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Abstract

A brief account of our recent works dealing with the problem of characterizing hyperbolic functions
through the use of functional equations with side conditions is reported. Specifically, the fact that each of
the n functions having a zero sum over n points lying in a hyperplane is necessarily a linear function, is
generalized and the results so obtained are applied to characterize hyperbolic functions.
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Introduction

As seen from [8, Chapter 3] and [7, Chapter 13], the investigation about using functional equations
to characterize trigonometric-hyperbolic functions have long been of interest. We report here our recent
works which were originated from the 2004 work of Benz [2], who confirmed the result of Davison [1] by
showing that the functional equation f(x)f(y)f(z) = f(x) + f(y) + f(z), with the three angles x, y, z
of a non-degenerate triangle, can be used to characterize the tangent function. In 2014, Hengkrawit et al.
[3] generalized this result by solving a functional equation, with n parameters representing the angles of a
non-degenerate convex n-gon, and used it to characterizes the tangent function. In 2016, Hengkrawit et al.
[4] solved another functional equation, different from [3], and used it to characterize the tangent function.
Adopting the method and techniques extracted from the proof in [3], we obtain in [6]:

Theorem 1. Let n be an integer ≥ 3, and let I denote the closed interval [a, b] with b > a. Then the
functions ϕi : I → R (i = 1, 2, . . . , n) satisfy the constant sum functional equation

n∑
i=1

ϕi(xi) = T1, xi ∈ I (i = 1, 2, . . . , n), (1)

subject to the hyperplane condition
n∑

i=1

xi = T2, (2)

where T1, T2 are real constants with

n(2a+ b)

3
< T2 <

n(a+ 2b)

3
, (3)

if and only if, there exists an additive function A : R → R such that

ϕi(x) = A(x)−A (T2/n) + γi (i = 1, 2, . . . , n),
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where the constants γi satisfy

n∑
i=1

γi = T1. (4)

The functional equation in the above theorem deals with functions with constant sum over points lying
in a hyperplane, and its application to characterize the hyperbolic functions is outlined in the next section.

Hyperbolic functions

The first step towards characterization is to derive additive formulas for hyperbolic functions which
is given in the next lemma.

Lemma 2. I. Let n be an integer ≥ 2. If y1, . . . , yn ∈ R, then

sinh(y1 + · · ·+ yn) =

⌊n−1
2 ⌋∑

M=0

∑
1≤i1<···<i2M+1≤n

Sn(i1, . . . , i2M+1), (5)

where

Sn(i1, . . . , i2M+1) :=

(
2M+1∏
k=1

sinh yik
cosh yik

) n∏
j=1

cosh yj


and

cosh(y1 + · · ·+ yn) =

⌊n
2 ⌋∑

M=0

∑
1≤i1<···<i2M≤n

Cn(i1, . . . , i2M ), (6)

where Cn(i1, . . . , i2M ) :=


(∏2M

k=1

sinh yik

cosh yik

)(∏n
j=1 cosh yj

)
if M ̸= 0

∏n
j=1 cosh yj if M = 0.

II. Let n ∈ N, n ≥ 3, let A1, . . . , An−1 ∈ R and let

h1(n) :=

⌊n−1
2 ⌋∑

M=1

∑
1≤i1<i2<···<i2M≤n−1

2M∏
k=1

tanhAik

h2(n) :=

⌊n−2
2 ⌋∑

M=0

∑
1≤i1<i2<···<i2M+1≤n−1

2M+1∏
k=1

tanhAik .

If 1 + h1(n) ̸= 0, then

tanh(A1 + · · ·+An−1) =
h2(n)

1 + h1(n)
.

Strategically combining Theorem 1 with Lemma 2, we arrive at the following characterizations of the
hyperbolic sine, cosine and tangent functions.
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Theorem 3. Let n be an integer ≥ 3.
I. Let b > a, the functions fj : [a, b] → R and gj : [a, b] → [1,∞) (j = 1, . . . , n) satisfying
⌊n

2 ⌋∑
M=0

∑
1≤i1<···<i2M≤n

Cn(fj , gj ; i1, . . . , i2M ) = 1, (7)

where Cn(fj , gj ; i1, . . . , i2M ) :=


(∏2M

k=1

fik(xik)
gik(xik)

)(∏n
j=1 gj (xj)

)
if M ̸= 0

∏n
j=1 gj (xj) if M = 0,

subject to the condition

sinh−1 ◦fj = cosh−1 ◦gj (j = 1, . . . , n) (8)
n∑

j=1

xj = L1, (9)

where L1 is a constant belonging to the range n(2a+b)
3 < L1 < n(a+2b)

3 , are given by

fj(x) = sinh (A1(x)−A1 (L1/n) + dj) , gj(x) = cosh (A1(x)−A1 (L1/n) + dj) ,

where A1 is an additive function on R and the constants dj satisfy
∑n

j=1 dj = 0.
II. Let b > a. The functions fj : [a, b] → R and gj : [a, b] → [1,∞) (j = 1, . . . , n) satisfying
⌊n−1

2 ⌋∑
M=0

∑
1≤i1<···<i2M+1≤n

Sn(fj , gj ; i1, . . . , i2M+1) = 0, (10)

where Sn(fj , gj ; i1, . . . , i2M+1) :=

(∏2M+1
k=1

fik(xik)
gik(xik)

)(∏n
j=1 gj (xj)

)
, subject to the condition

sinh−1 ◦fj = cosh−1 ◦gj (j = 1, . . . , n) (11)
n∑

j=1

xj = L2, (12)

where L2 is a constant belonging to the range n(2a+b)
3 < L2 < n(a+2b)

3 , are given by

fj(x) = sinh (A2(x)−A2 (L2/n) + ℓj) , gj(x) = cosh (A2(x)−A2 (L2/n) + dj) ,

where A2 is an additive function on R and the constants ℓi satisfy
∑n

j=1 ℓj = 0.
III. Let b > a. The functions fj : [a, b] → (−1, 1) (j = 1, . . . , n) satisfying

n∑
j=1

fj(xj) = −
⌊n−1

2 ⌋∑
M=1

∑
1≤i1<···<i2M+1≤n

2M+1∏
k=1

fik(xik), xj ∈ I (j = 1, . . . , n), (13)

subject to the two conditions
n∑

j=1

xi = L3, (14)

1 +

⌊n−1
2 ⌋∑

M=1

∑
1≤i1<···<i2M≤n−1

2M∏
k=1

fik(xik) ̸= 0, (15)
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where L3 is a constant belonging to the range n(2a+b)
3 < L3 < n(a+2b)

3 , are given by

fj(x) = tanh (A3(x)−A3 (L/n) + tj) (j = 1, . . . , n),

where A3 is an additive function on R, and the constants tj satisfy
∑n

j=1 tj = 0.

In passing, let us remark that characterizations along the same vein as above for the trigonometric sine
and cosine functions have already been carried out in [5].
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