{0}, a_{1}\left|a_{\nu_{0}}\right| a_{\nu_{1}}\left|a_{\nu_{2}}\right| \ldots\right]$,
to get

$$
\begin{align*}
B_{\nu_{0}-1}\left(c \xi_{0}+d\right) & =B_{1}\left(c \xi_{0}+d\right)=\frac{4 k}{e^{1 / k}+1} \geq 1, a_{\nu_{0}}=6 k \geq 4 k+1=2(2 k)+1=2 n+|c| \tag{68}\\
a_{\nu_{i}} & \geq 10 k \geq 4 k=2(2 k)=2 n, \quad(i=1,2,3, \ldots) \tag{69}
\end{align*}
$$

From Lemma 2, we obtain
$\frac{a\left[a_{0}, a_{1}\right]+b}{c\left[a_{0}, a_{1}\right]+d}=\frac{k[0,2 k]+k}{-1[0,2 k]+1}=k+1+\frac{1}{2 k-1}=[k+1,2 k-1]$.
Since it has an even number of elements, the 1 st section of η_{0} is $k+1,2 k-1$, and we obtain
$\frac{C_{0}}{D_{0}}=[k+1]=\frac{k+1}{1}, \quad \frac{C_{1}}{D_{1}}=[k+1,2 k-1]=\frac{2 k^{2}+k}{2 k-1}$.
Thus,
$r_{0}=\operatorname{gcd}\left(a A_{1}+b B_{1}, c A_{1}+d B_{1}\right)=\operatorname{gcd}\left(2 k^{2}+k, 2 k-1\right)=1, s_{0}=\frac{n}{r_{0}}=\frac{2 k}{1}=2 k$.
For t_{0}, we have
$t_{0}=s_{0} \frac{D_{\mu_{0}-2}}{D_{\mu_{0}-1}}-r_{0} \frac{c A_{\nu_{0}-2}+d B_{\nu_{0}-2}}{c A_{\nu_{0}-1}+d B_{\nu_{0}-1}}=\frac{2 k-1}{-1+2 k}=1$.
We proceed to the 2 nd section ($[6 k]$), and find

$$
\begin{equation*}
\frac{r_{0}\left[a_{\nu_{0}}\right]-t_{0}}{s_{0}}=\frac{[6 k]-1}{2 k}=2+\frac{1}{1+\frac{1}{2 k-1}}=[2,1,2 k-1] \tag{74}
\end{equation*}
$$

which has an odd number of terms, and the second section of η_{0} is $2,1,2 k-1$. Proceeding further, we have

$$
\begin{align*}
A_{\nu_{1}-\nu_{0}-2, \nu_{0}}=A_{3-2-2, \nu_{0}} & =A_{-1, \nu_{0}}=1, B_{\nu_{1}-\nu_{0}-2, \nu_{0}}=B_{3-2-2, \nu_{0}}=B_{-1, \nu_{0}}=0 \tag{75}\\
\frac{A_{\nu_{1}-\nu_{0}-1, \nu_{0}}}{B_{\nu_{1}-\nu_{0}-1, \nu_{0}}} & =\frac{A_{3-2-1, \nu_{0}}}{B_{3-2-1, \nu_{0}}}=\frac{A_{0, \nu_{0}}}{B_{0, \nu_{0}}}=[6 k]=\frac{6 k}{1} \tag{76}\\
\frac{C_{\mu_{1}-\mu_{0}-2, \mu_{0}}}{D_{\mu_{1}-\mu_{0}-2, \mu_{0}}} & =\frac{C_{5-2-2, \mu_{0}}}{D_{5-2-2, \mu_{0}}}=\frac{C_{1, \mu_{0}}}{D_{1, \mu_{0}}}=[2,1]=\frac{3}{1} \tag{77}\\
\frac{C_{\mu_{1}-\mu_{0}-1, \mu_{0}}}{D_{\mu_{1}-\mu_{0}-1, \mu_{0}}} & =\frac{C_{5-2-1, \mu_{0}}}{D_{5-2-1, \mu_{0}}}=\frac{C_{2, \mu_{0}}}{D_{2, \mu_{0}}}=[2,1,2 k-1]=\frac{6 k-1}{2 k} \tag{78}
\end{align*}
$$

