

http://wjst.wu.ac.th Information Technology

Walailak J Sci & Tech 2018; 15(1): 19-27.

Scheduling Dynamic Parallel Loop Workflow in Cloud Environment

Sucha SMANCHAT* and Kanchana VIRIYAPANT

Faculty of Information Technology, King Mongkut’s University of Technology North Bangkok,
Wongsawang, Bangsue, Bangkok 10800, Thailand

(*Corresponding author’s e-mail: sucha.s@it.kmutnb.ac.th)

Received: 7 March 2016, Revised: 29 July 2016, Accepted: 26 August 2016

Abstract

Scientific workflows have been employed to automate large scale scientific experiments by
leveraging computational power provided on-demand by cloud computing platforms. Among these
workflows, a parallel loop workflow is used for studying the effects of different input values of a
scientific experiment. Because of its independent loop characteristic, a parallel loop workflow can be
dynamically executed as parallel workflow instances to accelerate the execution. Such execution negates
workflow traversal used in existing works to calculate execution time and cost during scheduling in order
to maintain time and cost constraints. In this paper, we propose a novel scheduling technique that is able
to handle dynamic parallel loop workflow execution through a new method for evaluating execution
progress together with a workflow instance arrival control and a cloud resource adjustment mechanism.
The proposed technique, which aims at maintaining a workflow deadline while reducing cost, is tested
using 3 existing task scheduling heuristics as its task mapping strategies. The simulation results show that
the proposed technique is practical and performs better when the time constraint is more relaxed. It also
prefers task scheduling heuristics that allow for a more accurate progress evaluation.

Keywords: Workflow, parallel loop, workflow scheduling, cloud computing

Introduction

Cloud computing [1] has become a prominent platform for scientific computation as it can offer
high computation power on demand without full investment in hardware. Cloud computing resources
have been utilized in many scientific applications including scientific workflows, which have been used
to orchestrate and automate scientific experiments that are composed of multiple steps and involve
different computer programs represented as workflow tasks.

Parallel loop workflow is a workflow that is repeated numerous times. This type of workflow has
been used in parametric studies (also known as parameter sweep application) to explore the effect of a set
of parameters by varying their values in each loop iteration. Parallel loop workflow is distinct from the
traditional loop in that each loop iteration is independent of other iterations, making it possible to execute
these loops at the same time to speed up the whole execution [2].

In order to dynamically execute a parallel loop workflow in the cloud computing environment, it is
necessary to schedule tasks in the workflow so that the cost incurred from cloud resource usage is
reasonably controlled and that the execution does not take too long. Although many workflow scheduling
techniques have been proposed [3], most of them are designed to schedule a single instance of a
workflow. In our context, each loop iteration of a parallel loop workflow is instantiated dynamically at
run-time. This dynamism nullifies the traditional evaluation of workflow cost and time based on
workflow structure such that existing scheduling techniques cannot be effectively applied. In this paper,
we propose a novel technique that can schedule dynamic parallel loop workflow subject to a deadline
constraint while reducing the cost of cloud usage. Our contribution consists of 1) a new method to

Scheduling Parallel Loop Workflow in Cloud Sucha SMANCHAT and Kanchana VIRIYAPANT
http://wjst.wu.ac.th

Walailak J Sci & Tech 2018; 15(1)

20

evaluate workflow execution progress without relying on traversing workflow graph, 2) a workflow
instantiation control, and 3) a cloud resource adjustment mechanism.

The rest of this paper is organized as follows. The next section reviews notable workflow
scheduling techniques that are designed for execution on cloud environment. The third section describes
and discusses our approach to scheduling parallel loop workflow. The simulation results are then
presented and a conclusion is made along with future research directions.

