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Abstract 

Discovering how information was distributed was essential for tracking, optimizing, and controlling 
networks. In this paper, a premier approach to analyze the reciprocity of user behavior, content, network 
structure, and interaction rules to the interplay between information diffusion and network evolution was 
proposed. Parameterization and insight diffusion patterns were characterized based on the community 
structure of the underlying network using diffusion related behavior data, collected by a developed 
questionnaire. The user roles in creating the flow of information were stochastically modeled and 
simulated by Colored Petri Nets, where the growth and evolution of the network structure was 
substantiated through the formation of the clustering coefficient, the average path length, and the degree 
distribution. This analytical model could be used for various tasks, including predicting future user 
activities, monitoring traffic patterns of networks, and forecasting the distribution of content. 

Keywords: Information diffusion, network evolution, stochastic, user behavior, Colored Petri Nets 
 
 
Introduction 

With the characteristics of interactivity, simplicity, instantaneity, and accessibility, Social Network 
Systems (SNSs) have become a new social phenomenon that people use to broadcast information or 
maintain their social and business relationships with others. Though SNSs have been used as a primitive 
medium to spread thoughts, opinions, products, and innovations in technology in this society for decades, 
little was known about how user behavior, content, and networks harness information dissemination, or 
how the flow of information affects the network structure. The characterization of the evolving dynamic 
user behavior and its dependence on the underlying network structure could contribute greatly to the 
success of SNS providers, education institutes, and businesses. 

Several attempts have been made to discover the causes and effects of information propagation in 
SNSs. Zhao et al. [1] employed a model to explore American university networks, and found that tie 
strengths impacted how information was propagated. Nui et al. [2] proposed a word of mouth propagation 
model to investigate network structure, and observed that user behavior influenced the scope and speed of 
propagation. Hu et al. [3] explored the emergency public health network, and found that information 
dissemination was immensely influenced by user interactive activities and group behaviors. Zhou et al. 
[4] presented a Twitter-like microblog model to trace repeated information propagation, and discovered 
that network structure had little effect on the diffusion, while personal behavior was an underlying driving 
factor. Sun and Yao [5] applied a model of a random-graph, scale-free, and small-world network to 
explain how individual personality and mentality differences impacted information adoption and 
diffusion, and realized that information was best disseminated through scale-free networks. Subbian et al. 
[6] introduced an information flow mining algorithm based on content propagation to locate key 
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propagandists and patterns of information flow; it was found that the node linking process was 
considerably dependent on content and period of time. 

Most works have put forward many models, with several parameters, to describe the behavioral 
mechanisms and theoretical characteristics of the diffusion process. A clear similarity among these was 
that all adopted user characteristics, group behavior, emotions, social relationships, network structure, or 
topics of content as influence parameters. However, the diffusion process in SNSs was not simply 
explained by any particular parameters, invariable distribution probabilities, or general mathematical 
models. The social network was user-centric and accessed by massive number of users with distinctive 
characteristics and different socialization patterns; the incorporation of only a few specific variants could 
make the models susceptible to unpredictable changes of individuals. 

By integrating the underlying dependences of user behavior, content, network, and interaction rules 
into the diffusion process, the reflection of user phenomena in SNSs should be more naturalistic. Herein, 
the stochastic modeling and synthesizing mechanism of Colored Petri Nets was introduced to sturdily 
visualize and anatomize the complicated nature of human behavior. Three steps of analysis were brought 
up. First, user behavior data was accumulated by using a developed questionnaire, for insight 
investigation of the spreading patterns and the obscured community structure. Second, optimal parameters 
were extracted and estimated for propagation probabilities. Third, various real user propagation activities 
were smoothly simulated, visualized, and mathematically analyzed through the executable models. Lastly, 
how information diffusion influenced the evolution mechanisms was explicitly reflected through the 
transfiguration of the clustering coefficient, the average shortest path length, and the degree distribution. 
This approach is the first in-depth analysis of the interplay between information diffusion and network 
evolution, which can best describe divergent and pluralistic user, content, and social events.  

The remainder of this paper is organized as follows. Important aspects on user roles in SNSs and 
general theories behind modeling are introduced in “The Modeling Framework”. The data preparation, 
user state definitions, and transitions are elucidated in “Parameterization Methodology”. In “Content 
Propagation Models with CPNs”, the model components and functionalities are explained. In 
“Simulations”, the simulation configuration and results are discussed, and the last section provides the 
“Conclusions” of this work. 
 
The modeling framework 

Developing a model to explore user behavior requires the identification of the series of events and 
transitions. Events refer to user interactions with content and other users within the scope of the SNS 
interface design. In other words, a user can appear in any state of SNS environment and traverse from one 
state to another via an action or transition. In this framework, the nondeterministic variation of transitions 
were superseded by a probabilistic interpretation derived from the reciprocity of the user’s decision, the 
underlying network structure, and the enticement of content. 
 