yielding
$r_{1}=\operatorname{gcd}\left(r_{0} A_{\nu_{1}-\nu_{0}-1, \nu_{0}}-t_{0} B_{\nu_{1}-\nu_{0}-1, \nu_{0}}, s_{0} B_{\nu_{1}-\nu_{0}-1, \nu_{0}}\right)=\operatorname{gcd}\left(6 k-1,2 k^{2}\right)=1$,
$s_{1}=\frac{n}{r_{1}}=\frac{2 k}{1}=2 k$,
and so

$$
\begin{align*}
t_{1} & =s_{1} \frac{D_{\mu_{1}-\mu_{0}-2, \mu_{0}}}{D_{\mu_{1}-\mu_{0}-1, \mu_{0}}}-r_{1} \frac{B_{\nu_{1}-\nu_{0}-2, \nu_{0}}}{B_{\nu_{1}-\nu_{0}-1, \nu_{0}}}=2 k\left(\frac{1}{2 k}\right)-1\left(\frac{0}{1}\right)=1 \tag{81}\\
\frac{r_{1}\left[a_{\nu_{1}}\right]-t_{1}}{s_{1}} & =4+\frac{1}{1+\frac{1}{2 k-1}}=[4,1,2 k-1] . \tag{82}
\end{align*}
$$

Since $t_{0}=t_{1}, s_{0}=s_{1}, r_{0}=r_{1}$, by Lemma 3, we get $t_{i}=t_{j}, s_{i}=s_{j}, r_{i}=r_{j}$ for all i, j, and then
$\eta_{0}=[k+1,2 k-1,2,1,2 k-1,4,1,2 k-1, \ldots]=\left[k+1,2 k-1, \overline{\chi_{0}(\lambda), 1,2 k-1}\right]_{\lambda=0}^{\infty}$,
i.e., from
$\xi_{0}=[0,2 k, 6 k, 10 k, 14 k, \ldots]=[0,2 k, \overline{(4 \lambda+6) k}]_{\lambda=0}^{\infty}=\left[0,2 k, \overline{\psi_{0}(\lambda)}\right]_{\lambda=0}^{\infty}$,
we get
$\chi_{0}(\lambda)=d_{\mu_{0}}+r_{0}^{2} \frac{\psi_{0}(\lambda)-\psi_{0}(0)}{n}=2+\frac{(4 \lambda+6) k-6 k}{2 k}=2+2 \lambda$.

The simple continued fraction of $\frac{1}{k} e^{1 / k}$

Theorem 7. For $k \in \mathbb{N}$, we have
$\frac{1}{k} e^{1 / k}=[0, k-1,2 k, 1, \overline{2+2 \lambda, 2 k-1,1}]_{\lambda=0}^{\infty}$.
Proof. From [4, Section 31], we have
$\xi_{0}=\frac{e^{1 / k}-1}{e^{1 / k}+1}=[0,2 k, 6 k, 10 k, 14 k, \ldots]=[0,2 k, \overline{(4 \lambda+6) k}]_{\lambda=0}^{\infty}$,
we get $e^{1 / k}=\frac{\xi_{0}+1}{-\xi_{0}+1}$. Putting
$\eta_{0}=\frac{1}{k} e^{1 / k}=\frac{\xi_{0}+1}{-k \xi_{0}+k}$,
we have
$a=1, b=1, c=-k, d=k, n=a d-b c=k-(-k)=2 k>0$,
and
$c \xi_{0}+d=-k \xi_{0}+k=-k \frac{e^{1 / k}-1}{e^{1 / k}+1}+k=k \frac{-e^{1 / k}-1}{e^{1 / k}+1}+\frac{2 k}{e^{1 / k}+1}+k=\frac{2 k}{e^{1 / k}+1}>0$.
The 0 th and the 1 st convergents of $[0,2 k, 6 k, 10 k, 14 k, \ldots]$, are, respectively,
$\frac{A_{0}}{B_{0}}=[0]=\frac{0}{1}, \quad \frac{A_{1}}{B_{1}}=[0,2 k]=\frac{1}{2 k}$.
We subdivide the continued fraction of ξ_{0} into sections in the following way
$\xi_{0}=[0,2 k|6 k| 10 k|14 k| \ldots]=\left[a_{0}, a_{1}\left|a_{2}\right| a_{3}\left|a_{4}\right| \ldots\right]=\left[a_{0}, a_{1}\left|a_{\nu_{0}}\right| a_{\nu_{1}}\left|a_{\nu_{2}}\right| \ldots\right]$
to get

