WALAILAK JOURNAL

The Continued Fractions of Certain Exponentials[†]

Pratchayaporn DOEMLIM¹, Vichian LAOHAKOSOL² and Janyarak TONGSOMPORN^{1,*}

¹School of Science, Walailak University, Nakhon Si Thammarat 80160 Thailand ²Department of Mathematics, Kasetsart University, Bangkok 10900 Thailand

(*Corresponding author's e-mail: tjanyarak@gmail.com)

Received: 30 November 2018, Revised: 14 February 2019, Accepted: 28 February 2019

Abstract

In 1954, Perron constructed simple continued fractions of $e^{1/k}$ and $e^{2/k}$ where k is a positive integer. These are called Hurwitz continued fractions. Using the method given in Perron's book, we determine explicit shapes of simple continued fractions of $ke^{1/k}$, $\frac{1}{k}e^{1/k}$ and 2e.

Keywords: Hurwitz continued fraction, continued fraction expansion, exponential number,

Mathematics Subject Classification: 11A55, 11J70

Introduction

A simple continued fraction is an expression of form

$$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_2}}} := [a_0, a_1, a_2, \ldots],$$
(1)

where $a_0 \in \mathbb{Z}$, $a_i \in \mathbb{N}$ $(i \ge 1)$. The a_i 's are called the *partial quotients*, the value $[a_0, a_1, \ldots, a_n] := p_n/q_n$ is called the *n*th *convergent*, and the tail $[a_n, a_{n+1}, \ldots]$ is called the *n*th *complete quotient* of the continued fraction (1). Let

$$\varphi_{0}(0), \varphi_{0}(1), \varphi_{0}(2), \dots
\varphi_{1}(0), \varphi_{1}(1), \varphi_{1}(2), \dots
\vdots
\varphi_{k-1}(0), \varphi_{k-1}(1), \varphi_{k-1}(2), \dots$$
(2)

be k arithmetic sequences. The continued fraction

$$[a_0, \dots, a_{k-1}, \varphi_0(0), \varphi_1(0), \dots, \varphi_{k-1}(0), \varphi_0(1), \varphi_1(1), \dots, \varphi_{k-1}(1), \varphi_0(2), \varphi_1(2), \dots, \varphi_{k-1}(2), \dots]$$
(3)

is referred to as a Hurwitz continued fraction. We denote the continued fraction (3) for short by the symbol

$$\left[a_0,\ldots,a_{k-1},\overline{\varphi_0(\lambda),\varphi_1(\lambda),\ldots,\varphi_{k-1}(\lambda)}\right]_{\lambda=0}^{\infty}.$$
(4)

There have already appeared several papers dealing with continued fraction expansions of $e, e^{1/k}$ and $e^{2/k}$ for positive odd integer k, e.g. [1–3]. Here we determine the explicit forms of the continued fractions of $2e, ke^{1/k}$ and $\frac{1}{k}e^{1/k}$, which to our knowledge have never appeared before.

Walailak J Sci & Tech 2019; 16(9): 615–624.

[†]Presented at the International Conference in Number Theory and Applications 2018: December 13th - 15th , 2018

Preliminaries

We shall make use of the following known facts about simple continued fractions whose proofs can be found in [4, Sections 28-29].

Lemma 1. Let ξ_0 , η_0 be two irrational numbers such that

$$\eta_0 = \frac{a\xi_0 + b}{c\xi_0 + d} \qquad (c\xi_0 + d > 0, \quad ad - bc = n > 0)$$
(5)

where $a, b, c, d \in \mathbb{Z}$. Let A_{ν}, B_{ν} be the numerator and denominator of the ν th convergent of

$$\xi_0 = [a_0, a_1, a_2, \dots]. \tag{6}$$

For a suitable fixed index ν_0 , if

$$B_{\nu_0 - 1}(c\xi_0 + d) \ge 1 \quad and \quad a_{\nu_0} \ge 2n + |c|, \tag{7}$$

then the fraction $\frac{aA_{v_0-1}+bB_{v_0-1}}{cA_{v_0-1}+dB_{v_0-1}}$ has a positive denominator and its value is equal to a convergent of η_0 .

Lemma 2. Let ξ_0, η_0 be two irrational numbers satisfying

$$\eta_0 = \frac{a\xi_0 + b}{c\xi_0 + d} \qquad (c\xi_0 + d > 0, \quad ad - bc = n > 0), \tag{8}$$

where $a, b, c, d \in \mathbb{Z}$. Let the simple continued fraction of ξ_0 be

$$\xi_0 = [a_0, a_1, a_2, \ldots]. \tag{9}$$

If there are increasing indices $\nu_0, \nu_1, \nu_2, \ldots$ such that

$$B_{\nu_0-1}(c\xi_0+d) \ge 1, \qquad a_{\nu_0} \ge 2n+|c|, \quad and \quad a_{\nu_i} \ge 2n \qquad (i=1,2,3,\ldots),$$
(10)