Data description and statistical inferences 
The focus group was university students. As usage amongst them was extremely high, both regular 

and extreme cases could be reasonably expected. Due to its richness features and large user base, the 
chosen study platform was Facebook. A questionnaire was designed to acquire user’s diffusion behavior 
and its dependent interactions. It covered 2 anticipated parts, A: the background and distinctive 
characteristics of the individual, and B: online activities. A pre-test was applied, and internal consistency 
and reliability was acceptable with a Cronbach’s alpha of 0.945. Using the corporation of university 
management, 1500 Thai students were recruited during October-November 2014. The final validated 
dataset was comprised of 1,287 respondents, with an 86 % return rate, 516 males (mean age = 22.84 
years; SD = 6.46) and 771 females (mean age = 23.37 years; SD = 6.30). The majority (81.7 %) were 
undergraduate students, 14.5 % were high vocational certificate students, and 3.8 % were graduate 
students [7]. 
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Central role of user behavior in social networks 
Behavioral analysis of user interactions varies tangibly over the user population and social media 

structure. Lang and Wu [8] explored the user’s motivation determinants (to be active and to remain 
online), and explained that a high degree and a high clustering coefficient indicated a long lifetime. Chen 
et al. [9] studied user lifetime and discovered that temperamental users had fewer number of friends and 
did not introduce much communication, contrasting with outgoing users. Benevenuto et al. [10] 
characterized user behavior in association with content, and realized that it had a power law distribution, 
and that essential motivations for users to post were solicitation and spontaneity. Yin et al. [11] observed 
users’ behavior in tagging content, and figured out that the behavior was not stable and changed over 
time. Uesugi [12] revealed that personality traits influenced both usage trends and the type of SNS 
services used. Ljepava et al. [13] examined characteristics of online users and disclosed that human 
personality influenced decisions to create social relationships and to distribute information. Ortigosa et al. 
[14] suggested that a crucial motivation for user interactions and social relationships was that of 
personality traits. Koo et al. [15] analyzed the effects of user characteristics on the usage of SNSs, and 
perceived that individual personality introduced different usage patterns. 

These findings were synthesized and interpolated into the model framework, as follows: 
 Lifetime: A lifetime was measured as the duration of time a user joined and left the networks, 

which was a roadmap for individuals to have relationships with others. Studies on user lifetime [8,9] have 
highlighted that prime influences on user lifetime were personality, motivation, and friendship relations. 

 Personalities: Personality and motivation were found to be what drive users to act. Generally, 
each user displayed unique interaction patterns [12], e.g., an extravert could create and diffuse 
information to friends regularly, while a neurotic could easily get moody with unpleasant content and end 
up unfriending a sender. 

 Friendship Relations: Connection between neighbors referred to sharing, exchanging, and 
delivering information depending on interpersonal ties. These ties not only indicated friendship relations, 
but also instructed types of information exchanged and dissipated [14,15], e.g., people with business 
relationships might pass business content to others. 

 Information Flow: Information could flow in any direction; however, information passing from 
one to another generally occurred according to their social relationships, e.g., work instruction flew from 
supervisors to employees. 

 Content: Each example of content maintained unique access patterns according to its importance 
[10,11]. In general, content of interest would repeatedly be dissipated and, vice versa, stale content would 
be discarded and isolated. 

During a user’s lifetime, the combination of friendship relations and content characterized a 
particular interaction between individuals, as well as determined the flow of information from source to 
destination. Though the determinants that activated users to act differently to different phenomena were 
multitudinous, there existed a few common stimuli, such as individual characteristics, interests, emotions, 
and the content itself. Through combining those aspects with a modeling paradigm of Petri nets, gaining 
insight into how user dynamic behavior, network structure, and content influence the growth of the 
network became possible. 
 

Colored Petri Nets (CPNs) 
In the context of SNSs, once a user registered with the system, full participation was enabled. Users 

could log in from different places. They might broadcast their existing status, update, share photos, 
forward information, or start a conversation, without necessarily knowing each other. Anyone in the same 
network was eligible to generate content and spread content out to everyone. By recognition of content, 
unpredictable human behavior was initiated, leading to an independent unknown choice of reactions. 
These actions did not totally depend on a latent construct of individual characteristics, but also relied on a 
prompt emotion, e.g., being happy with the post, being annoyed with the response, or enjoying seeing 
nice videos. Inevitably, they inherited nondeterministic, concurrent, conflicting, synchronous, and 
asynchronous processes that introduced a complex structure and autonomous evolution to the network. 
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With the special characteristics of distributed environments and dynamic systems of Petri nets, 
events that occurred with constraints, precedence, or distinguishable frequency could be facilitated. The 
Petri nets’ concept matches well with the intricacy of user interactions from two outstanding strengths: 
first, the explanatory power of a directed bipartite graph facilitates the modeling and visualizing of the 
complex system, and second, the flexibility of mathematical language encourages diverse quantitative 
analytical results in formalism representation [16]. However, modeling distinguishable users with 
differential characteristics introduces complications from the demand to differentiate one user from 
another. Each user must be declared as a token in a separate place. The modeling of user interactions 
could quickly become not only extremely complex but also potentially incomprehensible from a large 
number of places. Fortunately, CPNs fulfils the gaps on overloaded and indistinguishable state spaces by 
extending the classic Petri nets into a language for the modeling and validation of systems. With different 
types of expressions, i.e. guards, arc expressions, and expressions to define initial markings or rate 
functions, each token can be configured to be distinctive from others using a different token color [19]. 
Combining mathematical models and good graphical tools of Petri nets with a programming language of 
CPNs, the distinguishable users and diverse content of large and complex systems can easily be defined, 
as follows. 
 
Definition 1:  (A formal definition of CPNs) [20]. A nondeterministic, real-time and multidimensional 
relationship of user behavior is an 8-tuple ≺P,T,F,Σ,C,g, f, m0≻, where: 

P  is a finite set of places; users, content, and motivations, with color set to specify the 
type of residing tokens. Data type in the color set can be integer, character, or multiset.  

T  is a finite set of transitions (actions). Each action can be identified in Guard, a Boolean 
expression of the variables. 

F  is a finite set of direct arcs between a user and content. Each has an expression which 
can define the algorithm of the variables. 