$$
\begin{align*}
B_{\nu_{0}-1}\left(c \xi_{0}+d\right) & =B_{1}\left(c \xi_{0}+d\right)=\frac{4 k^{2}}{e^{1 / k}+1} \geq 1, \quad a_{\nu_{0}}=6 k \geq 5 k=2(2 k)+k=2 n+|c| \tag{93}\\
a_{\nu_{i}} & \geq 10 k \geq 4 k=2(2 k)=2 n \quad(i=1,2,3, \ldots) . \tag{94}
\end{align*}
$$

From Lemma 2, we obtain
$\frac{a\left[a_{0}, a_{1}\right]+b}{c\left[a_{0}, a_{1}\right]+d}=\frac{[0,2 k]+1}{-k[0,2 k]+k}=\frac{1}{k-1+\frac{1}{2 k+\frac{1}{1}}}=[0, k-1,2 k, 1]$.
Since it has an even number of terms, the 1 st section of η_{0} is $0, k-1,2 k, 1$, and we find the 2 nd and the 3 rd convergents as
$\frac{C_{2}}{D_{2}}=[0, k-1,2 k]=\frac{2 k}{2 k^{2}-2 k+1}, \quad \frac{C_{3}}{D_{3}}=[0, k-1,2 k, 1]=\frac{2 k+1}{2 k^{2}-k}$.
Then we get
$r_{0}=\operatorname{gcd}\left(a A_{\nu_{0}-1}+b B_{\nu_{0}-1}, c A_{\nu_{0}-1}+d B_{\nu_{0}-1}\right)=1, \quad s_{0}=\frac{n}{r_{0}}=\frac{2 k}{1}=2 k$.

For t_{0}, we have
$t_{0}=s_{0} \frac{D_{\mu_{0}-2}}{D_{\mu_{0}-1}}-r_{0} \frac{c A_{\nu_{0}-2}+d B_{\nu_{0}-2}}{c A_{\nu_{0}-1}+d B_{\nu_{0}-1}}=\frac{4 k^{3}-4 k^{2}+k}{2 k^{2}-k}=2 k-1$.
We proceed to the 2 nd section of η_{0} to get
$\frac{r_{0}\left[a_{\nu_{0}}\right]-t_{0}}{s_{0}}=\frac{[6 k]-2 k+1}{2 k}=2+\frac{1}{2 k-1+\frac{1}{1}}=[2,2 k-1,1]$
which has an odd number of terms, and the second section of η_{0} is $2,2 k-1,1$. Proceeding as in the previous theorem, we have

$$
\begin{align*}
A_{\nu_{1}-\nu_{0}-2, \nu_{0}}=A_{3-2-2,2} & =A_{-1, \nu_{0}}=1, B_{\nu_{1}-\nu_{0}-2, \nu_{0}}=B_{3-2-2,2}=B_{-1, \nu_{0}}=0, \tag{100}\\
\frac{A_{\nu_{1}-\nu_{0}-1, \nu_{0}}}{B_{\nu_{1}-\nu_{0}-1, \nu_{0}}} & =\frac{A_{3-2-1, \nu_{0}}}{B_{3-2-1, \nu_{0}}}=\frac{A_{0, \nu_{0}}}{B_{0, \nu_{0}}}=[6 k]=\frac{6 k}{1} \tag{101}\\
\frac{C_{\mu_{1}-\mu_{0}-2, \mu_{0}}}{D_{\mu_{1}-\mu_{0}-2, \mu_{0}}} & =\frac{C_{7-4-2, \mu_{0}}}{D_{7-4-2, \mu_{0}}}=\frac{C_{1, \mu_{0}}}{D_{1, \mu_{0}}}=[2,2 k-1]=\frac{4 k-1}{2 k-1} \tag{102}\\
\frac{C_{\mu_{1}-\mu_{0}-1, \mu_{0}}}{D_{\mu_{1}-\mu_{0}-1, \mu_{0}}} & =\frac{C_{7-4-1, \mu_{0}}}{D_{7-4-1, \mu_{0}}}=\frac{C_{2, \mu_{0}}}{D_{2, \mu_{0}}}=[2,2 k-1,1]=\frac{4 k+1}{2 k} . \tag{103}
\end{align*}
$$

