

http://wjst.wu.ac.th Information Technology

Walailak J Sci & Tech 2018; 15(1): 29-39.

Applying Information Measure for Predicting Release Time of
Open Source Software

Talat PARVEEN* and Hari Darshan ARORA

Department of Applied Mathematics, Amity Institute of Applied Sciences, Amity University,
Noida, Uttar Pradesh, India

(*Corresponding author’s e-mail: talat.tyagi@gmail.com, hdarora@amity.edu)

Received: 7 June 2016, Revised: 19 June 2017, Accepted: 28 July 2017

Abstract

Open Source Software (OSS) is updated regularly to meet the requirements posed by the customers.
The source code of OSS undergoes frequent change to diffuse new features and update existing features
in the system, providing a user friendly interface. The source code changes for fixing bugs and meeting
user end requirements again affects the complexity of the code change and creates bugs in the software
which are accountable to the next release of software. In this paper, the complexity of code changes in
various Bugzilla open source software releases, from version 2.0 on 19th Sep, 1998, to 5.0.1 on 10th Sep,
2015, bugs in each software version release, and the time of release of each software version are
considered, and the data used to predict the next release time. The Shannon entropy measure is used to
quantify the code change process in terms of entropy for each software release. Observed code changes
are utilized to quantify them into entropy units and are further used to predict the next release time. A
neural network-based regression model is used to predict the next release time. The performance is
compared with the R measure calculated using the multi linear regression model, and a goodness of fit
curve is produced.

Keywords: Complexity of code change, entropy, prediction, software release, open source software

Introduction

Open Source Software (OSS) is popular amongst academicians and has targeted consumers in large
industries. OSS is highly successful, but source code changes have to be made frequently in line with the
increasingly higher demand on the customer’s end.

The open source community is growing on a high scale, and various kinds of supports are provided
by the OSS community, investors participate in the OSS industry by supporting ongoing projects
financially, considering high income returns and new project development.

The release time of software in OSS is highly anticipated. However, it is not always possible to
achieve the release of software at the defined timeline. This aspect is a matter to be explored in order to
allow increased accuracy in the anticipation of OSS release time. Ngo-The [19] stated that software
release planning targets the features that customers acknowledge during feedback processes, the
requirements of the customers are addressed in the software release, with new features infused into a
series of new product releases. Constraints, such as resources, revenue prediction, and risk needed to be
managed so as to maximize profits and customer satisfaction, affect the next release time of software.

Glance [8] noted that Linux kernel releases depend on the separate testing of their submitted code,
individually performed, and the final testing is done by users after the release of the software version. It
has not yet been established what the criterion for the release time should be, though few projects have
organized patterns for the next releases of the software.

Predicting Release Time of Open Source Software Talat PARVEEN and Hari Darshan ARORA
http://wjst.wu.ac.th

Walailak J Sci & Tech 2018; 15(1)

30

In closed source projects, the release dates are fixed at the initial stage of the project, and
consequent releases are based on the bugs fixed and the features introduced as per requirements. OSS has
frequent releases, which are related to the goal achievement and are determined based on the changes in
the source code and the bugs fixed. Project managers have deadlines to be followed in order to release the
software on time with a profitable budget. However, as software grows in complexity, it becomes difficult
to control and, thus, affects the release times, and sometimes delays project releases.

Entropy is an important basic concept of information theory, which follows a probabilistic approach
and is centered mainly on measuring uncertainty in the system. Complexity of code change is measured
using entropy-based metrics, as stated by Hassan [10] in his landmark research paper. New feature
implementations are done in each consequent release in order to develop projects. Bugs are introduced in
the project as the complexity of projects increases, due to frequent code change processes. Debuggers
help in discovering bugs and resolve bug issues in released OSSs. To study the next release problem,
here, the Bugzilla OSS is considered, which has had over 150 releases, starting from 1998 until
September, 2015. This complexity of the code change for each release is evaluated using entropy-based
metrics, and the bugs present in each software release are recorded, along with the period of each release.
These are applied to neural network regression to estimate the next release time of software; also, the
performance is compared with the R estimate, calculated with the multi linear regression method. This
method of neural network-based regression is a novel approach, and has not yet been used to predict
release time. Bugzilla releases, the complexity of code change for each release version, and bugs in each
release are considered and are used as inputs for predicting the next release time.