Related work

Workflow scheduling has long been attracting researchers to tackle different types and
characteristics of workflows. Beginning in 2008, many techniques have been proposed to cope with the
distinct cloud resource model involving both cost and time aspects [3]. Workflow scheduling techniques
can be grouped as batch scheduling and dependency based scheduling. Those of the former type have
been used since the Grid and cluster computing era mostly focusing on minimizing workflow makespan.
They iteratively schedule tasks that are ready for execution in each scheduling iteration based on certain
resource performance metrics such as execution time [4], sufferage value [5] and resource competition
[6]. However, these techniques cannot handle multiple scheduling objectives such as cost and time so
well because they do not traverse the workflow to estimate the total makespan and cost. Thus, they are
rarely applied to cloud workflow where the cost objective is dominant. The latter type of technique
schedules workflow by traversing the workflow graph. Most of the existing cloud workflow scheduling
techniques are of this group because cost and makespan can be estimated and controlled as the workflow
is traversed. A number of approaches are employed including deadline distribution, critical path
scheduling and workflow partitioning.

The IC-PCP algorithm [7] recursively schedules the critical path of a workflow backward from the
last task. The tasks in the critical path of the current scheduling iteration are assigned to the cheapest
resource that can finish them within the deadline. The IC-PCPD2 algorithm [7], another variant of the IC-
PCP, distributes the deadline into individual deadline for each task, which is then scheduled to the
cheapest resource that can finish it within its own deadline. The HCOC algorithm [8] partitions a
workflow into groups of tasks. Each group contains the tasks in the same path, which are then scheduled
to the same resource to avoid data transfer. The algorithm also employs rescheduling in the case that the
deadline is expected to be violated. The PBTS algorithm [9] employs time based partitioning of a
workflow based on the charge period of cloud provider (such as 1 h according to Amazon EC2). It tries to
optimize the number of virtual machines in each partition based on a workflow graph and then reuses,
launches or terminates virtual machines as necessary to minimize the total cost.

In almost every cloud workflow scheduling technique, it is necessary to evaluate the makespan and
the cost of a workflow. This usually relies on traversing the workflow graph. However, with the dynamic
parallel loop workflow running as multiple concurrent workflow instances, the workflow graph cannot be
traversed because the workflow instances are instantiated at run-time and may not be instantiated all at
once. In such cases, the batch scheduling is more appropriate but a new method for evaluating the
execution progress must be devised. Also, the control of workflow instantiation should be appropriate to
the progress of execution, and additional virtual machines should be started as necessary to cope with the
deadline of the workflow.

Materials and methods

In our context of a dynamically executing parallel loop workflow, each independent loop is
considered to be an independent workflow instance. Thus, these workflow instances can be concurrently
executed to accelerate the entire execution [2]. As mentioned earlier, the necessary mechanisms to handle
such dynamism are the evaluation of workflow execution progress, the control of workflow instance
arrival (i.e. workflow instantiation), and the adjustment of cloud resources.

Scheduling Parallel Loop Workflow in Cloud Sucha SMANCHAT and Kanchana VIRIYAPANT
http://wjst.wu.ac.th

Walailak J Sci & Tech 2018; 15(1)

21

Problem definition
A parallel loop workflow is defined as a directed acyclic graph W = (V, E, L), where V is a set of

vertices representing tasks in the workflow and E is a set of edges representing precedence dependencies
between tasks. For a task to be ready for execution, all of its preceding tasks must have completed their
execution. It is assumed that the number of loops L is known to the scheduler. Due to our workflow
execution context, we distinguish a specific loop using the term “workflow instance” (i.e. each loop is
executed as a separate workflow instance). Thus, the specific tasks in each workflow instance are referred
to as “task instances”.

A cloud provider P offers an unlimited number of virtual machine instances with different types.
Each type is associated with a processing power denoted as Resource Capability Unit (RCU) and a cost
per time unit. Each virtual machine instance can execute at most one task instance at a time. It is assumed
that at least one virtual machine instance from P is initially running to host the input files for the
workflow. We also assume that the workflow execution takes place within a single cloud provider region.
This assumption, according to most commercial cloud providers, infers that the time and the cost for data
transfer are negligible.

Thus, given a parallel loop workflow W and a cloud provider P, our scheduling objective is to find
the mapping between the task instances in W to the virtual machine instances that can be requested from
P so that the overall makespan is within a specified deadline D while reducing execution cost.

