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Abstract 

Brain-Computer-Interface (BCI) has been widely used in the field of neuro-rehabilitation such as 
automatic controls based on brain commands to upper and lower extremity prosthesis devices in patients 
with paralysis. In a post-stroke period, approximately 50 % of stroke survivors have unilateral motor 
deficits leading to a sustained decline in chronic upper extremity function. Stroke affects patients in their 
productive and elderly age which is potentially creating new problems in national health development. 
BCI could be used to aid post-stroke patient recovery, so the motion detection and classification are 
essential for optimizing the BCI device control. Therefore, this study aims to distinguish several hand 
functions such as grasping, pinching, and hand lifting from releasing movement by the standard actions 
performed during post-stroke rehabilitation based on brain signals of a healthy subject obtained from an 
electroencephalogram (EEG) with a 5 channels electrode. In this study, the EEG signals were 
decomposed using a Discrete Wavelet Transform (DWT) then filtered by a bandpass filter to generate Mu 
and Beta waves, which were correlated with imaginary movement. Then, the Mu and Beta waves were 
calculated using a Common Spatial Pattern (CSP) algorithm as the inputs for Extreme Learning Machine 
(ELM) to distinguish 2 types of imaginary hand movements (grasping v. releasing, pinching v. releasing, 
hand lifting v. releasing). The results of these classifications shown that ELM and CSP were useful 
features in distinguishing 2 types of motion with software/system accuracy average above 95 %. 
Therefore, this could be useful for optimizing BCI devices in neuro-rehabilitation, moreover by 
combining it with a Functional Electrical Stimulator (FES) as a self-therapy for post-stroke patients. 
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Introduction 

Stroke is a brain functional disease in the form of impaired neural function locally or globally and 
appears suddenly, progressively, and quickly [1]. Strokes may cause partial paralysis of the body, and 
after a healing period or post-stroke period, about 50 % of stroke survivors have unilateral motor deficits 
that lead to decreased chronic upper extremity function [2]. This motor deficit affects hand or arm 
function of the post-stroke patients’ body in everyday life even several years after the stroke. Both active 
and passive motoric rehabilitation (with the aid of a tool or therapist) is necessary to restore hand/arm 
function as they were before. 

The Brain-Computer-Interface (BCI) or Brain-Machine-Interface (BMI) uses brain signals to run a 
device in the absence of motoric system participation [3]. BCI or BMI has been extensively developed in 
neuro-rehabilitation to help post-stroke patients restore upper or lower extremity function by combining it 
with Functional Electrical Stimulation (FES), robots, and orthotic. Daly combined BCI and FES for post-
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stroke patient therapy based on the imaginary movement of finger extension [4]. Ang et al. reported 
combining BCI and Haptic Knop robot (HK) for hand rehabilitation of stroke patients based on the 
imaginary movement of grasp [5]. Moreover, Buch who did a BCI research in stroke patients based on the 
imaginary movement of grasp combined with orthoses [6]. 

BCIs could be used for post-stroke patient recovery as a tool for aiding patient in the rehabilitation, 
so motion detection and classification are essential for optimizing the BCI device control. However, the 
conventional problem of obtaining data from stroke survivors is that they do not have the physical 
condition to complete all the process. As a result, most BCIs studies are designed using a subject-
dependent approach using healthy subjects [7]. Besides, the fewer electrodes would be more comfortable 
than 32 or 64 electrodes. Therefore, this study aims to distinguish several hand functions such as 
grasping, pinching, and hand lifting by standard movements performed during post-stroke rehabilitation 
based on brain signals of a healthy subject obtained from a 5-channels electrode EEG. 

BCI followed by machine learning has been proven effective with minimal training required and 
compensates for the high variability among subjects [8]. In this study, the information obtained from the 
EEG after signals processing, such as Wavelet transform and bandpass filter, were used as inputs for 
neural networks to distinguish 2 types of imaginary hand movements (grasping v. releasing, pinching v. 
releasing, hand lifting v. releasing). The neural network used in this study was a type of feed-forward 
neural network with an Extreme Learning Machine (ELM) algorithm because it has a faster training time 
and higher accuracy compared to other algorithms such as Back Propagation and Support Vector 
Machines (SVM) in the signal classification [9]. 