Literature review

Various customer demands are diffused in new releases of software. It is important to address the
requirements reported by users in the inclusion of new features or the updating of existing ones. OSS
projects keep releasing new software versions frequently, trying to fulfil user requirements. In 2010,
Hassan [10] applied information theoretic concepts in quantifying the amount of code change in terms of
Shannon’s entropy rule, the concept was there used in the prediction of bugs. Jain et al. [11] utilized the
mean length, termed ‘useful’ codes, coined by Gsiasu and Picard, to provide generalizations of ‘useful’
mean length and, hence, to prove noiseless coding theorem using it. Singhal et al. [17] proposed and
characterized the generalized entropy measure of relative information with preference, the particular case
of measures was proved. Singh et al. [15] applied Simple Linear Regression using complexity of code
change and detected bugs in order to anticipate future bugs. Xuan et al. [23] addressed the next release
problem using Backbone-based Multilevel Algorithm (BMA). BMA can be applied to get better result in
large scale NRP, it can reduce the scale of the problem and build an optimal solution. D’Ambros et al. [5]
compared bug prediction methods extensively, and set a benchmark in fault prediction. Singh et al. [16]
applied support vector regression in predicting the bugs, using an entropy measure in the system for a set
duration of time. Garzarelli [7] explained the organizational structure of OSS, and that it works without
any ownership or hierarchy.

Bagnall et al. [1] modeled the problem of optimal next release as NP-Hard in his work, and coined
the term ‘Next Release Problem’. Greer et al. [9] utilized a genetic algorithmic approach in optimizing
the release time of software versions. Garey et al. [6] suggested that the required number of next releases
can never be estimated exactly through any algorithm in a polynomial period of time. Cheng et al. [3]
suggested that, with ever increasing user requirements, it is difficult to decide on optimized costs for new
releases of products. Ngo-The et al. [19] combined integer programming with 2-phased optimization to
release search space and used genetic programming to minimize search space. Baker et al. [2] addressed
the next release problem, utilizing the greedy and simulating annealing algorithm. Jiang et al. [12]
designed the Hybrid Ant Colony Optimization algorithm (HACO) to solve the next release problem, and
concluded that HACO gives better results than the existing GRASP and simulated annealing algorithm.
Kapur et al. [13] proposed a method for the release time problem utilizing reliability, bugs fixed, and cost.
Chaturvedi et al. [4] utilized complexity of code change and bugs in estimating the next release time of
software.

Predicting Release Time of Open Source Software Talat PARVEEN and Hari Darshan ARORA
http://wjst.wu.ac.th

Walailak J Sci & Tech 2018; 15(1)

31

The paper is organized into 7 sections, Section 2 illustrates the related work. Section 3 describes the
code change process used in this paper to quantify changes in code in terms of entropy, and illustrates the
basic model for entropy calculation. Section 4 explains data collection and the method of processing the
data. Section 5 describes the neural network-based regression model and the multi linear regression model
used to predict the next release time of the Bugzilla OSS. Section 6 describes the results and discusses
them. The paper is concluded with Section 7.

Code change process

The Code change procedure represents the patterns of modifications made to source code. The
modification in the code is carried out by the developer, due to the introduction of new features, to the
modification of existing features, or to fixing bugs. The changes in the code for the above-stated reasons
make source codes complex and, thus, leads to the introduction of new faults in the system. There may be
a delay in the next release of software if the software developer fails to understand the code change
process appropriately. It may also affect the quality of the software system. The code change procedure is
recorded in big CVS repositories to manage it correctly. There are 3 types of modification process,
following Hassan [10]. Fundamental code change technique evaluates examples of changes, as opposed to
measuring the quantity of changes, or measuring the impact of changes to the code structure. The
progressions are recorded, taking into account the quantity of times the document is adjusted. These
progressions are measured at the document level, rather than at the code level.