Σ  is a finite, non-empty set of types, or color sets defined for places. 
C: P⇢  Σ is a color function that is assigned to each place p ∈ P, a color set C(p) ∈ Σ. 
g: T ⇢  EXP is a guard function of Boolean type that is assigned to each transition t ∈ T. 
f: F ⇢  EXP is an arc function that is assigned to each arc a ∈ F, an arc expression of a multiset 

type C(p)MS, where p is the place connected to the arc a. 
m0: P⇢ EXP is an initialization function that is assigned to each place p ∈ P, an initialization 

expression of a multiset type C(p)MS. 
The analysis of CPNs is based on multi-set handling, where the collection of all multisets (a set in 

which there can be several occurrences of the same element) over S is denoted by SMS. 
 

Transitions and stochastic firing processes  
The relationships between users not only originate patterns of information exchange or indicate 

what kinds of information to be spread, between whom, and to what limits, but also engender the system 
to change states. The determination of next state directions can either be to ‘continue’ in the present state, 
to ‘move’ to another state in the cycle, or even to completely ‘start’ a new cycle. The choice depends on 
various kinds of cognitive and informational forces, such as the content, the propagandists, and 
knowledge about the past. Explaining these variants by fixed geometric rules or cycle occurrences will be 
too inflexible, since these transitions govern stochastic properties. Hence, firing transitions are denoted 
as: 
 
Definition 2: (Firing Rules) [21]. Let N be a colored net and m ∈ ॸN. A transition t ∈ T is the fireable at 

m with color ct (denoted by m [(t, ct) 〉) if and only if: φ(t)(ct) ∧ ∀p ∈ P,m(p) ≥ W−(p, t)(ct). The marking 

m′ obtained is defined by: ∀p ∈ P,m′(p) = m(p) +W(p, t)(ct). In this case, m[(t, ct) 〉m′. 
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The set of transitions enabled at a marking m is the set En(m). Reach(N) ⊆ ॸN, and the set of 
reachable markings of N is recursively defined as {m0} ∪ {m ∈	ॸN | ∃m′ ∈ Reach(N), t ∈ T, ct ∈ C(t) | m′ 

[(t, ct) 〉m′}.  

The definition of operations on color mappings is described where the mappings are extended from C 
to Bag(C′) to mappings from Bag(C) to Bag(C′) by the following rules: 

– f(λ.c)   = λ.f (c) 
– f(c1 + c2)  = f(c1) + f(c2) 

 
Definition 3: (Mapping). If f is a mapping from Bag(C′′) to Bag(C′), and g is a mapping from Bag(C) to 
Bag(C′′) then f ◦ g is a mapping from Bag(C) to Bag(C′) defined by ∀c ∈ C, c′ ∈ C′, (f ◦ g)(c)(c′) =∑c′′∈ 
C′′, f(c′′)(c′).g(c)(c′′). 
 
Definition 4: (Mapping). If f is a mapping from Bag(C) to Bag(C′), then tf is a mapping from Bag(C′) to 
Bag(C) defined by ∀c ∈ C, c_ ∈ C′, tf(c′)(c) = f(c)(c′). 

From the view of discrete event system, the aforementioned concepts have been put into an 
effective example of CPN formalism to explain the way in which information is propagated in the 
network. 

 
Notions of user model with CPN approach  
Figure 1 shows a predefined algorithm of CPN theoretical definition. Let ij be the number of input 

tokens in Place 1, containing a set of users who were simultaneously online in an SNS. Place 2 was the 
output repository. Place 3 held input tokens mi, emotion determinants. The transition tj was a user 
interaction mastered by an inscription defined in the arc expression. Rate of transition was embedded by 
equation specifying a particular distribution equation derived from the probability of the occurrence. The 
enabling and firing of the transitions, which determined the kind of data for the successive places, was 
based on the evaluation of its precedence, associated arc expressions, and associated places. The most 
general firing rule defined for each transition tj was a function fj of ij that produced an oj-tuple of output 
tokens. Before the firing could be start, the conditions must be true, and the input places must contain 
sufficient suitable tokens to fire. If criteria were met, a token would be imparted and bounded as a 
multiset of a varying number of tokens to the output places identified in the output arc expressions. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1 CPN building block. 
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color set with distinguishable data values. Transformation activities were defined as transitions which 
specify what computational step to be executed once the transition was enabled. The condition for an 
activity to occur was specified in the arc inscriptions. Important tokens for testing the preconditions were 
defined by guards. If the conditions were true, changes in user actions were converted to tokens in 
different places, specified by output arc inscriptions. The provocation of activities could be depicted as 
stochastic transitions between users, friends, and content, in which the concurrent disseminating of a heap 
of content reflected the racing of tokens flowing from one place to another. Combining the given 
descriptions with the concept of place types, guards, and arc inscriptions, the model components, the 
control algorithm, the system environment, and the flow of data objects could be hierarchically specified 
by CPN tools, developed by Aarhus University, Denmark [19]. 
 
Parameterization methodology 

Though user processes such as authoring and sharing, and sometimes redistribution of content, 
regulate the flow of information at the top of the system environment, these interaction values were not 
applicable for used as model inputs. Therefore, an essential mechanism to reform the values into 
mathematic equations for process activation was parameterization. 

 
Phases of parameterization 
Several phases of refinements were employed to determine the probability annotations of stochastic 

patterns, as illustrated in Figure 2. Firstly, in order to profoundly track the pattern of information flow, 
and to accelerate the computational mechanism, data was collected, validated, and pre-processed by the 
method of clustering [3]. Propagation-related activities of user groups were extracted to determine user 
states and transitions. Through iterative fitting, the discreteness of data values was screened. The most 
probable distribution that maximizes the probability density functions was identified using the Maximum 
Likelihood Estimation (MLE). Probabilistic transitions between states indicated by stochastic equations 
were then investigated for fitness, as well as compared with the expected distributions. Finally, the 
simulation-based computations were executed in order to validate the evolutionary hypotheses. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 Parameterization process.  
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Clustering 
The correlation measure of interrelations between all pairs of online behavior cases was explored. 