Evaluating execution progress
To determine the progress of a workflow execution without traversing the workflow graph, we

instead compare the number of completed task instances against the total number of task instances. The
latter can be determined by simply multiplying the number of parallel loops L with the number of tasks
|V| in the workflow. The progress ratio PR of the workflow is thus defined as follows;

VL
instancestaskcompletedofnumberPR

×
= (1)

To establish a time-based benchmark, we define an elapse time ratio ER by comparing the elapsed

time since the start of the workflow execution against the deadline D as follows;

D
timeelapsedER = (2)

In order to determine whether the current progress would satisfy the deadline of the workflow, the

progress evaluation PE is defined as the ratio between PR and ER as shown in Eq. (3);

ER
PRPE = (3)

The PE can indicate whether the workflow execution is currently progressing at the proper pace. If

the value of PE is less than 1, then the progress is estimated to be too slow to meet the deadline and
actions may be taken. On the other hand, a value of 1 or higher indicates that the current progress is
satisfactory to meet the deadline. This ratio is necessary in our technique for not only progress evaluation
but also for instance arrival control and resource adjustment.

Workflow instantiation control
Workflow instantiation control is necessary when a parallel loop workflow is dynamically executed.

The instantiation of each parallel loop should be controlled so that the scheduling process is not flooded
with too many task instances in one scheduling iteration. Otherwise, these task instances would be

Scheduling Parallel Loop Workflow in Cloud Sucha SMANCHAT and Kanchana VIRIYAPANT
http://wjst.wu.ac.th

Walailak J Sci & Tech 2018; 15(1)

22

scheduled to a few running virtual machine resources before additional ones are launched causing an
overall delay. Nevertheless, the control should also consider the current progress of the execution and
generate more workflow instances if the progress is estimated to violate the deadline.

After instantiating the first workflow instance at the start of the execution, it is not possible to
evaluate the progress because no task instance has been completed (i.e. the number of completed tasks is
zero and thus PE is zero), thus the workflow instantiation is suspended. After one task instance is
completed, the instantiation control considers 2 conditions. The first condition is that the number of
unscheduled task instances in each scheduling iteration is at least 6 times the number of idle virtual
machines. This threshold guarantees that there is always a sufficient number of task instances to be
scheduled as proven in [6]. The second condition depends on the value of PE. A workflow instance is
generated if PE is less than 1 and that the progress of the execution has changed (i.e. a task instance is
completed) since the latest workflow instance has been generated. The latter condition is for avoiding
indefinitely instantiating workflow without re-evaluating the progress.

Cloud resource adjustment
Depending on the progress evaluation, additional virtual machine instances may be launched to

speed up the execution to meet the deadline. Similar to the instance arrival control, cloud resource
adjustment is suspended at the start of execution because it is not possible to evaluate the progress; it is
resumed after the first task instance is completed.

The first step in the resource adjustment is to check whether an idle virtual machine instance is
available and whether the value of PE is more than or equal to one. If any of these conditions is true, then
no additional virtual machine instance is launched. In addition to reusing existing virtual machines, this is
to avoid launching virtual machine instances unnecessarily, which would increase the cost.

If the value of PE is less than 1 and the progress of the execution has changed since the latest
resource adjustment, then one virtual machine instance will be launched in each scheduling round. This is
also to avoid launching too many virtual machine instances unnecessarily without re-evaluating the
progress. In our early test, allowing several virtual machine instances to be launched in one scheduling
round causes an excess number of virtual machine instances resulting in excessively high cost. The virtual
machine type to be launched is decided by first determining the average resource capability unit RCUavg,
which is calculated by the total RCU contributed by running virtual machine instances averaged over time
as follows;

()

timeelapsed

uptimeRCU
RCU

VM

i
ii

avg

∑
=

×
= 1 (4)

In Eq. (4), VM is the set of running virtual machine instances, RCUi is the resource capability unit of

each virtual machine instance in VM according to its type, and uptimei is the duration since each virtual
machine instance has started. To determine additional RCUreq that is required to meet the deadline, we use
the following equation employing PE;







 −×= 11

PE
RCURCU avgreq (5)

Eq. (5) estimates the required RCUreq based on the proportion between the progress and the elapsed

time subject to the deadline. The adjustment then selects the virtual machine type with the RCU
immediately higher than the RCUreq. For example, if RCUreq is 10 and there are virtual machine types
with 12 and 16 RCU, then the one with 12 RCU is selected. The workflow instance control and the cloud
resource adjustment work in harmony. By employing PE, as workflow instances are generated, virtual
machine instances can be launched to handle them.