Entropy is ascertained in view of the quantity of changes in a record for particular periods. The
period can be taken over a day, week, month, year, or so on, in light of the aggregate length of time of the
venture and, in addition, the quantity of changes happens in the framework. At the Broadened Code
Change (BCC) level, instead of utilizing a settled length period, the fundamental code change is
augmented in light of a variable length period. This time period can be isolated in 3 ways, i.e., time-based
periods, change breaking point-based periods, and burst-based periods. In time-based periods, the
downright length of the task is separated into an equivalent length span. These allotments can be of any
length. In change breaking point-based periods, the periods are decided in light of the equivalent number
of alterations. The progressions do not take after a particular example; instead, it, by and large, takes after
the burst-based examples. The burst-based period depends on examples of the progressions happening in
the undertaking, rather than in the period-based or change breaking point-based periods. The files which
are changed during the high complexity leads to the introduction of new faults in the system.

Complexity of code change
Shannon [18], in 1948, introduced the concept of entropy, also known as the “measure of

uncertainty”, to information theory, attributed to his research work “A mathematical theory of
communication ”, popularly known as Shannon’s Entropy, it was described as;

𝐻𝑛(P) = −�(𝑃𝑖 ∗ 𝑙𝑜𝑔2𝑃𝑖)
𝑛

𝑖=1

(1)

where 𝑃𝑖 ≥ 0 and ∑ 𝑃𝑖𝑛

𝑖=1 .

The probability 𝑃𝑖 is a number alteration in the ith file in a particular time period by the total number

of changes in all the files in a considered period of time. The entropy measure as defined by Shannon is
non-negative, permutationally symmetric, and additive. Also, it is continuous in 0 < 𝑃𝑖 < 1. Entropy is at
maximum when all events are equally likely to occur, i.e., 𝑃𝑖=

1
𝑛
, ∀ 𝑖 ∈ 1,2,3, … … .𝑛 , when each event has

a maximum probability of occurrence, i.e., 𝑃𝑖 = 1 and ∀ 𝑖 ≠ 𝑚,𝑃𝑚 = 0, then the entropy is at minimum.

Predicting Release Time of Open Source Software Talat PARVEEN and Hari Darshan ARORA
http://wjst.wu.ac.th

Walailak J Sci & Tech 2018; 15(1)

32

As the size of each file differs in software systems. Shannon’s Entropy 𝐻𝑛 measure is normalized
such that 0 ≤ 𝐻𝑛 ≤ 1 enables the comparison of entropy measures of distributions of variant sizes, over
different time periods.

𝐻𝑛(𝑃) =
1

𝑀𝑎𝑧𝑖𝑚𝑢𝑚 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑓𝑜𝑟 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
∗ 𝐻𝑛(𝑃) (2)

 = 1
𝑙𝑜𝑔2𝑛

∗ 𝐻𝑛(𝑃) = - 1
𝑙𝑜𝑔2𝑛

∗ ∑ (𝑃𝑖 ∗ 𝑙𝑜𝑔2𝑃𝑖)𝑛
𝑖=1

 = −∑ (𝑃𝑖 ∗ 𝑙𝑜𝑔𝑛𝑃𝑖)𝑛
𝑖=1

where 𝑃𝑖 ≥ 0∀ 𝑖 ∈ 1,2,3, … … .𝑛 and ∑ 𝑃𝑖𝑛
𝑖=1 = 1

To study code change process information, a theoretic approach to evaluate complexity/uncertainty

could be employed. To calculate the complexity of code change in a set of files for a specific period of
time (year, half year, month, etc.,), the probability of each file is calculated and, thereafter, entropy is
calculated using Shannon’s entropy measure.

Table 1 Changes in File1, File2, File3, and File4, with respect to time period t1, t2 and t3.