Personality attributes were found to implicitly correlate with propagation related behaviors. A disjoint 
cluster analysis was applied on the basis of the associated strength of the data point to the cluster. The 
users were divided into clusters; every user belonged to one and only one cluster, such that C= C1, ..C6. of 
U where U ⊂ Ui=1,k and Ci ∩ Cj  = ∅  for i ≠ j. 

A 3-dimensional latent space of user clusters is shown in Figure 3 as 1: Chummy Users, 2: Inert 
Users, 3: Socialize Users, 4: Introvert Users, 5: Cool Users, 6: Brainy Users [7]. Users in each cluster 
were inherently assumed to possess similar behavior, and this consequently governed the same set of 
states and transition probabilities. By group estimation, the individual complexity and environmental 
variability in terms of overloaded number of parameters and models were not only systematically 
obliterated, but the modeling process also remained accurate and simple to investigate significant system 
behaviors. 

 
 

 
Figure 3 Preprocessed data into clusters of users. 
 
 

Parameter estimation 
The characteristics of model parameters were delegated by probabilistic interpretation of the 

selected actions, defined as; direct actions: create and distribute, share, and response, and side effect 
actions: add friend and remove friend. The likelihood that a user performed a given action was observed 
in terms of event distribution per cluster, using relative frequency estimation. The estimation of 
distribution parameters was ensured by a Chi-square goodness of fit test, and compared with the series of 
theoretical family of distributions. Lastly, the best fitted probability distribution of actions were 
summarized in Table 1, and the equations in Table 2 explained each set of actions. 
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Table 1 Different Probability Density Functions of user activities, classified by cluster [3,9-11]. 
 

Activity 
Probability density distribution 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 

Create/Distribute Power Law Power Law Power Law Power Law Power Law Power Law 

Share Power Law Power Law Power Law Power Law Power Law Power Law 

Respond Poisson Poisson Poisson Poisson Poisson Poisson 

Add friend  Long-tail distribution

- Like Gamma GEV* Weibull GEV* GEV* GEV* 

- Comment Exponential GEV* Exponential Weibull GEV* Weibull 

- Chat GEV* Gamma Beta Beta Exponential GEV* 

- Play Game Power Law Power Law Power Law Power Law Power Law Power Law 

- Post Power Law Gamma GEV* Beta GEV* Weibull 

Remove friend Binomial Binomial Binomial Binomial Binomial Binomial 

GEV*- Generalized Extreme Value 

 
 
Table 2 Transformation of distribution fits to parametric definitions. 
 

Distribution Parametric equation 
Beta ܲሺݔሻ ൌ

ଵ

஻ሺ௔,௕ሻ
௔ିଵሺ1ݔ െ   ሻݔሺ଴,ଵሻሺܫሻ௕ିଵݔ

where B(.) is a beta function, a is a first shape parameter, b is a second shape parameter and ܫሺ଴,ଵሻሺݔሻ is 
an indicator to ensure that x in the range of (0,1) has non-zero probability 

(1) 

Binomial ܲሺݔሻ ൌ ቀܰ
ݔ
ቁ݌௫ሺ1 െ ሻሺேି௫ሻ݌  

ݔ ൌ 0,1,2, … .ܰ where N is number of trials, x is the number of successes in n trials of a Bernoulli 
process with probability of success p  

(2) 

Exponential ܲሺݔሻ ൌ
ଵ

ఓ
݁
షೣ
ഋ    

where ߤ is mean  

(3) 

Gamma ܲሺݔሻ ൌ
ଵ

௕ೌτሺ௔ሻ
௔ିଵ݁ݔ

ష್
ೌ   

where τሺ. ሻ is the Gamma function, a is a shape parameter, b is a scale parameter  

(4) 

Generalized Extreme Value 
ܲ൫ݔ൯ ൌ

ଵ

ఙ
	݌ݔ݁ ቆെ ቀ1 ൅ ݇

ሺ௫ିఓሻ

ఙ
ቁ
ି
భ
ೖቇ ቀ1 ൅ ݇

ሺ௫ିఓሻ

ఙ
ሻቁ

ିଵି
భ
ೖ  for 1+ k

ሺ௫ିఓሻ

ఙ
 > 0  

where σ is the scale parameter, k is a tail shape parameter and μ is a location parameter 

(5) 
 

Poisson ܲሺݔሻ ൌ 	
௘షഋఓషೣ

௫!
  

where μ is the mean of the distribution

(6) 

Power Law ܲሺݔሻ		~			ିݔఊ    
where γ is a scale invariance                             

(7) 

Weibull 
ܲሺݔሻ ൌ

ܾ
ܽ
ቀ
ݔ
ܽ
ቁ
௕ିଵ

݁ቀ
ି௫
௔ ቁ

್

 

where a is a scale parameter, b is a shape parameter 

(8) 

*x - variable, e - the base of natural logarithms 

 
 
Most previous studies identified that human behavioral patterns were more probable in 

demonstrating heavy-tailed or long-tailed distributions [10]. Therefore, those fittings were primarily taken 
into consideration. However, after being deliberately verified by the Chi-Square Goodness-of-Fit test, not 
all actions could be mapped with these well-tried theories. 