then the simple continued fractions for ξ_0 and η_0 correspond in sections as

$$\xi_0 = [a_0, a_1, \dots, a_{\nu_0 - 1} | a_{\nu_0}, a_{\nu_0 + 1}, \dots, a_{\nu_1 - 1} | a_{\nu_1}, a_{\nu_1 + 1}, \dots, a_{\nu_2 - 1} | \dots],$$
(11)

$$\eta_0 = [d_0, d_1, \dots, d_{\mu_0 - 1} | d_{\mu_0}, d_{\mu_0 + 1}, \dots, d_{\mu_1 - 1} | d_{\mu_1}, d_{\mu_1 + 1}, \dots, d_{\mu_2 - 1} | \dots],$$
(12)

in such a way that $\mu_i \equiv \nu_i \pmod{2}$ and

$$\frac{a[a_0, a_1, \dots, a_{\nu_0-1}] + b}{c[a_0, a_1, \dots, a_{\nu_0-1}] + d} = [d_0, d_1, \dots, d_{\mu_0-1}],$$
(13)

$$\frac{r_i[a_{\nu_i}, a_{\nu_i+1}, \dots, a_{\nu_{i+1}-1}] - t_i}{s_i} = [d_{\mu_i}, d_{\mu_i+1}, \dots, d_{\mu_{i+1}-1}],$$
(14)

where $r_i, s_i, t_i \in \mathbb{Z}$ are defined recursively by

$$r_0 = \gcd(aA_{v_0-1} + bB_{v_0-1}, cA_{v_0-1} + dB_{v_0-1}), \tag{15}$$

$$s_0 = \frac{n}{r_0}, \quad t_0 = s_0 \frac{D_{\mu_0 - 2}}{D_{\mu_0 - 1}} - r_0 \frac{cA_{\nu_0 - 2} + dB_{\nu_0 - 2}}{cA_{\nu_0 - 1} + dB_{\nu_0 - 1}};$$
(16)

in general, $r_{i+1} = \gcd(r_i A_{\nu_{i+1}-\nu_i-1,\nu_i} - t_i B_{\nu_{i+1}-\nu_i-1,\nu_i}, s_i B_{\nu_{i+1}-\nu_i-1,\nu_i}),$

$$s_{i+1} = \frac{n}{r_{i+1}}, \quad t_{i+1} = s_{i+1} \frac{D_{\mu_{i+1}-\mu_i-2,\mu_i}}{D_{\mu_{i+1}-\mu_i-1,\mu_i}} - r_{i+1} \frac{B_{\nu_{i+1}-\nu_i-2,\nu_i}}{B_{\nu_{i+1}-\nu_i-1,\nu_i}},$$
(17)

where A_{ν}/B_{ν} , C_{ν}/D_{ν} are the ν th convergents of $\xi_0 := [a_0, a_1, \ldots]$, $\eta_0 := [d_0, d_1, \ldots]$, respectively, and $A_{\nu,\nu_i}/B_{\nu,\nu_i}$, $C_{\nu,\mu_i}/D_{\nu,\mu_i}$ denote the ν th convergents of $\xi_{\nu_i} := [a_{\nu_i}, a_{\nu_i+1}, \ldots]$, $\eta_{\mu_i} := [d_{\mu_i}, d_{\mu_i+1}, \ldots]$, respectively.

Walailak J Sci & Tech 2019; 16(9)

Lemma 3. Under the hypothesis of Lemma 2, both sections

$$|a_{\nu_i}, a_{\nu_i+1}, \dots, a_{\nu_{i+1}-1}| \quad and \quad |a_{\nu_j}, a_{\nu_j+1}, \dots, a_{\nu_{j+1}-1}|$$
(18)

differ only in the starting element, which are congruent modulo n. If $r_i = r_j$, $s_i = s_j$, $t_i = t_j$, then the two corresponding sections

$$|d_{\mu_i}, d_{\mu_i+1}, \dots, d_{\mu_{i+1}-1}| \quad and \quad |d_{\mu_j}, d_{\mu_j+1}, \dots, d_{\mu_{j+1}-1}|$$
(19)

differ only in the starting element, with

$$d_{\mu_i} = d_{\mu_j} + r_i^2 \frac{a_{\nu_i} - a_{\nu_j}}{n}.$$
(20)

Moreover, we have

$$r_{i+1} = r_{j+1}, \quad s_{i+1} = s_{j+1}, \quad t_{i+1} = t_{j+1}.$$

$$\tag{21}$$

Theorem 4. (*Hurwitz*) Let ξ_0 , η_0 be two irrational numbers such that

$$\eta_0 = \frac{a\xi_0 + b}{c\xi_0 + d} \qquad (c\xi_0 + d > 0, \quad ad - bc = n > 0)$$
(22)

where $a, b, c, d \in \mathbb{Z}$, and if the simple continued fraction for ξ_0 is a Hurwitz continued faction, then the simple continued fraction for η_0 is also a Hurwitz continued faction, and the order of arithmetic sequence for η_0 is equal to that of ξ_0 , except the order 0 that appear in a continued fraction many fail in the other.