File1
File2
File3
File4

 t1 t2 t3

Consider a system with 4 files, in which changes have occurred over a period of time, these changes
are noted in Table 1 with star marks. Let there be a total of 17 changes in all 4 files. For each file, the
number of changes in a file is divided by the total changes in all the files over the particular time period.
For time period t1, file1 has 2 changes, file2 has 1 change, file3 has 1 change, and file4 has one change.
So, the probability of file1 for t1 is 2/5 = 0.4, of file2 for t1, 1/5 = 0.2, of file3 for t1, 1/5 = 0.2 and of
file4 for t1, 1/5 = 0.2. Similarly, the probabilities for each time period could be calculated and, thus,
entropy/complexity of code change for each time period can be calculated. When there are changes in all
files, the entropy would be maximum, while it would be minimum for most changes occurring in a single
file.

Data collection and methodology

Bugzilla [20] is the world’s leading free bug-tracking system software; it tracks bugs, communicates
with teammates, and manages quality assurance. Bugzilla, unlike its counterparts, is free, and allows
developers to follow all bug issues in their projects easily. It is under constant development, and has a
dedicated team. It offers many features to the users, such as automatic duplicate bug detection, reports
and charts, bug lists in multiple formats, the option to file/modify bugs by email, etc.; also, it offers
excellent features to administrators, such as the ability to impersonate users, excellent security, multiple
authentication methods, and compatibility with many operating systems. It is mainly used by deployment
managers in chip design problem tracking, software bug tracking, and system administration. Many
different organizations and projects use Bugzilla, the Bugzilla website lists 136 different companies
which use public Bugzilla installation and utilize its bug tracking feature, such as Mozilla, GNOME,

Predicting Release Time of Open Source Software Talat PARVEEN and Hari Darshan ARORA
http://wjst.wu.ac.th

Walailak J Sci & Tech 2018; 15(1)

33

W3C, LibreOffice, GCC, Linux kernel, Open Office, Scilab, Eclipse, Red Hat, KDE, Novell Inc., North
Carolina State University LUG, and Apache Project. The Bugzilla project began in September, 1998,
under the name Netscape, with its first release version 2.0, and up to now has had 150 releases, the latest
release is 5.0.1, which was released on 10th September 2015. The date is collected from Bugzilla website
for each software version release, the number of files in each software version release is observed, and
changes in the code in each file are recorded; hence, the complexity of code change, as stated by Hassan
[10], is calculated for each release. The collected data is processed on a monthly basis, and the changes in
each release are arranged month wise; thus, entropy is calculated for each release on a monthly basis.
Additionally, the bugs and total changes in each release are recorded. A snapshot from the Bugzilla
repository for the Bugzilla-4.4.1 version release, depicting the bugs and other changes, along with the
dates of the changes of code, is shown in Figure 1.

Figure 1 Snapshot of reported bugs for Bugzilla-4.4.1 version.

Data has been prepared according to the following rules:
• Bugzilla software versions release dates are noted from the website.
• All the reported logs are noted from each version, along with the date of change.
• Corresponding to each version, changes in the code are noted from the website for each reported

bug/modification/new feature addition.
• The total number of changes in each version are recorded.
• Bugs are noted separately for each software version
• In each version, the changes are arranged month-wise and, hence, complexity of code change is

also calculated monthly for each release.

Predicting Release Time of Open Source Software Talat PARVEEN and Hari Darshan ARORA
http://wjst.wu.ac.th

Walailak J Sci & Tech 2018; 15(1)

34

The time for each release is also calculated in months.

Figure 2 Process of extracting data from resources.

We have calculated the code change complexity, following the method described in section 3.1, and

bugs in each release of the Bugzilla OSS and, thus, predicted the next release time of software. Neural
network regression is applied to predict the next release time. Table 2 consists of the entirety of the
software versions, with their release dates and complexity of code changes in each release, and contains
the number of files from which total changes in the version, in terms of code, is recorded. The code
changes in each file is taken into consideration to calculate the Complexity of Code Change (COCC),
using Shannon’s entropy measure, to quantify the code change statistics into entropy units, and Figure 3
illustrates the bug change patterns in all the releases of the Bugzilla OSS.

Table 2 Complexity of code change of various software releases, along with release dates and file
changes.