Furthermore,
$r_{1}=\operatorname{gcd}\left(r_{0} A_{\nu_{1}-\nu_{0}-1, \nu_{0}}-t_{0} B_{\nu_{1}-\nu_{0}-1, \nu_{0}}, s_{0} B_{\nu_{1}-\nu_{0}-1, \nu_{0}}\right)=\operatorname{gcd}(4 k+1,2 k)=1$,
$s_{1}=\frac{n}{r_{1}}=\frac{2 k}{1}=2 k$.
Hence,
$t_{1}=s_{1} \frac{D_{\mu_{1}-\mu_{0}-2, \mu_{0}}}{D_{\mu_{1}-\mu_{0}-1, \mu_{0}}}-r_{1} \frac{B_{\nu_{1}-\nu_{0}-2, \nu_{0}}}{B_{\nu_{1}-\nu_{0}-1, \nu_{0}}}=2 k\left(\frac{2 k-1}{2 k}\right)-1\left(\frac{0}{1}\right)=2 k-1$,
and
$\frac{r_{1}\left[a_{\nu_{1}}\right]-t_{1}}{s_{1}}=4+\frac{1}{2 k-1+\frac{1}{1}}=[4,2 k-1,1]$.
Since $t_{0}=t_{1}, s_{0}=s_{1}, r_{0}=r_{1}$, by Lemma 3, we get $t_{i}=t_{j}, s_{i}=s_{j}, r_{i}=r_{j}$ for all i, j, and so
$\eta_{0}=[0, k-1,2 k, 1,2,2 k-1,1,4,2 k-1,1, \ldots]=\left[0, k-1,2 k, 1, \overline{\chi_{0}(\lambda), 2 k-1,1}\right]_{\lambda=0}^{\infty}$,
i.e., from
$\xi_{0}=[0,2 k, 6 k, 10 k, 14 k, \ldots]=[0,2 k, \overline{(4 \lambda+6) k}]_{\lambda=0}^{\infty}=\left[0,2 k, \bar{\psi}_{0}(\lambda)\right]_{\lambda=0}^{\infty}$,
we obtain
$\chi_{0}(\lambda)=d_{\mu_{0}}+r_{0}^{2} \frac{\psi_{0}(\lambda)-\psi_{0}(0)}{n}=2+\frac{(4 \lambda+6) k-6 k}{2 k}=2+2 \lambda$.

Acknowledgements

The first and third authors thank the DPST (The Development and Promotion of Science and Technology Talents Project), the Institute of Research and Innovation, School of Science and Walialak University for financial supports (Grant no. WU62222). The second author thanks the faculty of Science and Kasetsart University for facilities and support.

References

[1] H Cohn. A Short proof of the simple continued fraction expansion of e. Am. Math. Monthly 2006; 113, 57-62.
[2] CS Davis. On some simple continued fractions connected with $e^{2 / k}$. J. London Math. Soc.. 1945; 20, 194-8.
[3] T Komatsu. A proof of the continued fraction expansion of $e^{2 / s}$. Integers. 2007, A30.
[4] O Perron. Die Lehre von den Kettenbrüchen, Band I, Teubner, Stuttgart, 1954.

[^0]: ${ }^{\dagger}$ Presented at the International Conference in Number Theory and Applications 2018: December $13^{\text {th }}-15^{\text {th }}, 2018$