Results and discussion

The simple continued fraction of 2e

Theorem 5. We have

$$2e = [5, 2, 3, \overline{2 + 2\lambda}, 3, 1, 2 + 2\lambda, 1, 3]_{\lambda=0}^{\infty}.$$
(23)

Proof. From [4, Section 31], we have

$$\xi_0 = \frac{e-1}{e+1} = [0, 2, 6, 10, 14, 18, \ldots] = [0, 2, 6, \overline{8\lambda + 10, 8\lambda + 14}]_{\lambda=0}^{\infty},$$
(24)

From

$$\eta_0 := 2e = \frac{2\xi_0 + 2}{-\xi_0 + 1},\tag{25}$$

we have a = 2, b = 2, c = -1, d = 1. Thus, n = ad - bc = 2(1) - 2(-1) = 4 > 0, and

$$c\xi_0 + d = -\xi_0 + 1 = -\frac{e-1}{e+1} + 1 = \frac{-e-1}{e+1} + \frac{2}{e+1} + 1 = \frac{2}{e+1} > 0.$$
(26)

The 0th, 1st and 2nd convergents of [0, 2, 6, 10, 14, ...] are, respectively,

$$\frac{A_0}{B_0} = [0] = \frac{0}{1}, \quad \frac{A_1}{B_1} = [0, 2] = \frac{1}{2}, \quad \frac{A_2}{B_2} = [0, 2, 6] = \frac{6}{13}.$$
(27)

Walailak J Sci & Tech 2019; 16(9)

We subdivide the continued fraction of ξ_0 into sections in the following way

$$\xi_0 = [0, 2, 6|10|14|18|...] = [0, a_1, a_2|a_3|a_4|a_5|...] = [0, a_1, a_2|a_{\nu_0}|a_{\nu_1}|a_{\nu_2}|...].$$
(28)

Thus,

$$B_{\nu_0-1}(c\xi_0+d) = B_2(c\xi_0+d) = \frac{26}{e+1} \ge 1, \ a_{\nu_0} = 10 \ge 9 = 2(4) + 1 = 2n + |c|$$
(29)

$$a_{\nu_i} \ge 14 \ge 8 = 2(4) = 2n$$
 $(i = 1, 2, 3, ...).$ (30)

From Lemma 2, we obtain

$$\frac{a[a_0, a_1, a_2] + b}{c[a_0, a_1, a_2] + d} = \frac{2[0, 2, 6] + 2}{-[0, 2, 6] + 1} = [5, 2, 3].$$
(31)

Since it has an odd number of terms, the 1st section of η_0 is 5, 2, 3 and we find that the 1st and the 2nd convergents of [5, 2, 3], are, respectively,

$$\frac{C_1}{D_1} = [5,2] = \frac{11}{2}, \quad \frac{C_2}{D_2} = [5,2,3] = \frac{38}{7}.$$
(32)

Thus,

$$r_0 = \gcd(aA_{\nu_0-1} + bB_{\nu_0-1}, cA_{\nu_0-1} + dB_{\nu_0-1}) = \gcd(38, 7) = 1, \ s_0 = \frac{n}{r_0} = \frac{4}{1} = 4.$$
(33)

For t_0 , we get

$$t_0 = s_0 \frac{D_{\mu_0-2}}{D_{\mu_0-1}} - r_0 \frac{cA_{\nu_0-2} + dB_{\nu_0-2}}{cA_{\nu_0-1} + dB_{\nu_0-1}} = 4\left(\frac{2}{7}\right) - 1\left(\frac{-1(1) + 1(2)}{-1(6) + 1(13)}\right) = 1.$$
(34)

We proceed to the 2nd section ([10] = $[a_{\nu_0}]$). We have

$$\frac{r_0[a_{\nu_0}] - t_0}{s_0} = \frac{1[10] - 1}{4} = [2, 3, 1]$$
(35)

which has an odd number of terms, and the second section of η_0 is 2, 3, 1. Then we get

$$A_{\nu_1 - \nu_0 - 2, \nu_0} = A_{4-3-2, \nu_0} = A_{-1, \nu_0} = 1, \ B_{\nu_1 - \nu_0 - 2, \nu_0} = B_{4-3-2, \nu_0} = B_{-1, \nu_0} = 0, \tag{36}$$

$$\frac{A_{\nu_1-\nu_0-1,\nu_0}}{B_{\nu_1-\nu_0-1,\nu_0}} = \frac{A_{4-3-1,\nu_0}}{B_{4-3-1,\nu_0}} = \frac{A_{0,\nu_0}}{B_{0,\nu_0}} = [10] = \frac{10}{1}$$
(37)

$$\frac{C_{\mu_1-\mu_0-2,\mu_0}}{D_{\mu_1-\mu_0-2,\mu_0}} = \frac{C_{6-3-2,\mu_0}}{D_{6-3-2,\mu_0}} = \frac{C_{1,\mu_0}}{D_{1,\mu_0}} = [2,3] = \frac{7}{3}$$
(38)

$$\frac{C_{\mu_1-\mu_0-1,\mu_0}}{D_{\mu_1-\mu_0-1,\mu_0}} = \frac{C_{6-3-1,\mu_0}}{D_{6-3-1,\mu_0}} = \frac{C_{2,\mu_0}}{D_{2,\mu_0}} = [2,3,1] = \frac{9}{4}.$$
(39)