SV DOR COCC TNOF NM TC SV DOR COCC TNOF NM TC

5.0.1 Sep 10, 2015 7.288517 35 2 673 3.2.4 July 8, 2009 1.939635 16 3 210

5.0 July 7, 2015 2.335229 21 3 286 3.2.3 Mar 30, 2009 1.426524 21 2 312

4.4.9 Apr 15, 2015 8.931459 17 3 1626 3.2.2 Feb 3, 2009 7.066981 5 2 1926

4.4.8 Jan 27, 2015 10.07652 5 4 774 3.2 Nov 29, 2008 2.385077 20 4 600

4.4.6 Oct 6, 2014 4.034633 20 2 728 3.0.5 Aug 12, 2008 3.598072 28 3 277

4.4.5 July 24, 2014 6.545516 26 3 911 3.0.4 May 4, 2008 8.673146 74 4 4826

4.4.4 Apr 18, 2014 8.360617 4 3 1542 3.0.3 Jan 8, 2008 3.598054 43 4 917

4.4.2 Jan 27, 2014 3.296621 24 3 302 3.0.2 Sep 18, 2007 1.29627 22 1 379

4.4.1 Oct 16, 2013 10.19242 67 5 2418 3.0.1 Aug 23, 2007 8.80902 88 4 1814

4.4 May 22, 2013 3.539719 36 3 2331 3.0 May 9, 2007 2.994401 46 3 626

CVS
Repository

Browse
change logs
and extract

history through
browser

Extract bugs
from the list
for each file

Organize
bugs for

each release

Extract
changes/revi
sion in each

file

Calculate
periodic

entropy for
release

Release time
prediction
using bugs

and
complexity

Calculate
time of each

release
version

Predicting Release Time of Open Source Software Talat PARVEEN and Hari Darshan ARORA
http://wjst.wu.ac.th

Walailak J Sci & Tech 2018; 15(1)

