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Abstract 

The Thailand Plasma Focus II (TPF-II) is a 3.3 kJ dense plasma focus that was developed at 
Walailak University, Thailand. The aim of the device is to study the production of ion beams in the keV 
energy range and their applications for the color modification of gemstones. A high-energy ion beam is 
produced by heating and acceleration in the pinch phase of the plasma focus. The heating process is 
determined by the maximum electrical current, which can be optimized by variation of the system’s 
inductance. Lee model code was implemented to optimize the configuration of the electrodes. The current 
waveforms for the different initial conditions were used to obtain the system’s inductance, which was 
verified by a short circuit test. It was found that the inductance and resistance were about 153 nH and 12 
mΩ, respectively. 
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Introduction 

Plasma focus (PF) devices are attractive for the production of dense energetic particles such as 
neutrons, ions, electrons, and photons. They can generate high temperatures and high-density plasmas in 
the order of the sun’s plasma [1,2]. The PF device, shown in Figure 1, consists of a vacuum chamber, 
current collectors (anode and cathode collectors), a coaxial electrode, a high voltage capacitor, a high 
voltage power supply, a spark gap, and a trigger. The coaxial electrode consists of an inner electrode as 
the anode, an outer electrode as the cathode, and an insulator, as shown in Figure 2. The spark gap and 
current collector are connected to the power transmission unit, which is fabricated by the coaxial cables 
and crimp ring terminals. The anode and cathode are connected to the anode and cathode collectors, 
respectively. Thailand Plasma Focus-II (TPF-II) is a small plasma focus device, the second such plasma 
focus device designed and fabricated in Thailand [3]. The first one was the Thailand Plasma Focus-I 
(TPF-I), which was used to study Soft X-Ray (SXR) production [4]. The TPF-II is designed for the 
production of ion beams in the energy range of keV [5-7]. The device equivalent circuit is an RLC circuit 
[4,8-10]. The electrical parameters and the equivalent circuit of the plasma focus were used to compute a 
responding current consisting mainly of the frequency, maximum current, and damping parameter. The 
current is calculated by Eq. (1), which is composed of 3 parts: the current amplitude, exponential 
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decrease, and oscillating term. The current waveform is shown in Figure 3. The angular frequency (ω) 
and the period (T) are calculated by Eqs. (2) and (3), respectively. The resistance (R) was neglected for 
Eqs. (2) and (3) because its value is very low. 
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Figure 1 Plasma focus components and plasma discharge phases. 
 

 

 
Figure 2 Cross section of electrode and insulator, anode radius (a), cathode radius (b), electrode length 
(l), effective insulator length (h), and insulator thickness (t). 
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Figure 3 RLC current waveform with DPF parameter, R = 20 mΩ, C0 = 30 µF, V0 = 15 kV, and              
L0 = 140 nH. 
 
 

The inductance is very important for the operation of a plasma focus because it is the main 
component to determine T. The inductance can be separated into 2 parts, static inductance and varying 
inductance. The static inductance is the passive inductance of the component which consists of the 
capacitor, current collector, and spark gap. The varying inductance, which is adjusted by the number of 
coaxial cables, consists of the inductance of the coaxial cable and the inductance of the connector. The 
damping of the oscillating waveform in Eq. (1) is dependent on the inertial resistance (R0) which is 
calculated by Eqs. (4) - (6) [8-11]. The voltage ratio of each maximum and minimum (f) is shown in 
Figure 3. 
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The phenomenon of plasma focus begins with the gas breakdown between both electrodes near the 

insulator to generate a plasma sheath around the insulator, known as the breakdown phase. The movement 
of the plasma sheath along the electrode length, between the cathode and anode, from the lower side to 
the upper side, is the acceleration phase. The electrode length is optimized for the propagation of the 
plasma sheath to arrive at the top of anode with a maximum current. The propagation time of the plasma 
sheath is one fourth of the RLC oscillation period. At the top of the central electrode, the plasma pinch is 
induced by the collapse of the funnel-shape plasma sheath into the small volume, which is driven by the 
self-magnetic force (J × B). The time when high temperature plasma particles are confined is called the 
pinch duration time. 

The electrical parameters and efficiency of the plasma focus to produce ion beams depend on the 
configuration of the electrodes [12], gas pressure [13,14], and insulator [15,16]. In order to optimize the 
electrode structure, the anode radius (a), the ratio of the cathode and anode radii (c), the electrode length 
(l), and Lee model code [17-19] were used. The model consists of 3 groups of initial parameters: 
electrical parameters, gas parameters, and model parameters. By setting the initial parameters 
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appropriately, the critical plasma focus parameters, pinch temperature, and pinch duration were 
calculated. Consequently, optimized values of l, a, and c were obtained. 
 
Optimization of electrode components 

TPF-II is a 3.3 kJ device with 30 μF of storage energy and 15 kV operating voltage. The structural 
configuration of the electrodes was obtained by calculation using the Lee model code. In the calculation, 
the initial parameters shown in Table 1 were utilized. It was found that c and the effective electrode 
length (leff) were 2.0 and 11.5 cm, respectively. A quarter of the RLC periodic time is 3.04 μs, whereas the 
oscillating frequency, which was calculated by Eq. (2), is 82.19 kHz. The time variation of the current 
and voltage (IV curve) were obtained for a = 1.25 cm, b = 2.5 cm, and leff = 11.5 cm. It was found that the 
maximum current, the pinch duration, and the pinch temperature were 176 kA, 10.77 ns, and 421 eV, 
respectively. 