Furthermore,

$$r_1 = \gcd(r_0 A_{\nu_1 - \nu_0 - 1, \nu_0} - t_0 B_{\nu_1 - \nu_0 - 1, \nu_0}, s_0 B_{\nu_1 - \nu_0 - 1, \nu_0}) = 1, \quad s_1 = \frac{n}{r_1} = \frac{4}{1} = 4.$$
(40)

For t_1 , we obtain

$$t_1 = s_1 \frac{D_{\mu_1 - \mu_0 - 2, \mu_0}}{D_{\mu_1 - \mu_0 - 1, \mu_0}} - r_1 \frac{B_{\nu_1 - \nu_0 - 2, \nu_0}}{B_{\nu_1 - \nu_0 - 1, \nu_0}} = 4\left(\frac{3}{4}\right) - 1\left(\frac{0}{1}\right) = 3.$$
(41)

Walailak J Sci & Tech 2019; 16(9)

4

We proceed to the 3rd section of η_0 ([14]) = $[a_{\nu_1}]$). We compute

$$\frac{r_1[a_{\nu_1}] - t_1}{s_1} = \frac{1[14] - 3}{4} = [2, 1, 3],\tag{42}$$

which has an odd number of terms and the third section of η_0 is 2, 1, 3. Thus,

$$A_{\nu_2 - \nu_1 - 2, \nu_1} = A_{5-4-2, \nu_1} = A_{-1, \nu_1} = 1, B_{\nu_2 - \nu_1 - 2, \nu_1} = B_{5-4-2, \nu_1} = B_{-1, \nu_1} = 0,$$
(43)

$$\frac{A_{\nu_2-\nu_1-1,\nu_1}}{B_{\nu_2-\nu_1-1,\nu_1}} = \frac{A_{5-4-1,\nu_1}}{B_{5-4-1,\nu_1}} = \frac{A_{0,\nu_1}}{B_{0,\nu_1}} = [14] = \frac{14}{1}$$
(44)

$$\frac{C_{\mu_2-\mu_1-2,\mu_1}}{D_{\mu_2-\mu_1-2,\mu_1}} = \frac{C_{9-6-2,\mu_1}}{D_{9-6-2,\mu_1}} = \frac{C_{1,\mu_1}}{D_{1,\mu_1}} = [2,1] = \frac{3}{1}$$
(45)

$$\frac{C_{\mu_2-\mu_1-1,\mu_1}}{D_{\mu_2-\mu_1-1,\mu_1}} = \frac{C_{9-6-1,\mu_1}}{D_{9-6-1,\mu_1}} = \frac{C_{2,\mu_1}}{D_{2,\mu_1}} = [2,1,3] = \frac{11}{4}$$
(46)

yielding

$$r_2 = \gcd(r_1 A_{\nu_2 - \nu_1 - 1, \nu_1} - t_1 B_{\nu_2 - \nu_1 - 1, \nu_1}, s_1 B_{\nu_2 - \nu_1 - 1, \nu_1}) = \gcd(11, 4) = 1, \quad s_2 = \frac{n}{r_2} = \frac{4}{1} = 4.$$
(47)

For t_2 , we have

$$t_2 = s_2 \frac{D_{\mu_2 - \mu_1 - 2, \mu_1}}{D_{\mu_2 - \mu_1 - 1, \mu_1}} - r_2 \frac{B_{\nu_2 - \nu_1 - 2, \nu_1}}{B_{\nu_2 - \nu_1 - 1, \nu_1}} = s_2 \frac{D_{1, \mu_1}}{D_{2, \mu_1}} - r_2 \frac{B_{-1, \nu_1}}{B_{0, \nu_1}} = 4\left(\frac{1}{4}\right) - 1\left(\frac{0}{1}\right) = 1.$$
(48)

We proceed to the 4th section of η_0 $([18]) = [a_{\nu_2}])$ by computing

$$\frac{r_2[a_{\nu_2}] - t_2}{s_2} = \frac{1[18] - 1}{4} = 4 + \frac{1}{3 + \frac{1}{1}} = [4, 3, 1]$$
(49)

which has an odd number of terms, and the 4th section of η_0 is 4, 3, 1. Then we get

$$A_{\nu_3 - \nu_2 - 2, \nu_2} = A_{6-5-2, \nu_2} = A_{-1, \nu_2} = 1, \ B_{\nu_3 - \nu_2 - 2, \nu_2} = B_{6-5-2, \nu_2} = B_{-1, \nu_2} = 0, \tag{50}$$

$$\frac{A_{\nu_3-\nu_2-1,\nu_2}}{B_{\nu_3-\nu_2-1,\nu_2}} = \frac{A_{6-5-1,\nu_2}}{B_{6-5-1,\nu_2}} = \frac{A_{0,\nu_2}}{B_{0,\nu_2}} = [18] = \frac{18}{1}$$
(51)