35

SV DOR COCC TNOF NM TC SV DOR COCC TNOF NM TC

4.2.5 Feb 19, 2013 5.795435 23 3 943 2.22.2 Feb 2, 2007 5.583121 48 4 3448

4.2.4 Nov 13, 2012 6.463577 37 3 576 2.22.1 Oct 15, 2006 12.31643 129 6 4319

4.2.3 Aug 30, 2012 3.453316 24 1 413 2.22 Apr 22, 2006 4.007161 88 2 2427

4.2.2 July 26, 2012 5.178797 27 3 382 2.20.1 Feb 20, 2006 9.005605 125 5 4067

4.2.1 Apr 18, 2012 5.30215 50 2 1833 2.20 Sep 30, 2005 5.234618 60 3 1595

4.2 Feb 22, 2012 1.757591 10 1 234 2.18.3 July 9, 2005 2.713428 3 2 1381

4.0.4 Jan 31, 2012 2.324726 16 1 500 2.18.1 May 11, 2005 6.489944 60 4 3658

4.0.3 Dec 28, 2011 5.361164 35 5 898 2.18 Jan 15, 2005 3.787442 123 3 16478

4.0.2 Aug 4, 2011 5.252608 51 3 1254 2.16.7 Oct 24, 2004 2.85968 10 4 150

4.0.1 Apr 27, 2011 7.040074 29 2 827 2.16.6 July 10, 2004 2.105117 37 4 42387

4.0 Feb 15, 2011 1.629479 24 1 342 2.16.5 Mar 3, 2004 2.690757 20 4 378

3.6.4 Jan 24, 2011 5.377818 26 3 734 2.16.4 Nov 3, 2003 4.153746 34 6 10211

3.6.3 Nov 2, 2010 5.464644 40 3 891 2.16.3 Apr 25, 2003 1.967222 39 4 30974

3.6.2 Aug 5, 2010 4.795026 48 1 1353 2.16.2 Jan 2, 2003 2.0 4 3 191

3.6.1 Jun 24, 2010 6.447155 32 2 850 2.16.1 Sep 30, 2002 1.670795 12 2 189

3.6 Apr 13, 2010 1.570579 56 1 1135 2.16 July 28, 2002 2.72706 52 2 34010

3.4.6 Mar 8, 2010 1.645946 27 1 334 2.14.2 Jun 7, 2002 1.200153 17 5 2584

3.4.5 Jan 31, 2010 1.430351 24 2 43351 2.14.1 Jan 5, 2002 2.784661 175 4 10891

3.4.4 Nov 18, 2009 4.038138 8 2 323 2.14 Aug 29, 2001 2.343654 134 4 13733
9

3.4.2 Sep 11, 2009 3.925886 36 1 1506 2.12 Apr 27, 2001 6.349193 298 12 83041

3.4.1 Aug 1, 2009 2.552273 13 1 509 2.10 May 9, 2000 3.82533 206 6 16151

SV~Software Versions, DOR~Date of release, COCC~Complexity of code change, TNOF~Total
Number of Files, NOM~Number of Months, TC~Total Changes.

Figure 3 Bugs in Bugzilla software releases.

Neural network regression and multiple linear regression

A neural network fitting tool is applied to fit data, using the neural network toolbox in MATLAB
software. Regression analysis is carried out using complexity of code changes and bugs as predictors for

0
20
40
60
80

100

5.
0.

1
4.

4.
9

4.
4.

6
4.

4.
4

4.
4.

1
4.

2.
5

4.
2.

3
4.

2.
1

4.
0.

4
4.

0.
2

4.
0

3.
6.

3
3.

6.
1

3.
4.

6
3.

4.
4

3.
4.

1
3.

2.
3

3.
2

3.
0.

4
3.

0.
2

3.
0

2.
22

.1

2.
20

.1

2.
18

.3

2.
18

2.

16
.6

2.

16
.4

2.

16
.2

2.

16

2.
14

.1

2.
12

B
ug

s

Software Version Release

Predicting Release Time of Open Source Software Talat PARVEEN and Hari Darshan ARORA
http://wjst.wu.ac.th

Walailak J Sci & Tech 2018; 15(1)

36

the release time estimation of new releases. Fitting tool ‘nnft’, or neural network fitting tool, is used to
perform regression on the data, consisting of complexity of code changes, bugs fixed, and time of each
release in Bugzilla OSS. Complexity of code is calculated for each software release using entropy based
metrics, as discussed in section 3.1. Data input is selected using the ‘nnft’, it is trained, and the
performance is evaluated using the neural network-based regression method. The ‘nnft’ creates a 2 layer
feed forward network with sigmoid hidden neurons and linear output neurons. The neural network is
trained using the Levenberg-Marquardt back-propagation algorithm, containing 15 hidden neurons. The
plot of regression is generated by MATLAB software, as shown in Figure 5.

Figure 4 Neural network structure.

Multiple linear regression method is used to predict release time, considering the complexity of
code change (𝑋1) and the bugs fixed (𝑋0) as independent variables, while release time (𝑌0) in months as a
dependent variable;

𝑌0 = 𝑎 + 𝑏𝑋0 + 𝑐𝑋1

(3)

where a, b and c are regression coefficients, and values of a, b and c can be estimated using the
multilinear regression analysis method. After estimating regression coefficients, the next release times of
software can be predicted.

Results and discussion

R defines the correlation between the observed and the predicted values. It measures the strength
and the direction of a linear relationship between 2 variables, and it lies between −1 to 1. The values of R,
calculated through neural network-based regression and multi linear regression analysis, are depicted in
Table 3, it is observed that the values of R, as estimated through neural network-based regression, is 0.99,
while it is 0.98 when estimated through multi-linear regression analysis using SPSS. Hence, it is
estimated that neural network-based regression provides better results than the multi-linear regression
analysis method.

Predicting Release Time of Open Source Software Talat PARVEEN and Hari Darshan ARORA
http://wjst.wu.ac.th

Walailak J Sci & Tech 2018; 15(1)

37

Figure 5 Neural network regression results for release time prediction model.

Table 3 depicts the values of R for neural network-based regression and multi linear regression.

Table 3 Parameters of neural network.

Method R
Neural network regression 0.99
Multi linear regression 0.98

A goodness of fit curve has been plotted between the observed and predicted values, Figure 5
depicts the fitting between the next release observed value and the next release predicted value.

Figure 6 Goodness of fit curve for different software release versions.

0
2
4
6
8

10
12
14

5.
0.

1
4.

4.
9

4.
4.