The actions of ‘share’ and ‘create/distribute’ possessed a power law distribution (1.82 < γ share < 
2.21 and 1.71 < γ create/distribute < 2.34), suggesting that only a few users disseminated information, while 
most were inert. The randomness of ‘respond’ was represented by a Poisson distribution (3.00 < μ respond < 
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4.12). This pattern was different from that of typical communities, and not well-matched with the 
theoretical expectations. Detailed exploration was conducted and detected that the majority of users were 
classmates, having frequent interactions, and they, in fact, intended to respond to any messages from 
peers.  

For ‘add friend’, various ranges of probability functions appeared. The differences spread from 
cluster to cluster. However, all governed a long tail property with a right skew, implying that only a few 
users considered adding friends from impressions gained through the development of content or actions.  
Lastly, ‘remove friend’ occupied the Binomial distribution (0.003 < p remove < 0.140). Though this 
distribution did not harmonize well with most previous studies, it agreed with the analysis of users’ tweet 
[23] where it could be inferred that there was less chance that a user would remove friends once they 
decided to add them.  

The next section provides information on how concepts and findings were put together and analyzed 
as independent defined components. The interfaced algorithms for functional separation of concerns were 
introduced to enable the modular instantiation of the framework. Lastly, the composition of information 
diffusion components was actuated via a well-defined interface and synchronized by the system clock. 
 
Content propagation model with CPNs  

Many different social relationships between users enabled by content can finally express themselves 
in a friendship matrix as illustrated in Figure 4. This process started when a user logged in and noticed 
the new content in timeline. As a routine, he/she ended up reading and processing. His/her next action 
appeared and evolved according to an immediate decision, e.g., he/she could reply to the third party 
content by posting, messaging or giving a “Like”. How and what actions stimulated the content to flow 
from one to another were explained using the concept of network anatomy, as follows. 

Users were thought of as nodes, and content as another type of node that links 2 or more people 
together. How a user responds, and what action he/she would do next, was dominated by his/her feeling 
raised from content interpretation. These actions introduced links. These links brought up an alteration to 
network structure. By incorporating the significance of the users, content, and social interactions as 
determinants, the friendship matrix were elucidated as: 

 Add friend: an active link was created between 2 existing nodes. The out degree was increased 
by the number of links created. 

 Remove friend: a link was deleted from 2 existing nodes. The out degree was decreased 
according to the link deleted. 

 Respond:  a new node was created, with a link to the existing node. 
 Share: the new nodes were created, with links to the origin node. The out degrees were increased 

proportional to the number of friends. 
 Create/Distribute: the new nodes were created, with links to the origin node. The out degrees of 

the node are increased proportional to the number of friends. 
The presented diffusion scenario might not inherently match well with real-world phenomena, since 

all users participating in the network must be known to the system beforehand. However, combining the 
activity rules with the above assumptions, the explicit friendship should certainly be reflected by 
investigating its network topology. 
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Figure 4 Pattern of user social relationships. 
 
 

Model block diagram 
The dynamics of the social networks of users was graphically represented as a block diagram in 

Figure 5. The system was modularly designed according to its own unique functions as 3 main 
components. The interface between each was signaled by vectors containing the state variables and the 
inputs, such as online and offline. Global Clock was the incipient component, which initiated consecutive 
processes by sending a state variable to Lifetime. If the rules of transformation and the compilation 
conditions locally interfaced between components were met, events in Online Activities could be 
activated. At every computation cycle, the next state was determined based on logical inputs and 
progresses, depending on a list of prioritized transition conditions. As it was nondeterministic, it was 
solely independent to the previous action. However, transitions between users and their social 
environment could possibly be traced from the data repositories of friend and content buffers. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5 Simplified Petri net model block diagram. 
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The functions of each model component were prescribed as follows. 
 Global Clock: a centralized authority on the passage of time. It was a repository of future user 

actions responsible for executing the sequence of those actions. Global clock would advance the 
simulation clock to one of the 2 primary states acquired from the survey; Sleep and Wakeup. To simplify 
the operation, clock counter was defined as; 

 

		ݎ݁ݐ݊ݑ݋ܿ	݇ܿ݋݈ܿ ൌ
௖௟௢௖௞_௧௜௠௘∗௛௢௨௥_௨௡௜௧

௧
              (9) 

 
where clock_time = 24 hour clock,  

t = clock trigger duration,  
hour_unit = minutes in an hour 
 

 Lifetime: an aid to describe the availability of individual’s behavior. The three naturalistic 
observed states were Online, Offline, and Sleep. However, the only state in which users were allowed to 
conduct activities was Online.  

 Online Activities: the information diffusion related activities among users. Chosen activity 
primarily depended on content interpretation, an individual’s characteristics, and existing information in 
data repositories. 

In order to ensure the correctness of this design, the activities associated with diffusion were 
transformed into a bipartite graph with state-transforming functions. The net structure and the semantics, 
such as states, transitions, firing transitions, and rules, were then defined, and the verification of temporal 
properties was conducted using a model checking technique. 

 
Global clock model 
Figure 6 demonstrates the global clock component, with different activity time gaps for weekdays 

and weekends. Overall model synchronization was specifically managed with 2 control parts: day type 
and clock. The first was manipulated by a place control with timed type color set with 2 possible allowed 
values: WD-Weekday and WN-Weekend. The maximum number of tokens in control was limited to one, 
using a place anti with color set ‘E’ along with transitions send and receive. At every unit of time, a token 
symbolled "t" was automatically generated, and was passed through the transition clock.  

 

 
Figure 6 Global clock. 
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The enabling of Weekday starts when t= ‘WD’. In every time unit, a token was successively 
generated from clock, and passed to all WD repositories: WD sleep, WD wake, and WD trig day. If the 
number of tokens in WD sleep was accumulated to 88 (10 p.m.), transition WD sleep start was activated; 
then, all tokens in WD sleep were consumed, and a new token was generated in the place sleep. When the 
number of tokens in WD wake was summed up to 120 (6 a.m.), and a token existed in sleep, WD sleep 
end was enabled, and tokens in both places would be consumed and dispatched to the place wake. 
Besides, when the number of tokens in WD trig day were assembled to184 (the end of wake time), WD 
trig day was activated. Then, day type was enabled to trig from WD to WN.  