$$\frac{C_{\mu_3-\mu_2-2,\mu_2}}{D_{\mu_3-\mu_2-2,\mu_2}} = \frac{C_{12-9-2,\mu_2}}{D_{12-9-2,\mu_2}} = \frac{C_{1,\mu_2}}{D_{1,\mu_2}} = [4,3] = \frac{13}{3}$$
(52)

$$\frac{C_{\mu_3-\mu_2-1,\mu_2}}{D_{\mu_3-\mu_2-1,\mu_2}} = \frac{C_{12-9-1,\mu_2}}{D_{12-9-1,\mu_2}} = \frac{C_{2,\mu_2}}{D_{2,\mu_2}} = [4,3,1] = \frac{17}{4}$$
(53)

yielding

$$r_{3} = \gcd(r_{2}A_{\nu_{3}-\nu_{2}-1,\nu_{2}} - t_{2}B_{\nu_{3}-\nu_{2}-1,\nu_{2}}, s_{2}B_{\nu_{3}-\nu_{2}-1,\nu_{2}}) = \gcd(17,4) = 1, \ s_{3} = \frac{n}{r_{3}} = \frac{4}{1} = 4.$$
(54)

For t_3 , we have

$$t_3 = s_3 \frac{D_{\mu_3 - \mu_2 - 2, \mu_2}}{D_{\mu_3 - \mu_2 - 1, \mu_2}} - r_3 \frac{B_{\nu_3 - \nu_2 - 2, \nu_2}}{B_{\nu_3 - \nu_2 - 1, \nu_2}} = 4\left(\frac{3}{4}\right) - 1\left(\frac{0}{1}\right) = 3,$$
(55)

and so

$$\frac{r_3[a_{\nu_3}] - t_3}{s_3} = \frac{1[22] - 3}{4} = [4, 1, 3].$$
(56)

Since $t_0 = t_2$, $s_0 = s_2$, $r_0 = r_2$ and $t_1 = t_3$, $s_1 = s_3$, $r_1 = r_3$, by Lemma 3, we get $t_i = t_j$, $s_i = s_j$, $r_i = r_j$ for j = i + 2. Therefore,

$$\eta_0 = [5, 2, 3, 2, 3, 1, 2, 1, 3, 4, 3, 1, 4, 1, 3, \ldots] = [5, 2, 3, \overline{\chi_0(\lambda), 3, 1, \chi_1(\lambda), 1, 3}]_{\lambda=0}^{\infty},$$
(57)

i.e., from

$$\xi_0 = [0, 2, 6, 10, 14, 18, \ldots] = [0, 2, 6, \overline{8\lambda + 10, 8\lambda + 14}]_{\lambda=0}^{\infty} = [0, 2, 6, \overline{\psi_0(\lambda), \psi_1(\lambda)}]_{\lambda=0}^{\infty} ,$$
(58)

we have found that

$$2e = [5, 2, 3, \overline{\chi_0(\lambda), 3, 1, \chi_1(\lambda), 1, 3}]_{\lambda=0}^{\infty} ,$$
(59)

where

$$\chi_0(\lambda) = d_{\mu_0} + r_0^2 \frac{\psi_0(\lambda) - \psi_0(0)}{n} = 2 + \frac{8\lambda + 10 - 10}{4} = 2 + 2\lambda$$
(60)

$$\chi_1(\lambda) = d_{\mu_1} + r_1^2 \frac{\psi_1(\lambda) - \psi_1(0)}{n} = 2 + \frac{8\lambda + 14 - 14}{4} = 2 + 2\lambda.$$
(61)

The simple continued fraction of $ke^{1/k}$

Theorem 6. For $k \in \mathbb{N}$, we have

$$ke^{1/k} = [k+1, 2k-1, \overline{2+2\lambda, 1, 2k-1}]_{\lambda=0}^{\infty}.$$
(62)

Proof. From [4, Section 31], we have

$$\xi_0 = \frac{e^{1/k} - 1}{e^{1/k} + 1} = [0, 2k, 6k, 10k, 14k, \ldots] = [0, 2k, \overline{(4\lambda + 6)k}]_{\lambda=0}^{\infty}.$$
(63)

Putting

$$\eta_0 = ke^{1/k} = \frac{k\xi_0 + k}{-\xi_0 + 1},\tag{64}$$

we get a = k, b = k, c = -1, d = 1. Thus, n = ad - bc = k - (-k) = 2k, and

$$c\xi_0 + d = -\xi_0 + 1 = \frac{-e^{1/k} + 1}{e^{1/k} + 1} + 1 = \frac{-e^{1/k} - 1}{e^{1/k} + 1} + \frac{2}{e^{1/k} + 1} + 1 = \frac{2}{e^{1/k} + 1} > 0.$$
 (65)

The 0th and 1st convergents of $[0, 2k, 6k, 10k, 14k, \ldots]$ are, respectively,

$$\frac{A_0}{B_0} = [0] = \frac{0}{1} \quad , \quad \frac{A_1}{B_1} = [0, 2k] = \frac{1}{2k}.$$
(66)