Scheduling Parallel Loop Workflow in Cloud Sucha SMANCHAT and Kanchana VIRIYAPANT
http://wjst.wu.ac.th

Walailak J Sci & Tech 2018; 15(1)

23

Scheduling technique
The 3 mechanisms, which are our main contribution, described so far are developed to cope with the

task instances and virtual machine resources. Here, we combine them into the proposed technique to
schedule parallel execution of the dynamic parallel loop workflow. The whole body of the proposed
scheduling technique is shown in Table 1, separated into 3 phases. The outermost while loop is the
scheduling iteration control that repeats until the entire execution is completed. The workflow
instantiation control is implemented from lines 2 to 10; the task instances instantiated according to the
conditions in this phase are added to the set of unscheduled task instances T. Then, the task instances in T
that are ready for execution according to their precedence dependencies are added to the set of ready task
instances RT. The cloud resource adjustment in lines 12 - 15 is then performed given that the conditions
specified in the previous section are met.

A task mapping heuristic is then invoked on the set RT (line 16) to assign the task instances within
to the virtual machine instances. In this research, we employ the Min-Min [4], the Max-Min [4] and the
XSufferage [5] task mapping heuristics for the purpose of testing the scheduling technique because of
their simplicity and decent performance [6]. The main reasoning behind the Min-Min heuristic is that it
iteratively schedules the shortest task among those being ready to the resource that will complete the task
at the earliest. On the other hand, the Max-Min heuristic iteratively schedules the longest task first [4].
The XSufferage heuristic, disregarding the size of tasks, iteratively schedules the task that would suffer
the longest delay if not executed first to the resource that will complete it at the earliest.

Table 1 The proposed scheduling technique.

Phase Input: Parallel loop workflow, total number of parallel loop L, Cloud provider P
Output: Schedule for executing parallel instances of parallel loop workflow

Scheduling Iteration 1 while ((L > 0) || set of unscheduled task instances T is not empty) do
Workflow instantiation control 2 Calculate progress evaluation PE using Eq.(3)

3 if firstSchedulingIteration then
4 Instantiate the first workflow instance for the first parallel loop, and decrement L
5 else if (completed task > 0) then
6 while (size of T < threshold) || ((PE < 1.0) && (progress changes)) do
7 Generate one workflow instance, and decrement L
8 Add task instances from the new workflow instance to set T
9 end while
10 end if
11 Determine the task instances in set T that are ready and add them to set RT

Resource adjustment 12 if ((PE < 1.0) && (!freeNode) && (completed task > 0) && (progress changes)) then
13 Calculate required RCUreq using Eq.(5)
14 Launch a new VM instance in P with RCU immediate higher than RCUreq
15 end if

Task mapping 16 Invoke a task mapping heuristic on the set of ready task instances RT
17 T = T - RT

Scheduling iteration 18 Wait for the next scheduling iteration
19 end while

Once scheduled, the task instances in RT are removed from the set T in line 17. The scheduler then
waits for the next scheduling iteration, which is triggered either by a completion of a task instance or the
conditions for workflow instantiation control being met. This process is repeated by the outermost while
loop until the entire execution is completed.

Scheduling Parallel Loop Workflow in Cloud Sucha SMANCHAT and Kanchana VIRIYAPANT
http://wjst.wu.ac.th

Walailak J Sci & Tech 2018; 15(1)

24

Results and discussion

Workflow simulation is employed in the evaluation. We implement our technique and the 3 task
mapping heuristics, namely the Min-Min, the Max-Min and the XSufferage, as the workflow schedulers
along with a simulation environment in the Nimrod/K system [2,10]. This system supports parallel
execution of parameter sweep workflow, whose execution is in parallel loops, by dynamically running
multiple instances of the workflow in parallel.