Similar logic was applied to weekend (WN), t=‘WN’. The differences were duration of time and 
data repositories, such that WN sleep was enabled when the number of tokens reaches 4, (1 a.m.), WN 
wake was enabled when the number of tokens reaches 36, or 9 a.m., and WN trig day was enabled when 
the number of tokens reaches 84. These processes run continually throughout the simulations. 

 
User lifetime model 
Figure 7 illustrates the user lifetime process. The initial marking residing in the place User Lifetime 

is activated by Global Clock. Symbol "n, p" represented a state id and state description, with 3 possible 
values (1:Offline, 2:Online, 3:Sleep). A place user state and a place control user state with color set ‘E’ 
were defined to manipulate the change of user state. The transition change was a binding transition to 
control the maximum limit of tokens residing in the place User Lifetime. If the token received from 
Global clock was sleep, the next transition determined by the transition state remained sleep, but if the 
token received was wake, the next possible user state could either be Offline or Online. 
 
 

 
Figure 7 User lifetime. 
 
 

Online activity model 
The social online processes are presented in Figure 8. Each user in the network was represented by 

a distinguishable token in the place User. The model was enabled after Online received a token from 
Lifetime, indicating that users in the User data repository were ready to interact. Six basic Facebook 
functions were transformed into transitions. Five of those related to information diffusion were 
highlighted as a relationship matrix in Table 3. The other (browse) was a utility function. All motive 
(motivation) data repositories stored the probability functions to enable transition of actions. 

Annotations used throughout this paper were: user as U, un	∈	U, content generated by users as C, cn	
∈	C, and friends as V, vn	∈	V, and V	⊂U. The occupation vectors of the social links indicating relationships 
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between user, friend, content, and motivation were provided as a part of the matrix identification in the 
upper right corner. In the initial state, a user in the User repository occupied 2 possible transition options; 
create content or browse content. A pre-condition for the transition browse was the coexistence of tokens 
in User and content buffer. In order to create content, tokens were required from 2 places; User and 
create motive. If the conditions identified in the output arc descriptions were met, a content token was 
created and positioned in the content buffer. Each token in the content buffer contained a content id and a 
user id indicating the content and content owner. For example; u1 created content c1, the coexistence of a 
user, and content was declared as a multi-set of colors (u1, c1). 
 
 
Table 3 User activity matrix identification. 
 

Behavior Process description 
Occupation vector 

Relation vector 
u c v m 

Add Friend  A user token tied with content token was added to 

friend list.  

 Two user tokens were bound with the existing 

content token and a motivation token.  

   a (u,c,v,a) 

Remove Friend  A user token in friendlist was fired to nonfriend 

list.  

 Two user tokens were bound with the existing 

content token and a motivation token.  

   b (u,c,v,b) 

Respond  A content token was created and moved to the 

content buffer. 

 A content token was bound with a user token and 

a motivation token.  

   r (u,c,r) 

Share  A content token was created and fired to the 

content buffer. 

 A content token was bound with a user token and 

a motivation token. 

   s (u,c,s) 

Create/Distribute  A content token was created and fired to the 

content buffer. 

 A content token was bound with a user token and 

a motivation token. 

   e (u,c,e) 

 
Matrix identification 
(u,c)       = user and content 
(u,c,v)    = user, content, and friend 
(u,c,v,m) = user, content, friend, and motivation 
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Figure 8 User friendship relations. 

 
 
To enable browse, 2 tokens were required from the places User and content buffer. After the content 

was browsed, a user token would be positioned in the place decision while the content token was placed 
in decision content, meaning that a user was making a decision on the content. Determination of the next 
action depended on how a user interpreted the content stored in decision content. Sentiments could be 
like, dislike, or ignore. This scenario introduced a vector of (u2, c1, u1), meaning that u2 had read a content 
c1 created by u1 and made a decision on the content. The subsequent place when the transition was fired 
could be liked content, disliked content, or ignored content. If the decision was ignore, the content token 
was passed to ignored content, and no further transition was proceeded. If the decision was like, the 
content token was passed to liked content. When there was a user in the place decision, the next possible 
transition could be add friend, respond, or share. If add friend was selected, the content creator would be 
moved to the place friend list. For instance, u2 read the content c1, posted by u1 and liked (a1), he/she 
might add u1 as a friend, u1 was then added to friend list. This scenario introduced a set of entangled 
objects as a vector of (u2, c1, u1, a1), with symbols indicating both deterministic and stochastic properties. 
This vector was created in the form of links between a user and content when a user had interacted with 
the environment. For respond and share, if the criteria were met, a new content token would be generated 
and bound with the content owner in content buffer. Vice versa, content was existed in disliked content, 
the next possible transition could either be remove friend or respond. If an action of remove friend was 
selected, a friend token would be removed from friend list and positioned in nonfriend list. As simulation 
steps increased, the number of records were correspondingly increased to form elements of the occupation 
vectors. 
 