 
 

Table 1 Initial parameters of plasma focus for calculation by Lee’s Model. 
 
Electrical Parameters Gas Parameters Model Parameters 
C0 = 30 µF  
L0 = 125 nH  
R0 = 2.3 mΩ  
V0 = 15 kV  

Gas Type: Neon  
Pressure: 2.5 Torr 

fm = 0.1 
fc = 0.7 
fmr = 0.12 
fcr = 0.68 

 
 
Experimental setup 

The short circuit test is the preliminary test of most PF devices and involves using a conductor plate 
(as shown in Figure 4) for connecting the cathode plate and anode. The short circuit test operated at 3 kV 
of capacitive charging voltage by varying the number of coaxial cables (2, 4, and 8), which were 
connected between the spark gap and current collector, as shown in Figure 5. The output waveform was 
used to calculate the inductance and resistance of the device. After the short circuit plate was connected, 
the electric charge was charged to the capacitor. When the spark gap was trigged by the triggering unit, 
the stored energy in the capacitor was transferred to the current collector. The current waveform was 
measured by the current probe. 

 

 
Figure 4 Diagram for short circuit test and pictures of anode, short circuit plate, and cathode plate. 
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Figure 5 Picture of the connection between spark gap and current collector by 8 coaxial cables. 
 
 
Results and discussion 

An example of the current waveform, measured by the current probe, is shown in Figures 6(a) - 
6(c) for 2, 4, and 8 coaxial cables, respectively. The inductance, calculated by Eq. (3) using T averaged 
over 3 periods and 5 repetitions, is shown in Table 2. The dependence of inductance on the number of 
coaxial cables from the calculations and experimental data are shown in Figure 7. There is some 
discrepancy between the calculated and experimental values and, thus, the experimental results were 
fitted by Eq. (7). 

 
nL /476930 +=  (7) 
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Figure 6 Signal of dI/dt of short circuit test for TPF-II using (a) 2, (b) 4, and (c) 8 lines of coaxial cable. 
 
 
Table 2 Inertial inductance corresponding to number of coaxial cables of PF device, measured by short 
circuit test. 
 

Number of Coaxial Cable Inertial Inductance(nH) 
2 334 ± 10 
4 211 ± 5 
8 153 ± 2 
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Figure 7 Inertial inductance of short circuit test and designed value.  
 

 

 
 
Figure 8 IV curve for system inductance L = 125 nH and 153 nH. 
 
 
 
 
 
 
 
 



Modelling and Electrical Characteristics of the Thailand Plasma Focus-II (TPF-II) Arlee TAMMAN et al. 
http://wjst.wu.ac.th 

Walailak J Sci & Tech 2018; 15(6) 
 
478 

 
 
Figure 9 Radial phase IV curve for system inductance L = 125 nH and 153 nH. 
 
 

 
Figure 10 Time-dependent plasma temperature in radial phase for system inductance L = 125 nH and    
153 nH. 
 
 

The curve fitting shows that the experimental values of Lstatic and Lvarying were 93 and 476 nH, 
respectively. The slightly higher value of the static inductance was caused by fluctuations in the NX3 
spark gap’s inductance [20]. Lvarying increases due to 2 factors: 1) the connection between the coaxial cable 
and the spark gap, and 2) the connection between the coaxial cable and the current collector. The 
resistance of the system, which was calculated by Eq. (6), for 2, 4, and 8 coaxial lines, were 11 ± 1 mΩ, 
10.1 ± 0.4 mΩ, and 12.0 ± 0.9 mΩ, respectively. From the short circuit test, the variation of the inertial 
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inductance was 125 - 153 nH depending on the number of coaxial cables. The ultimate optimum electrode 
length, calculated by the Lee model code, was 11.2 cm. Therefore, the plasma focus parameters derived 
by the short circuit results for the IV curve, radial phase IV curve, and radial plasma temperature were 
acquired, and are shown in Figures 8 - 10, respectively. The maximum current and radial plasma 
temperature were lower than the initial calculated ones. The maximum current decreased from 176 kA to 
163 kA. The pinch duration increased from 10.77 ns to 11.34 ns, whereas the pinch temperature 
decreased from 421 eV to 332 eV. 
 
Conclusions 

The preliminary result of the TPF-II short circuit test shows that the system inductance and 
resistance were 153 nH and 12 mΩ, respectively. The experimental results were used in the Lee model 
code to calculate the plasma focus’s parameters. For neon gas discharge, we obtained an optimized length 
of 11.2 cm for the TPF-II’s electrode, while a = 1.25 cm and b = 2.5 cm for 2.5 Torr of neon gas. The 
maximum current, pinch duration, and pinch temperature were found to be 163 kA, 11.34 ns, and 332 eV, 
respectively. The ion energy and flux measuring system will be installed in future work. 
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