We subdivide the continued fraction of ξ_0 into sections in the following way

$$\xi_0 = [0, 2k|6k|10k|14k|...] = [a_0, a_1|a_2|a_3|a_4|...] = [a_0, a_1|a_{\nu_0}|a_{\nu_1}|a_{\nu_2}|...],$$
(67)

to get

$$B_{\nu_0-1}(c\xi_0+d) = B_1(c\xi_0+d) = \frac{4k}{e^{1/k}+1} \ge 1, \ a_{\nu_0} = 6k \ge 4k+1 = 2(2k)+1 = 2n+|c|$$
(68)

$$a_{\nu_i} \ge 10k \ge 4k = 2(2k) = 2n, \qquad (i = 1, 2, 3, \ldots).$$
 (69)

From Lemma 2, we obtain

$$\frac{a[a_0, a_1] + b}{c[a_0, a_1] + d} = \frac{k[0, 2k] + k}{-1[0, 2k] + 1} = k + 1 + \frac{1}{2k - 1} = [k + 1, 2k - 1].$$
(70)

Since it has an even number of elements, the 1st section of η_0 is k + 1, 2k - 1, and we obtain

$$\frac{C_0}{D_0} = [k+1] = \frac{k+1}{1}, \quad \frac{C_1}{D_1} = [k+1, 2k-1] = \frac{2k^2+k}{2k-1}.$$
(71)

Thus,

$$r_0 = \gcd(aA_1 + bB_1, cA_1 + dB_1) = \gcd(2k^2 + k, 2k - 1) = 1, \ s_0 = \frac{n}{r_0} = \frac{2k}{1} = 2k.$$
(72)

For t_0 , we have

$$t_0 = s_0 \frac{D_{\mu_0 - 2}}{D_{\mu_0 - 1}} - r_0 \frac{cA_{\nu_0 - 2} + dB_{\nu_0 - 2}}{cA_{\nu_0 - 1} + dB_{\nu_0 - 1}} = \frac{2k - 1}{-1 + 2k} = 1.$$
(73)

We proceed to the 2nd section ([6k]), and find

$$\frac{r_0[a_{\nu_0}] - t_0}{s_0} = \frac{[6k] - 1}{2k} = 2 + \frac{1}{1 + \frac{1}{2k-1}} = [2, 1, 2k - 1]$$
(74)

which has an odd number of terms, and the second section of η_0 is 2, 1, 2k - 1. Proceeding further, we have

$$A_{\nu_1-\nu_0-2,\nu_0} = A_{3-2-2,\nu_0} = A_{-1,\nu_0} = 1, \ B_{\nu_1-\nu_0-2,\nu_0} = B_{3-2-2,\nu_0} = B_{-1,\nu_0} = 0, \tag{75}$$

$$\frac{A_{\nu_1-\nu_0-1,\nu_0}}{B_{\nu_1-\nu_0-1,\nu_0}} = \frac{A_{3-2-1,\nu_0}}{B_{3-2-1,\nu_0}} = \frac{A_{0,\nu_0}}{B_{0,\nu_0}} = [6k] = \frac{6k}{1}$$
(76)

$$\frac{C_{\mu_1-\mu_0-2,\mu_0}}{D_{\mu_1-\mu_0-2,\mu_0}} = \frac{C_{5-2-2,\mu_0}}{D_{5-2-2,\mu_0}} = \frac{C_{1,\mu_0}}{D_{1,\mu_0}} = [2,1] = \frac{3}{1}$$
(77)

$$\frac{C_{\mu_1-\mu_0-1,\mu_0}}{D_{\mu_1-\mu_0-1,\mu_0}} = \frac{C_{5-2-1,\mu_0}}{D_{5-2-1,\mu_0}} = \frac{C_{2,\mu_0}}{D_{2,\mu_0}} = [2,1,2k-1] = \frac{6k-1}{2k}$$
(78)

yielding

$$r_{1} = \gcd(r_{0}A_{\nu_{1}-\nu_{0}-1,\nu_{0}} - t_{0}B_{\nu_{1}-\nu_{0}-1,\nu_{0}}, s_{0}B_{\nu_{1}-\nu_{0}-1,\nu_{0}}) = \gcd(6k-1,2k^{2}) = 1,$$
(79)

$$s_1 = \frac{n}{r_1} = \frac{2k}{1} = 2k,\tag{80}$$

and so

$$t_1 = s_1 \frac{D_{\mu_1 - \mu_0 - 2, \mu_0}}{D_{\mu_1 - \mu_0 - 1, \mu_0}} - r_1 \frac{B_{\nu_1 - \nu_0 - 2, \nu_0}}{B_{\nu_1 - \nu_0 - 1, \nu_0}} = 2k \left(\frac{1}{2k}\right) - 1\left(\frac{0}{1}\right) = 1$$
(81)

$$\frac{r_1[a_{\nu_1}] - t_1}{s_1} = 4 + \frac{1}{1 + \frac{1}{2k - 1}} = [4, 1, 2k - 1].$$
(82)