Because there is no existing technique, to the best of our knowledge, that can schedule multiple
parallel cloud workflow instances and estimate the workflow execution cost and time without relying on
traversing the workflow structure [3], our evaluation aims to study the behavior of our proposed
technique based on the 3 existing task mapping heuristics. We use a workflow scenario as shown in
Figure 2 in the experiment. The workflow is composed of 5 tasks arranged in 2 parallel sequences
merging at the last task; such structure is analogous to those commonly found in large scientific
workflows. The experiment is set to run 100 parallel loops, totaling 500 task instances. As mentioned in
our problem definition, the execution takes place within a single cloud provider region thus the data
transfer time and cost are negligible.

T1

T3

T2

T4

T5

Figure 2 The workflow scenario.

Three general purpose instance types are adopted from the Amazon EC21 to define the RCU
(referencing Amazon EC2 Compute Unit) and the cost per time unit of our virtual machine types as listed
in Table 2. Based on the RCUs, we set the Estimated Execution Time (EET) in seconds of each task by
each virtual machine type as listed in Table 3. One virtual machine of medium type is initially running to
host the input files for the workflow.

Table 2 Resource capability units and costs of virtual machine types.

VM Type RCU Cost per time unit
medium 3 0.067

large 6.5 0.133
xlarge 13 0.266

Table 3 Estimated execution times of each task based on virtual machine types.

EET medium large xlarge
T1 6 2.8 1.4
T2 5 2.3 1.15
T3 9 4.2 2.1
T4 12 5.6 2.8
T5 4 1.8 0.9

1https://aws.amazon.com/ec2/pricing.

Scheduling Parallel Loop Workflow in Cloud Sucha SMANCHAT and Kanchana VIRIYAPANT
http://wjst.wu.ac.th

Walailak J Sci & Tech 2018; 15(1)

25

We define a base time equal to the time taken for one medium (slowest) virtual machine to finish
one workflow instance, which is 36 (i.e. the sum of the first column in Table 3 regardless of workflow
structures). The deadlines are then set based on the base time to test the proposed technique against
deadlines ranging from tighter (equal to the base time) to more relaxed ones (the base time multiplied by
half of the number of parallel loops, which is equal to 50 in the experiment). Thus, each test case is
characterized by a deadline multiplier and one of the 3 scheduling heuristics. Each test case is repeated 5
times to calculate the average makespan and the average cost with outliers removed.

The average makespans and the standard deviations of the simulation are shown in Table 4. The
proposed technique can satisfy the workflow deadline when it is set to 1.5 times of the base time or
higher. An unexpected result is that the makespans are almost equal at least up to the deadline of 3 times
of the base time. This means that such makespans are the minimum makespans that can be obtained by
the proposed technique. In the case of the strictest deadline, the technique cannot react fast enough to
instantiate additional virtual machine instances at the very beginning of the execution. However, it can
react better with other longer deadlines. In fact, it performs much better than we have anticipated before
the experiment, as can be seen in the cases of the deadline multipliers from 2.0 and higher. One reason for
this observation is that the technique is ‘shocked’ by the initially slow progress evaluation (low PE value)
at the start of the execution and thus starts many additional virtual machine instances in succession (but
this happens too late to cope with the strictest deadline). These many virtual machine instances yield
makespans much lower than the deadlines.

Table 4 Makespans of the workflow execution.