 
Materials and methods 

Experiment protocol 
BCIs are a subject-dependent system which is subject-specific and need a calibration session for any 

new user. Thus, BCIs are only suitable for just one particular subject [10]. In this study, a healthy subject 
participated. The subject was in a conscious condition (eyes open) with both hands resting in their lap and 
was asked to imagine several types of hand movement, such as grasping, pinching, hand lifting, and hand 
releasing or relaxing in the right hand. Each task was performed 42 times with the same subject for 10 s 
approximately. Every consecutive task was separated with 10 s rest, while a different task was separated 
with 1 min rest [11,12]. This pause was meant to avoid fatigue due to the constant concentration. The 
order of the imaginary movement began with imagining the release movement or relaxing, then grasping, 
pinching and ended with hand lifting. 

 
Signal acquisition 
BCI is a system which does not depend on peripheral nerves and muscles. This definition limits the 

range of signals that control BCI is only from brain signals, excluding signals that obtained from muscles 
or peripheral nerves [13]. The signals were generated from electrodes that were placed on several points 
of the scalp which represent brain regions, such as frontal, temporal, central, parietal, and occipital. The 
data were obtained using an EEG EMOTIV Insight machine with 5 channel and 128 Hz sampling 
frequency (Figure 1). The electrode was positioned according to EMOTIV device which has 5 EEG 
sensors and 2 reference sensors as shown in Figure 2. These positions represent activity in the frontal 
cortex (AF3-AF4), the parietal-temporal cortex (T7-T8), and the parietal-occipital cortex (Pz). 

 
Signal processing 
The signals were processed as shown in the flow diagram (Figure 3). EEG recordings which were 

obtained with the EEG EMOTIV Insight machine were stored in the European data format (.edf) then 
converted to ASCII (American Standard Code for Information Interchange) data [14]. Thus, each 
recording was changed into a 1280-by-5 matrix (a 10-second-period of recordings-by-the number of 
channels). The ASCII data was filtered into 2 sub-waves based on the frequency range: Mu (7 - 15 Hz) 
and beta (15 - 25 Hz) using the Discrete Wavelet Transform (DWT) at a 3 level decomposition with 
Daubechies 4 (db4) as the mother Wavelet. The decomposition process is shown in Figure 4. 
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Figure 1 EEG signal recording. 
 
 

 
Figure 2 EMOTIV Insight electrode placement [20]. 
 
 

Based on Figure 4, the coefficients of D3 and D4 were consistent with the Mu and Beta frequency 
ranges. These coefficients were then filtered with the Equiripple Bandpass filter to make sure that these 
coefficients were in the correct frequency range for Mu (7 - 15 Hz) and Beta (15 - 25 Hz). Afterward, the 
average power spectral density (PSD) values were calculated. The average PSD was obtained by 
summing the squared values of the energy in each segment to obtain a matrix with dimensions 1×10 (5 
channels of Mu wave and 5 channels Beta wave) for each recording. 
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Figure 3 The Flow diagram of classifying imaginary hand movement. 
 
 

 
Figure 4 The Signal decomposition using DWT level 3. 
 
 

Feature extraction 
The next process was to calculate the CSP values that were used as features for the ELM neural 

network input (Figure 3). The CSP algorithm is a signal processing method that can be used to increase 
discriminatory classes and is an excellent method for BCI signal classification [13]. This algorithm 
calculates the variance of each class then maximizes the variance of one class, while at the same time 
minimizing the variance of the other classes. Thus, the distinction between classes is more apparent. This 
study used a modification of the CSP algorithm by first filtering the signal into 2 frequency bands, Mu 
and Beta wave then calculating its variance based on the CSP algorithm. The CSP was obtained from the 
script from Ethridge and Weaver [15]. We conducted a 30-by-10 matrix for 30 data of training and a 12-
by-10 matrix for 12 data testing. 
 