Since $t_0 = t_1$, $s_0 = s_1$, $r_0 = r_1$, by Lemma 3, we get $t_i = t_j$, $s_i = s_j$, $r_i = r_j$ for all i, j, and then

$$\eta_0 = [k+1, 2k-1, 2, 1, 2k-1, 4, 1, 2k-1, \ldots] = [k+1, 2k-1, \overline{\chi_0(\lambda), 1, 2k-1}]_{\lambda=0}^{\infty},$$
(83)

$$\xi_0 = [0, 2k, 6k, 10k, 14k, \ldots] = [0, 2k, \overline{(4\lambda + 6)k}]_{\lambda=0}^{\infty} = [0, 2k, \overline{\psi_0(\lambda)}]_{\lambda=0}^{\infty},$$
(84)
we get

$$\chi_0(\lambda) = d_{\mu_0} + r_0^2 \frac{\psi_0(\lambda) - \psi_0(0)}{n} = 2 + \frac{(4\lambda + 6)k - 6k}{2k} = 2 + 2\lambda.$$
(85)

Walailak J Sci & Tech 2019; 16(9)

The simple continued fraction of $\frac{1}{k}e^{1/k}$

Theorem 7. For $k \in \mathbb{N}$, we have

$$\frac{1}{k}e^{1/k} = [0, k-1, 2k, 1, \overline{2+2\lambda, 2k-1, 1}]_{\lambda=0}^{\infty}.$$
(86)

Proof. From [4, Section 31], we have

$$\xi_0 = \frac{e^{1/k} - 1}{e^{1/k} + 1} = [0, 2k, 6k, 10k, 14k, \ldots] = [0, 2k, \overline{(4\lambda + 6)k}]_{\lambda=0}^{\infty},$$
(87)

we get $e^{1/k} = \frac{\xi_0 + 1}{-\xi_0 + 1}$. Putting

$$\eta_0 = \frac{1}{k} e^{1/k} = \frac{\xi_0 + 1}{-k\xi_0 + k},\tag{88}$$

we have

$$a = 1, b = 1, c = -k, d = k, \ n = ad - bc = k - (-k) = 2k > 0,$$
(89)

and

$$c\xi_0 + d = -k\xi_0 + k = -k\frac{e^{1/k} - 1}{e^{1/k} + 1} + k = k\frac{-e^{1/k} - 1}{e^{1/k} + 1} + \frac{2k}{e^{1/k} + 1} + k = \frac{2k}{e^{1/k} + 1} > 0.$$
(90)

The 0th and the 1st convergents of $[0, 2k, 6k, 10k, 14k, \ldots]$, are, respectively,

$$\frac{A_0}{B_0} = [0] = \frac{0}{1}, \quad \frac{A_1}{B_1} = [0, 2k] = \frac{1}{2k}.$$
(91)

We subdivide the continued fraction of ξ_0 into sections in the following way

$$\xi_0 = [0, 2k|6k|10k|14k|\dots] = [a_0, a_1|a_2|a_3|a_4|\dots] = [a_0, a_1|a_{\nu_0}|a_{\nu_1}|a_{\nu_2}|\dots]$$
(92)

to get

$$B_{\nu_0-1}(c\xi_0+d) = B_1(c\xi_0+d) = \frac{4k^2}{e^{1/k}+1} \ge 1, \ a_{\nu_0} = 6k \ge 5k = 2(2k) + k = 2n + |c|$$
(93)

$$a_{\nu_i} \ge 10k \ge 4k = 2(2k) = 2n$$
 (*i* = 1, 2, 3, ...). (94)

From Lemma 2, we obtain

$$\frac{a[a_0, a_1] + b}{c[a_0, a_1] + d} = \frac{[0, 2k] + 1}{-k[0, 2k] + k} = \frac{1}{k - 1 + \frac{1}{2k + \frac{1}{1}}} = [0, k - 1, 2k, 1].$$
(95)

Since it has an even number of terms, the 1st section of η_0 is 0, k - 1, 2k, 1, and we find the 2nd and the 3rd convergents as

$$\frac{C_2}{D_2} = [0, k-1, 2k] = \frac{2k}{2k^2 - 2k + 1}, \quad \frac{C_3}{D_3} = [0, k-1, 2k, 1] = \frac{2k+1}{2k^2 - k}.$$
(96)

Then we get

$$r_0 = \gcd(aA_{\nu_0-1} + bB_{\nu_0-1}, cA_{\nu_0-1} + dB_{\nu_0-1}) = 1, \ s_0 = \frac{n}{r_0} = \frac{2k}{1} = 2k.$$
(97)

Walailak J Sci & Tech 2019; 16(9)

For t_0 , we have

$$t_0 = s_0 \frac{D_{\mu_0 - 2}}{D_{\mu_0 - 1}} - r_0 \frac{cA_{\nu_0 - 2} + dB_{\nu_0 - 2}}{cA_{\nu_0 - 1} + dB_{\nu_0 - 1}} = \frac{4k^3 - 4k^2 + k}{2k^2 - k} = 2k - 1.$$
(98)