Simulations 

To capture the dissemination pattern of tokens in the model, user behavior in the real world was the 
imitated. The interaction rules and stochastic behavior were determined as transition firing probabilities 
of occurrence. The dissemination pattern of tokens was the key attribute used to monitor characteristics 
and behaviors of the physical propagation system. 
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Goals and configuration 
Insight into understanding how the topological and structural properties of evolving networks grew, 

in particular, in the social interaction counterpart of the node and edge creation process was accomplished 
by the method of simulations. One hundred users belonging to the same cluster were assigned an online 
state simultaneously. Each was eligible to create and globally disseminate a maximum of 100 pieces of 
content. The simulation steps were 0 - 1000, with 100 steps incremented in each cycle. During the 
simulation, a random user was selected to conduct a single operation in a discrete time unit (Δt). Its 
transition rate was tied with the probability of an action with respect to motivation specified by cluster 
(Table 2). For each simulation step, a link between a user and content, or between users, was created. The 
flow of tokens, representing nodes and social links, was written into a state-transition log file. Firing 
transitions were then extracted and transformed into an adjacent matrix. A complete network structure 
evolution was analyzed from the matrix by tracing the transfiguration of its clustering coefficient, average 
shortest path, and degree distribution. The main structural characteristics of network evolution were 
explored via the given hypotheses; 

H1: The clustering coefficient of the nodes increases from triangle formation during link formation. 
H2: The average shortest-path length is small even if the networks are large. 
H3: The degree of distribution follows the power law form.  
For each phenomenon, the simulations were independently executed repeatedly for 100 rounds. 

Results were observed and compared with the basic features of the evolving network for verification, 
extension, and generalization of the hypotheses. 
 

Simulation algorithm 
The objectives of this simulation were to demonstrate how the interactions of a user changed over 

his/her lifetime, how the flow of content was enabled by the user’s behavior, and how a social link was 
created during the interaction. The performance of the algorithm was not of interest, because there existed 
a few number of uncontrolled factors, such as the system capacity, the number of transitions the token 
passing through, and the size of the loops. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 9 Simulation algorithm. 
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According to the simulation in Figure 9, initially, users were assigned an online state. Clock was a 
common control over the simulated time of each simulation task. When the simulation started, each user 
action was switched according to the activated transition, with regulated firing transitions identified by 
the stochastic property P(x) of motivations.  

The simulation algorithm with discrete simulation steps was summarized as: 
 Initialization: Users were online at time t=0. 
 At time step t+Δt, a user create content. Content was transferred to content repository. 
 Other users in the network browsed and read through the content. 
 Consequence activities were provoked with regard to decision made on content:  

o Ignore: Content was unimportant, no consecutive action was performed. 
o Like:  Content was interesting. Next possible actions could be share content, add friend and 

respond.  
o Dislike: Content was unsatisfied. Next possible actions could be remove friend from friend list 

or respond.  
 Processes were continued as long as there existed content, users, and non-excessive time limit 

(users existed, user_status = online and time > 0). 
A meaningful relationship of co-occurrence interactions between users and content could be 

obtained from the simulation tracking. For scalability purpose, the number of users and content could be 
incremented by increasing the number of colors in a color set or the adaptation of color definitions. 

 
Clustering coefficient evolution analysis 
 Since clustering coefficient was a measure of the existence of ties between individuals which 

enables the circulation of content, this measure was applied. In the early steps of simulation, clustering 
coefficient obscurely fluctuated on account of the edges of a few isolated nodes that did not form links 
between the nodes within their neighborhood, as shown in Figure 10. The probability that the 2 nearest 
neighbors of a vertex became the nearest neighbors of one another was in the range of 0.018 - 0.171. As 
time increased, clustering coefficient was gained, and could possibly be closed to one. Though its values 
were rather low, they remained larger than O(n−1) (where n was number of vertices), and also agreed with 
the clustering coefficients of SNSs in the real world [24]. This phenomenon implied that nodes tended to 
be more tightly connected and localized cliques with their immediate neighbors through information 
exchanged. Therefore, H1 was satisfied. 

 
 

 
Figure 10 Clustering coefficient evolution. 
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Average shortest path length evolution analysis 
 The evolution of the interconnectedness of a network, which was an average distance between any 

pair of nodes, is demonstrated in Figure 11. In the early simulation steps, the path length was unable to 
be calculated because the network contained many disconnected components, making the series of data 
march towards infinity. As time increased, the average path length decreased from 3 to approximately 1.5, 
implying that a message could be transferred very fast through this network. On the other hand, if a user 
wanted to get in touch with others, he/she just needed to pass through 2 other persons, which agreed with 
the concept of 6 degrees of separation [24]. The more time users spent in the network, the links between 
existing nodes became denser. As time evolved, the distance between nodes was decreased. This 
phenomenon benefited the indirect relationships of individuals, and the result was consistent with the 
famous principle of [25], that the real networks exhibited a densification trend and their diameters shrunk 
over time. Hereby, H2 was accepted. 

 
 

 
Figure 11 Average path length evolution. 
 
  

Degree distribution evolution analysis 
The degree distribution, gauged by fitting the frequency count of node degrees with the empirical 

probability distributions, is depicted in Figure 12. The initial and final degree of the node linking process 
at the 50 and 1000 simulation steps were observed. Figure 12(a) shows the distribution of node degrees. 
The possession of the power law property was indicated through a long right-tail, which was clearly far 
above the mean. Considering the overall distribution of clusters at each time step, Figure 12(b) shows the 
stationary values of scale variance, with an average of 2.006. During each simulation step, their values 
fluctuated considerably, because new links were sparsely added to disparate existing nodes. Though these 
values were lower than other studies, they governed the property of most real scale-free networks (2<γ<3) 
[24], conformed to the study of [25], and complied well with the theory of heavy tails in human behaviors 
[26]. It could be claimed that the number of propagandists with high interaction rate in this network were 
rare. Thus, H3 was satisfied. 
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Figure 12 (a) Degree distribution, (b) Degree of Scale Invariance Evolution. 
 