Classification 
The classification process (Figure 3) began with the normalization stage of feature values which 

used the “Mapminmax” function with syntax [y, PS] = mapminmax (x, -1, 1), where x and y were the 
input data and the result of data normalization, respectively. The normalization results were the CSP 
value of Mu and Beta in the range of minus one and one [-1,1]. The training process was performed based 
on the normalization result as the feature values from each type of hand movement (grasping, pinching, 
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hand lifting and relaxing or releasing movement) to obtain the input weights and the output weights used 
for the testing phase. These features were classified using the Extreme Learning Machine (ELM), which 
is a type of feedforward neural network with a single hidden layer which abandons the traditional 
algorithm that iteratively adapts all network parameters, yet determines the weights between hidden 
neurons and the output of neurons from a single hidden layer analytically. ELM uses Moore Penrose 
Pseudo Inverse theory to minimize the training error, and it has been shown to have higher accuracy 
compared to other types of ANN, such as Back Propagation and Support Vector Machine (SVM) [16]. 
Besides that, ELM parameters were selected at random so that it has fast learning and is able to produce 
high accuracy [17].  

The optimal features were determined through K-fold cross-validation with K = 4 (4-fold cross 
validation) so that the training and testing stage was done 4 times (fold) with different training and testing 
data than that used in the ELM. The average classification accuracy was calculated based on 5 different 
values of the hidden neural as the evaluations for each task pair of imaginary hand movements (grasping 
v. releasing, pinching v. releasing, hand lifting v. releasing). The ELM training was conducted with 60 
data points, while the ELM testing was performed with 24 data which consisted of the same amount from 
each task, in both of training and testing. 
 
Results and discussion 

After converting into ASCII data, EEG recordings were then filtered into 2 sub waves based on the 
frequency range: Mu (7 - 15 Hz) and beta (15 - 25 Hz) using the Discrete Wavelet Transform (DWT) 
decomposition technique with 4 decompositions and a mother Wavelet type Daubechies 4 (db4). The Mu 
and Beta waves were the frequencies that were correlated with left or right-hand motor imagery [11]. The 
coefficients of the decomposition products corresponding to the Mu and Beta frequency ranges were 
decompositions 2 and 3 (D2 and D3). Sub-bands were filtered with an Equiriple Bandpass filter in Mu 
wave in a frequency range 7 to 15 Hz (Figure 5a), and Beta at frequency range 15 to 25 Hz (Figure 5b) 
then calculated its average power spectral density (PSD). 
 
 

 
Figure 5 (a) Mu and (b) beta wave after DWT and band pass filtering process. 
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Figure 6 Distribution of data of grasping v. releasing (a) before and (b) after CSP calculation process. 
 
 

 
 
Figure 7 Distribution of data of pinching v. releasing (a) before and (b) after CSP calculation process. 
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Figure 8 Distribution of data of hand lifting v. releasing (a) before and (b) after CSP calculation process. 
 
 

The average PSD of Mu and Beta waves were calculated using a CSP algorithm to extract the 
features of the EEG signal as an input for the ELM. The CSP has been widely used in BCI since it can 
efficiently obtain information from 2 classes of imaginary movement. This algorithm maximizes the 
variance of one class and minimizes the other class simultaneously. Figure 6 indicates the distribution of 
data before and after CSP algorithm was implemented in 2 imaginary types of movement, grasping and 
releasing. Before calculating CSP values, grasping movement was difficult to separate from releasing 
movement. The same treatment was also applied in Figures 7 and 8 which show the distribution data of 
pinching versus releasing movement and the distribution data of hand lifting versus releasing movement, 
respectively. These figures indicate that CSP was proven in helping to separate 2 types of hand movement 
well in all classes (grasping v. releasing, pinching v. releasing, hand lifting v. releasing). 