Heuristic
Deadline (multiplier)

36
(1.0)

54
(1.5)

72
(2.0)

90
(2.5)

108
(3.0)

1800
(50)

Min-Min 35.50 34.93 35.99 38.83 40.98 453.81
SD 0.45 0.60 0.26 0.91 1.01 0.43

Max-Min 41.98 42.29 41.82 42.56 43.08 407.03
SD 1.02 1.06 0.66 1.31 0.44 1.05

XSufferage 42.50 42.23 42.10 42.90 43.46 435.57
SD 0.60 0.52 0.46 0.73 0.81 29.82

The average costs of the experiments are detailed in Table 5 along with the standard deviations.
Because virtual machine instances may wait idly for task instances to be scheduled to them, we separate
the cost into the computing cost (when running tasks) and the idle cost (when waiting idly). The
computing costs in most cases do not differ much ranging from 222 to 232. This is because the resource
capability unit per cost is almost similar in the 3 virtual machine types used in our experiment, which
reference the on-demand instances in Amazon EC2.

However, the idle costs are much lower with the Min-Min heuristic when the deadline is stricter.
The idle cost of the Min-Min heuristic starts to decrease from the deadline of 1.5 times of the base time,
while the idle costs of the other 2 heuristics remain higher and start to decrease from the deadline of 2.5
times of the base time. The Min-Min heuristic prioritizes smaller task instances first, leading to a faster
progress feedback to the scheduler. Therefore, the workflow instantiation control can react faster and the
resource adjustment mechanism can launch a more proper number of virtual machine instances.
Nevertheless, when the deadline is relaxed, such as the base line multiplied by half of the number of
parallel loops, all the 3 heuristics incur almost the same idle costs.

Scheduling Parallel Loop Workflow in Cloud Sucha SMANCHAT and Kanchana VIRIYAPANT
http://wjst.wu.ac.th

Walailak J Sci & Tech 2018; 15(1)

26

Table 5 Costs of the workflow execution.

Heuristic
Deadline (multiplier)

36
(1.0)

54
(1.5)

72
(2.0)

90
(2.5)

108
(3.0)

1800
(50)

Min-Min

Computing Cost 223.92 224.65 226.83 228.67 229.66 232.04
SD 2.05 2.39 1.97 2.68 1.28 0.23

Idle Cost 74.87 57.71 31.02 13.41 6.55 2.21
SD 4.73 7.49 2.85 3.52 0.92 0.26

Max-Min

Computing Cost 222.79 226.34 225.49 227.43 228.88 228.73
SD 2.53 1.17 2.31 0.90 1.81 0.15

Idle Cost 89.23 73.69 73.82 46.20 38.32 4.96
SD 9.20 15.14 3.21 5.93 5.05 0.72

XSufferage
Computing Cost 226.53 225.29 226.21 227.95 229.97 230.92

SD 2.16 0.90 2.22 2.36 0.91 1.94
Idle Cost 84.55 74.95 78.06 51.76 30.32 2.77

 SD 4.27 8.48 5.84 10.02 6.14 0.50

In summary, our technique is proven to be practical and prefers a greedy approach such as the Min-
Min heuristic to try finishing more task instances as soon as possible in order for the progress evaluation
to be more accurate. The technique can satisfy most of the deadlines specified in the experiment except
for the strictest deadline. The proposed resource adjustment mechanism that launches one new virtual
machine instance in each scheduling round cannot react fast enough to handle the strictest deadline.
However, the strictest deadline is equal to the time that the slowest virtual machine takes to execute only
one parallel loop while the experiment is set to run 100 parallel loops. This is an extreme case designed to
test the proposed technique and it is reasonable that the technique cannot meet the deadline. Moreover,
such strict deadlines are unrealistic and are not likely to be used in the real world.

Conclusions

This paper presents a novel scheduling technique for dynamic parallel loop workflows based on the
objective of reducing the cost of cloud resource usage while preserving a deadline. The contribution of
this paper consists of 3 components. Firstly, the technique features a new method to evaluate the
workflow execution progress based on the number of completed tasks and elapsed time in order to avoid
relying on traversing the workflow graph traditionally used in existing works. The new workflow
progress evaluation is employed in the other 2 components, which are the workflow instantiation control
and the cloud resource adjustment proposed in order to cope with the dynamic parallel execution of the
parallel loop workflows. According to the simulation results, our technique is practical and incurs lower
cost when the workflow deadline is more relaxed. It also prefers task mapping heuristics that facilitate
faster progress feedback, which leads to a more accurate progress evaluation.