 

The complexity of the node linking process illustrated was imposed by the dependence between 
user-user, user-content, and content-reaction. The reciprocation to any content could be totally different 
through the user’s personality, attitudes, and impressions. These events not only introduced 
distinguishable actions, but also diverse probabilities. As time evolved, interesting patterns of network 
structural characteristics were empirically appeared in the forms of: the higher the node degrees, the 
higher the clustering coefficient, and the lower the average path length resemblance to [8]. Based on the 
results, information tended to be propagated quickly in this network through high clustering coefficient 
and average shortest path length. The power law degree distribution also highlighted that the number of 
users who manipulated the flow of information was scarce. Referring to Watts and Strogatz’s definition 
[24], the set of structural characteristics of this network indicated the small-world effect. 
 

Discussions on network structural evolution 
This work provides a big step forward in fulfilling the existing gaps in the knowledge of modeling 

user propagation behavior. The influences of user behavior, content, and network were integrated into the 
propagation processes, and their effects were demonstrated through a stochastic model of Petri nets. 
Three tactile contributions were the implementation of; (1) a stochastic diffusion model, which could 
illustrate the evolution of SNSs, (2) a dynamic parameterized model which best described each and every 
user in the network, and (3) the visualization and simulation of user interactions in SNSs. The minutiae of 
each discovery are described as follows. 

First, how information diffuses can be synthesized and then systematized using a powerful approach 
of model decomposition and stochastic and deterministic abilities of CPNs. The major benefit is the 
number of users, and content can easily be escalated by adding more colors into their data repositories. 
Such flexibility allows the model to be useful in a wide range of applications, with potential advantages to 
SNS providers and businesses who have access to more precise data about user behavior. They can, 
therefore, make better use of the models, or adapt the models, for example, to accurately predict link 
creation to content and determine usage trends.  

Second, how social interactions influence the network structure can be mathematically analyzed 
from model parameterization. Even if individual users inherently govern different levels of interaction 
dynamics, they can still be characterized by the dominant attributes of their personality traits [13]. The 
introduction of this model can release the burden on model parameter space, and increase the efficiency 
on future expansion of social interactions for other social networks. The likelihood of the prediction on 
the next activities can also be increased through the probabilistic model parameters identified by cluster. 
Specifically, by adding more determinants of user behavior to the future design of the systems, a higher 
accuracy in activity prediction is obtained.   

Last, how user interactions affect the network topology is delineated by examining the inheritance 
of small world properties [1,22]. Compelling evidence is provided, such that; (1) the average path length 
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agrees with the 6 degrees of separation. This indicates that, though the network composes of a very large 
population, each person can speedily communicate with others through a short path of intermediaries, (2) 
the clustering coefficient, the quantification of connection level between individuals, strongly indicates 
that the number of connections between users often transformed into transitivity. In other words, friends 
of friends can become friends without effort, and (3) the degree of distribution of node connectivity 
occupies the power law scaling. Such phenomenon indicates that the network is influenced by a few users 
who produce high rates of content distribution. Some content is also found to repeatedly appear in the 
network according to its popularity, which agrees with [27]. Moreover, the longer the lifetime, the 
connection tends to be densified, with more proliferation of clustering coefficient, more shrinkage to the 
average path length, and a higher value of degree scale invariant.  

This analytical model and its simulations can specifically lead to the prediction of system behavior 
under different conditions, which is not easily studied experimentally in a live system. The growth and 
optimization of connections is pointed out using 2 interdisciplinary theories, human behavior and social 
network analysis. It is considered to be an alternative model to study the dynamic evolution process of 
SNSs, based on the human relation mechanism and the distribution of power law of complex networks. 
Intricate experimental data can also be simplified for ease, in order to advance the understanding of the 
systems of interest. The mechanisms of user behaviors that lead to a substantial delay and high content 
locality in information propagation can also be learnt from the simulation. Through a number of 
experiments with data describing user activity traced from Facebook, the proposed approach is proven to 
predict future user relationships and interactions, with a better performance both in terms of explaining 
observed data model fitting and of understanding the network evolution. 

 
Conclusions 

For the first time, the reciprocity of user behavior, interaction rules, content, and network structure 
to the interplay between information diffusion and network evolution was graphically and mathematically 
analyzed by a stochastic Petri net modeling method. Its merits contribute to an opportunity to explore how 
a community emerges from a network structure, how links are formed from user interactions, and how a 
network evolves from the flow of information. Three steps beyond the descriptive analysis were taken. 
First, a developed questionnaire was introduced to collect user behavior and characteristics. Then, a 
clustering method was applied to reduce the complexity of the analysis. Second, behaviors with respect to 
the diffusion process were extracted and composed into a model of CPNs. Last, simulations were used for 
efficient visualization and synthesis in order to demonstrate the connection mechanisms of user-content 
linkage creation with variable probabilities of motivation factors. The dynamic evolution of user 
interactions was explained through the known effects of the small-world principle via the empirical 
properties of high clustering coefficient, low average path length, and power law degree distribution. This 
model was proven to have better explanatory and predictive power over existing baseline models through 
the incorporation of individual characteristics and behaviors, network, and content into the diffusion 
mechanism. 

Despite the meaningful contribution of this study, there are a few limitations that should be 
addressed, such that these findings are not able to be generalized beyond the context in which the user and 
structural network exist for 2 reasons. First, user behavior, user states, and transition probabilities were 
derived from a unique group of university students who qualified as extreme users and were technically 
oriented. Second, the study site was Facebook; assumptions and findings might not be applicable to other 
type of SNSs. For extension, acquiring behavioral data from a diverse range of population and over 
different SNSs can lead to a more robust inference applicable to typical real-world phenomena. 
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