The following step after performing feature extractions by calculating the CSP values was the 
classification stage using ELM to distinguish 2 types of hand movement. The classification began with 
normalization, which changed the CSP value of Mu and Beta wave to within the range of -1 and 1. 
Furthermore, the input weights and the output weights as a result of the training stage were carried out 
with 60 data consisting of 30 grasping/pinching/hand lifting data and 30 releasing movements data. The 
testing performed using 24 data comprised of 12 grasping/pinching/hand lifting data and 12 data of 
releasing movement based on the input and output weights from the training phase. The training and 
testing data were done using a 4-fold cross-validation method, so that, the training and testing phase were 
performed 4 times (fold) with different training data and testing data. System performance values of 
accuracy are shown in Tables 1 - 3, respectively. 
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Table 1 shows the accuracy in classifying the grasping and releasing movement, while Table 2 
represents the accuracy in distinguishing pinching and releasing movement and Table 3 details the 
accuracy in classifying of hand lifting and releasing hand movement. Based on all 3 tables, the minimum 
number of hidden neurons for 30 training data and 12 testing data was 50 because it had the highest 
training and testing accuracy value. The classification accuracies were 96 % for classification of grasping 
v. releasing, 95 % for classification of pinching v. releasing and 96 % for classification of lifting hand v. 
releasing. The overall average performance accuracy was above 95 % for the 2-class imaginary hand 
movement.  
 
 
Table 1 Accuracy of the classification of grasping v. releasing. 
 

30 Data of Training and 12 Data of Testing 

Hidden 
neuron 

Accuracy 
Round 1 Round 2 Round 3 Round 4 Average 

Train 
(%) 

Test 
(%) 

Train 
(%) 

Test 
(%) 

Train 
(%) 

Test 
(%) 

Train 
(%) 

Test 
(%) 

Train 
(%) 

Test 
(%) 

1 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 
5 91.67 62.50 90.00 87.50 98.30 95.83 93.33 70.83 93.33 79.16 
10 95.00 66.67 93.33 87.50 100.00 100.00 98.33 70.83 96.67 81.25 
20 98.33 87.5 100.00 91.67 100.00 100.00 100.00 75.00 99.58 88.54 
30 100.00 91.67 100.00 95.83 100.00 100.00 100.00 79.17 100.00 91.67 
40 100.00 91.67 100.00 95.83 100.00 100.00 100.00 7917 100.00 91.67 
45 100.00 95.83 100.00 95.83 100.00 100.00 100.00 83.33 100.00 93.75 
50 100.00 100.00 100.00 95.83 100.00 100.00 100.00 91.67 100.00 96.87 
55 100.00 100.00 100.00 95.83 100.00 100.00 100.00 91.67 100.00 96.87 

 
 
Table 2 Accuracy of the classification of pinching v. releasing. 
 

30 Data of Training and 12 Data of Testing 

Hidden 
neuron 

Accuracy 
Round 1 Round 2 Round 3 Round 4 Average 

Train 
(%) 

Test 
(%) 

Train 
(%) 

Test 
(%) 

Train 
(%) 

Test 
(%) 

Train 
(%) 

Test 
(%) 

Train 
(%) 

Test 
(%) 

1 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 
5 88.33 70.83 81.67 70.83 96.67 54.17 90.00 83.30 89.17 69.78 
10 100.00 70.83 98.33 70.83 100.00 54.17 96.67 95.83 98.75 72.92 
20 100.00 70.83 100.00 62.50 100.00 75.00 100.00 95.83 100.00 76.04 
30 100.00 75.00 100.00 66.67 100.00 79.17 100.00 95.83 100.00 79.17 
40 100.00 79.17 100.00 75.00 100.00 83.33 100.00 95.83 100.00 83.33 
45 100.00 87.50 100.00 79.17 100.00 87.50 100.00 100.00 100.00 88.54 
50 100.00 95.83 100.00 91.67 100.00 95.83 100.00 100.00 100.00 95.83 
55 100.00 95.83 100.00 91.67 100.00 95.83 100.00 100.00 100.00 95.83 
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Table 3 Accuracy of the classification of hand lifting v. releasing. 
 