With our finding, a number of issues can be improved. The current progress evaluation treats all
tasks equally; this can lead to an inaccurate estimation when task sizes are dispersed. Normalization of the
task sizes may prove useful.

Regarding the execution environment, the technique can be extended to cover a hybrid cloud
deployment model in which data transfer times and costs must be considered. Also, the technique can be
improved to incorporate a limited number of virtual machine instances, which may involve a virtual

Scheduling Parallel Loop Workflow in Cloud Sucha SMANCHAT and Kanchana VIRIYAPANT
http://wjst.wu.ac.th

Walailak J Sci & Tech 2018; 15(1)

27

machine termination mechanism in order to launch faster ones instead. For such cases, the task mapping
heuristic may also need to be specifically designed.

Finally, with the growing concern on the environmental impact, the objective of reducing the carbon
footprint or energy consumption has begun to receive attention in workflow scheduling research [11].
However, most of the commercial cloud providers do not make available the information regarding the
power consumption of their services to the users. This challenge will thus have to be investigated further.

Acknowledgements

This research is funded by A New Researcher Scholarship of CSTS, MOST by the Coordinating
Center for Thai Government Science and Technology Scholarship Students (CSTS) of the National
Science and Technology Development Agency under project ID SCH-NR2012-212.

References

[1] D Bhatt. A revolution in information technology: Cloud computing. Walailak J. Sci. & Tech. 2011;
9, 108-13.

[2] D Abramson, C Enticott and I Altintas. Nimrod/K: Towards massively parallel dynamic grid
workflows. In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. Texas, USA,
2008, p. 1-11.

[3] S Smanchat and K Viriyapant. Taxonomies of workflow scheduling problem and techniques in the
cloud. Future Generat. Comput. Syst. 2015; 52, 1-12.

[4] M Maheswaran, S Ali, H Siegel, D Hensgen and R Freund. Dynamic matching and scheduling of a
class of independent tasks onto heterogeneous computing systems. In: Proceedings of the 8th
Heterogeneous Computing Workshop. San Juan, Puerto Rico, 1999, p. 30-44.

[5] H Casanova, A Legrand, D Zagorodnov and F Berman. Heuristics for scheduling parameter sweep
applications in grid environments. In: Proceedings of the 9th Heterogeneous Computing Workshop.
Cancun, Mexico, 2000, p. 349-63.

[6] S Smanchat, M Indrawan, S Ling, C Enticott and D Abramson. Scheduling parameter sweep
workflow in the Grid based on resource competition. Future Generat. Comput. Syst. 2013; 29, 1164-
83.

[7] S Abrishami, M Naghibzadeh and D Epema. Deadline-constrained workflow scheduling algorithms
for infrastructure as a service clouds. Future Generat. Comput. Syst. 2013; 29, 158-69.

[8] L Bittencourt and E Madeira. HCOC: A cost optimization algorithm for workflow scheduling in
hybrid clouds. J. Internet Serv. Appl. 2011; 2, 207-27.

[9] E Byun, Y Kee, J Kim and S Maeng. Cost optimized provisioning of elastic resources for
application workflows. Future Generat. Comput. Syst. 2011; 27, 1011-26.

[10] C Enticott, T Peachey, D Abramson, E Mashkina, C Lee, A Bond, G Kennedy, D Gavaghan and
D Elton. Electrochemical parameter optimization using scientific workflows. In: Proceedings of the
6th IEEE International Conference on E-Science. Brisbane, Australia, 2010, p. 324-30.

[11] Y Lee, H Han, A Zomaya and M Yousif. Resource-efficient workflow scheduling in clouds.
Knowl. Based Syst. 2015; 80, 153-62.

	Introduction
	Related work
	Materials and methods
	Problem definition
	Evaluating execution progress
	Workflow instantiation control
	Cloud resource adjustment
	Scheduling technique

	Results and discussion
	Conclusions
	Acknowledgements
	References