6
4.

4.
4

4.
4.

1
4.

2.
5

4.
2.

3
4.

2.
1

4.
0.

4
4.

0.
2

4.
0

3.
6.

3
3.

6.
1

3.
4.

6
3.

4.
4

3.
4.

1
3.

2.
3

3.
2

3.
0.

4
3.

0.
2

3.
0

2.
22

.1

2.
20

.1

2.
18

.3

2.
18

2.

16
.6

2.

16
.4

2.

16
.2

2.

16

2.
14

.1

2.
12

Ti
m

e
in

 M
on

th
s

Software Release Version

Predicted Time Time

Predicting Release Time of Open Source Software Talat PARVEEN and Hari Darshan ARORA
http://wjst.wu.ac.th

Walailak J Sci & Tech 2018; 15(1)

38

It is observed that the predicted and observed values are almost similar for each software release
where, in data preparation, we have merged the software releases which were released on the same day.
The total releases of Bugzilla software number 150 but, as many of them were merged as they had been
released on the same day, there were few initial releases from our study, as there were no bugs reported in
them, our study was reduced to a total of 62 observations. The software released which were merged
together due to having the same release dates are depicted in Table 4.

Table 4 Software releases list which have been merged together.

Main SR Merged Software Releases Main SR Merged Software Releases

5.0.1 4.4.10 4.2.15 3.6.1 3.4.7
4.4.9 4.2.14 4.0.18 3.4.5 3.2.6 3.0.11
4.4.8 4.2.13 4.0.17 4.4.7 4.2.12 3.4.4 3.4.3 3.0.10
4.4.6 4.2.11 4.0.15 3.4.2 3.2.5 3.0.9
4.4.5 4.2.10 4.0.14 3.4.1 3.4 3.2.6 3.0.11
4.4.4 4.2.9 4.0.13 4.4.3 4.2.8 4.0.12 3.2.2 3.2.1 3.0.8 3.0.7 2.22.7
4.4.1 4.2.7 4.0.11 3.2 3.0.6 2.22.6 2.20.7
4.4 4.2.6 3.0.5 2.22.5
4.2.5 4.0.10 3.0.4 2.22.4 2.20.6
4.2.4 4.0.9 3.0.1 2.22.3 2.20.5
4.2.3 4.0.8 2.22.2 2.20.4
4.2.2 4.0.7 2.22.1 2.20.3 2.18.6
4.2.1 4.0.6 2.22 2.20.2
4.2 4.0.5 2.20.1 2.18.5 2.16.11
4.0.4 3.6.8 2.20 2.18.4
4.0.3 3.6.7 2.18.3 2.18.2
4.0.2 3.6.6 2.18.1 2.16.10 2.16.9
4.0.1 3.6.5 2.18 2.16.8
3.6.4 3.4.10 2.16.2 2.14.5
3.6.3 3.4.9 2.16.1 2.14.4
3.6.2 3.4.8 2.16 2.14.3

Conclusions

In our paper, we have developed an approach to determine the predicted time of the next release of
the open source software Bugzilla, using the neural network-based regression method and multi linear
regression. The data was collected from the Bugzilla website, www.Bugzilla.org, for each software
release. Code changes in each release were noted and, hence, complexity of code changes were calculated
for each release using Shannon’s entropy measure, bugs reported in each release were recorded, and time
of each release was noted. These statistics were used to predict the next release times of Bugzilla software
versions. Neural network-based regression and multi linear regression were carried out, and the
performance of both models compared using R statistics, it was found that neural network-based
regression results were better than those that were produced using the multi linear regression model at
predicting the release times of software. This study can further be extended by predicting or estimating
the next release times of software versions using other prediction models and other regression methods.
Additionally, this method can be applied to predict the next release times of other OSS projects.

Predicting Release Time of Open Source Software Talat PARVEEN and Hari Darshan ARORA
http://wjst.wu.ac.th

Walailak J Sci & Tech 2018; 15(1)

39

References

[1] A Bagnall, V Rayward-Smith and I Whittley. The next release problem. Inform. Software Tech.
2001; 43, 883-90.