30 Data of Training and 12 Data of Testing 

Hidden 
neuron 

Accuracy 

Round 1 Round 2 Round 3 Round 4 Average 

Train 
(%) 

Test 
(%) 

Train 
(%) 

Test 
(%) 

Train 
(%) 

Test 
(%) 

Train 
(%) 

Test 
(%) 

Train 
(%) 

Test 
(%) 

1 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 

5 93.33 75.00 95.00 58.33 93.33 91.67 95.00 95.83 94.16 83.33 

10 98.33 79.17 98.33 58.33 100.00 100.00 95.00 95.83 100.00 84.38 

20 100.00 79.17 100.00 62.50 100.00 100.00 100.00 95.83 100.00 84.38 

30 100.00 83.33 100.00 75.00 100.00 100.00 100.00 95.83 100.00 88.54 

40 100.00 83.33 100.00 83.33 100.00 100.00 100.00 95.83 100.00 90.62 

45 100.00 91.67 100.00 83.33 100.00 100.00 100.00 100.00 100.00 93.75 

50 100.00 95.83 100.00 91.67 100.00 100.00 100.00 100.00 100.00 96.86 

55 100.00 95.83 100.00 91.67 100.00 100.00 100.00 100.00 100.00 96.86 

 
 

The Mu and Beta waves were in the range that correlated with the brain’s motoric output [18]. 
Based on the average accuracies on Tables 1 - 3, Mu and Beta waves calculated using the CSP algorithm 
as the features showed a good result in helping to separate the 2-class imaginary movement. In a previous 
study, CSP also demonstrated high accuracies (above 73 %) for calculating the features (EMG based 
marker) in distinguishing grasping and release movement combined with the Linear Discriminant 
Analysis (LDA) as a classifier [19]. The previous study used real movements as features, while this study 
tried to use imaginary movements to generate the signal like a post-stroke patient who could not move 
their hand freely. In addition, this study attempted to classified the imaginary movements within the same 
limb, which was more challenging due to the close spatial representation in the motor cortex area [11]. 

ELM was proven in giving high accuracies in EEG classification, which were 95 % for the 
classification of pinching v. releasing as the lowest number of accuracy and 96 % for classification of 
grasping v. releasing and lifting hand v. releasing as the highest number of accuracy. The lower accuracy 
showed that pinching was the most laborious task among others. Pinching was challenging to distinguish 
from the relaxing or releasing movement, moreover in the same upper limb.  

The limitations of this study were only focusing on 2-classes of imaginary movement with the 
releasing movement as a reference in all classification. This study needs more combination of imaginary 
hand tasks to get more precise performance. For the future work, the 2-class imaginary hand will be 
combined with a Functional Electrical Stimulator (FES) to help the post-stroke patient in self-exercises 
during rehabilitation. Hopefully, active rehabilitation which needs the active participation of the patient 
will benefit recovery or restore hand function more efficiently. 
 
Conclusions 

In this study, the results of a 2-class classification of imaginary (grasping v. releasing, pinching v. 
releasing, hand lifting v. releasing), analyzed using spectral analysis and CSP calculations was reported. It 
could be seen in the 3 scatters of distribution data that the feature’s values in each class could be better 
classified after applying the CSP algorithm. Thus, CSP is a useful feature in distinguishing 2 types of 
hand motion could help Extreme Learning Machine (ELM) to be more precise in classifying the type of 
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hand movement, even though only a 5-channels electrode EEG was used. The overall average accuracy of 
the software/system in the classification of 2 types of imaginary hand movement using artificial neural 
network ELM was above 95 % using 50 hidden neurons for training and testing. This system could be 
useful for optimizing BCI devices in neuro-rehabilitation, such as combining with a Functional Electrical 
Stimulator (FES) as a self-therapy for post-stroke patients. 
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