We proceed to the 2nd section of η_0 to get

$$\frac{r_0[a_{\nu_0}] - t_0}{s_0} = \frac{[6k] - 2k + 1}{2k} = 2 + \frac{1}{2k - 1 + \frac{1}{1}} = [2, 2k - 1, 1]$$
(99)

which has an odd number of terms, and the second section of η_0 is 2, 2k-1, 1. Proceeding as in the previous theorem, we have

$$A_{\nu_1 - \nu_0 - 2, \nu_0} = A_{3-2-2,2} = A_{-1,\nu_0} = 1, \ B_{\nu_1 - \nu_0 - 2,\nu_0} = B_{3-2-2,2} = B_{-1,\nu_0} = 0, \tag{100}$$

$$\frac{A_{\nu_1-\nu_0-1,\nu_0}}{B_{\nu_1-\nu_0-1,\nu_0}} = \frac{A_{3-2-1,\nu_0}}{B_{3-2-1,\nu_0}} = \frac{A_{0,\nu_0}}{B_{0,\nu_0}} = [6k] = \frac{6\kappa}{1}$$
(101)

$$\frac{C_{\mu_1-\mu_0-2,\mu_0}}{D_{\mu_1-\mu_0-2,\mu_0}} = \frac{C_{7-4-2,\mu_0}}{D_{7-4-2,\mu_0}} = \frac{C_{1,\mu_0}}{D_{1,\mu_0}} = [2,2k-1] = \frac{4k-1}{2k-1}$$
(102)

$$\frac{C_{\mu_1-\mu_0-1,\mu_0}}{D_{\mu_1-\mu_0-1,\mu_0}} = \frac{C_{7-4-1,\mu_0}}{D_{7-4-1,\mu_0}} = \frac{C_{2,\mu_0}}{D_{2,\mu_0}} = [2,2k-1,1] = \frac{4k+1}{2k}.$$
(103)

Furthermore,

$$r_{1} = \gcd(r_{0}A_{\nu_{1}-\nu_{0}-1,\nu_{0}} - t_{0}B_{\nu_{1}-\nu_{0}-1,\nu_{0}}, s_{0}B_{\nu_{1}-\nu_{0}-1,\nu_{0}}) = \gcd(4k+1,2k) = 1,$$
(104)

$$s_1 = \frac{n}{r_1} = \frac{2n}{1} = 2k. \tag{105}$$

Hence,

$$t_1 = s_1 \frac{D_{\mu_1 - \mu_0 - 2, \mu_0}}{D_{\mu_1 - \mu_0 - 1, \mu_0}} - r_1 \frac{B_{\nu_1 - \nu_0 - 2, \nu_0}}{B_{\nu_1 - \nu_0 - 1, \nu_0}} = 2k \left(\frac{2k - 1}{2k}\right) - 1\left(\frac{0}{1}\right) = 2k - 1,$$
(106)

and

$$\frac{r_1[a_{\nu_1}] - t_1}{s_1} = 4 + \frac{1}{2k - 1 + \frac{1}{1}} = [4, 2k - 1, 1].$$
(107)

Since $t_0 = t_1$, $s_0 = s_1$, $r_0 = r_1$, by Lemma 3, we get $t_i = t_j$, $s_i = s_j$, $r_i = r_j$ for all i, j, and so

$$\eta_0 = [0, k - 1, 2k, 1, 2, 2k - 1, 1, 4, 2k - 1, 1, \ldots] = [0, k - 1, 2k, 1, \overline{\chi_0(\lambda), 2k - 1, 1}]_{\lambda=0}^{\infty},$$
(108)

i.e., from

$$\xi_0 = [0, 2k, 6k, 10k, 14k, \ldots] = [0, 2k, \overline{(4\lambda + 6)k}]_{\lambda=0}^{\infty} = [0, 2k, \overline{\psi_0(\lambda)}]_{\lambda=0}^{\infty},$$
(109)

we obtain

$$\chi_0(\lambda) = d_{\mu_0} + r_0^2 \frac{\psi_0(\lambda) - \psi_0(0)}{n} = 2 + \frac{(4\lambda + 6)k - 6k}{2k} = 2 + 2\lambda .$$
(110)

Acknowledgements

The first and third authors thank the DPST (The Development and Promotion of Science and Technology Talents Project), the Institute of Research and Innovation, School of Science and Walialak University for financial supports (Grant no. WU62222). The second author thanks the faculty of Science and Kasetsart University for facilities and support.

Walailak J Sci & Tech 2019; 16(9)

References

- [1] H Cohn. A Short proof of the simple continued fraction expansion of *e. Am. Math. Monthly* 2006; **113**, 57-62.
- [2] CS Davis. On some simple continued fractions connected with $e^{2/k}$. J. London Math. Soc. 1945; 20, 194-8.
- [3] T Komatsu. A proof of the continued fraction expansion of $e^{2/s}$. Integers. 2007, A30.
- [4] O Perron. Die Lehre von den Kettenbrüchen, Band I, Teubner, Stuttgart, 1954.