[2] P Baker, M Harman, K Steinhofel and A Skaliotis. Search based approaches to component selection
and prioritization for the next release problem. In: Proceedings of the 22nd IEEE International
Conference Software Maintenance. Philadelphia, USA, 2006, p. 176-85.

[3] BHC Cheng and JM Atlee. Research directions in requirements engineering. In: Proceedings of the
International Conference Software Engineering Workshop Future of Software Engineering.
Washington DC, USA, 2007, p. 285-303.

[4] KK Chaturvedi, P Bedi, S Mishra and VB Singh. An empirical validation of the complexity of code
changes and bugs in predicting the release time of open source software. In: Proceedings of the
IEEE 16th International Conference on Computational Science and Engineering. Sydney, Australia,
2013, p. 1201-6.

[5] MD Ambros, M Lanza and R Robbes. An extensive comparison of bug prediction approaches. In:
Proceedings of the 7th International Working Conference on Mining Software Repositories. South
Africa, 2010, p. 31-41.

[6] MR Garey and DS Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman, New York, 1979, p. 109-17.

[7] G Garzarelli. Open Source Software and the Economics of Organization. In: J Bimer and P
Garrouste (eds.). Markets, Information and Communication, Routledge, New York, 2004, p. 47-62.

[8] DG Glance. Release criteria for the Linux kernel. First Monday 2004; 9, 1056.
[9] D Greer and G Ruhe. Software release planning: An evolutionary and iterative approach. Inform.

Software Tech. 2004; 46, 243-53.
[10] AE Hassan. Predicting Faults based on complexity of code change. In: Proceedings of the 31st

International Conference on Software Engineering. Vancouver, Canada, 2009, p. 78-88.
[11] P Jain and RK Tuteja. On coding theorem connected with ‘useful’ entropy of order-β. Int. J. Math.

Math. Sci. 1989; 12, 193-8.
[12] H Jiang, J Zhang, J Xuan, Z Ren and Y Hu. A hybrid ACO algorithm for the next release problem.

In: Proceedings of the 2nd International Conference on Software Engineering and Data Mining.
China, 2010, p. 166-71.

[13] PK Kapur, VB Singh, OP Singh and JNP Singh. Software release time based on multi attribute
utility functions. Int. J. Reliab. Qual. Saf. Eng. 2013; 20, 1350012.

[14] MATLAB version 8.3. Natick. IEEE Software. The Mathworks, Massachusetts, 2014.
[15] VB Singh and KK Chaturvedi. Improving the Quality of Software by Quantifying the Code Change

Metric and Predicting the Bugs. In: B Murgante, S Misra, M Carlini, CM Torre, HQ Nguyen, D
Taniar, BO Apduhan and O Gervasi (eds.). Computational Science and Its Applications, 2013, p.
408-26.

[16] VB Singh and KK Chaturvedi. Entropy based bug prediction using support vector regression. In:
Proceedings of the 12th International Conference on Intelligent Systems Design and Applications.
Kochi, India, 2012, p. 746-51.

[17] LC Singhal, RK Tuteja and P Jain. On measures of relative information with preference. Comm.
Stat. Theor. Meth. 1988; 17, 1449-64.

[18] CE Shannon. A mathematical theory of communication. Bell Syst. Tech. J. 1948; 27, 379-423.
[19] A Ngo and G Ruhe. Optimized resource allocation for software release planning. IEEE Trans.

Software Eng. 2009; 35, 109-23
[20] The Bugzilla Project, Available at: http://www.Bugzilla.org, accessed January 2016.
[21] G Ruhe and MO Saliu. The art and science of software release planning. IEEE Software 2005; 22,

47-53.
[22] S Weisberg. Applied Linear Regression. John Wiley and Sons, USA, 1980.
[23] J Xuan, H Jiang, Z Ren and Z Luo. Solving the large scale next release problem with a backbone

based multilevel algorithm. IEEE Trans. Software Eng. 2012; 38, 1195-212.

	Introduction
	Literature review
	Code change process
	Complexity of code change

	Data collection and methodology
	Neural network regression and multiple linear regression
	Results and discussion
	Conclusions
	References

