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Abstract 

Scientific workflows have been employed to automate large scale scientific experiments by 
leveraging computational power provided on-demand by cloud computing platforms. Among these 
workflows, a parallel loop workflow is used for studying the effects of different input values of a 
scientific experiment. Because of its independent loop characteristic, a parallel loop workflow can be 
dynamically executed as parallel workflow instances to accelerate the execution. Such execution negates 
workflow traversal used in existing works to calculate execution time and cost during scheduling in order 
to maintain time and cost constraints. In this paper, we propose a novel scheduling technique that is able 
to handle dynamic parallel loop workflow execution through a new method for evaluating execution 
progress together with a workflow instance arrival control and a cloud resource adjustment mechanism. 
The proposed technique, which aims at maintaining a workflow deadline while reducing cost, is tested 
using 3 existing task scheduling heuristics as its task mapping strategies. The simulation results show that 
the proposed technique is practical and performs better when the time constraint is more relaxed. It also 
prefers task scheduling heuristics that allow for a more accurate progress evaluation. 
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Introduction 

Cloud computing [1] has become a prominent platform for scientific computation as it can offer 
high computation power on demand without full investment in hardware. Cloud computing resources 
have been utilized in many scientific applications including scientific workflows, which have been used 
to orchestrate and automate scientific experiments that are composed of multiple steps and involve 
different computer programs represented as workflow tasks. 

Parallel loop workflow is a workflow that is repeated numerous times. This type of workflow has 
been used in parametric studies (also known as parameter sweep application) to explore the effect of a set 
of parameters by varying their values in each loop iteration. Parallel loop workflow is distinct from the 
traditional loop in that each loop iteration is independent of other iterations, making it possible to execute 
these loops at the same time to speed up the whole execution [2]. 

In order to dynamically execute a parallel loop workflow in the cloud computing environment, it is 
necessary to schedule tasks in the workflow so that the cost incurred from cloud resource usage is 
reasonably controlled and that the execution does not take too long. Although many workflow scheduling 
techniques have been proposed [3], most of them are designed to schedule a single instance of a 
workflow. In our context, each loop iteration of a parallel loop workflow is instantiated dynamically at 
run-time. This dynamism nullifies the traditional evaluation of workflow cost and time based on 
workflow structure such that existing scheduling techniques cannot be effectively applied. In this paper, 
we propose a novel technique that can schedule dynamic parallel loop workflow subject to a deadline 
constraint while reducing the cost of cloud usage. Our contribution consists of 1) a new method to 
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evaluate workflow execution progress without relying on traversing workflow graph, 2) a workflow 
instantiation control, and 3) a cloud resource adjustment mechanism. 

The rest of this paper is organized as follows. The next section reviews notable workflow 
scheduling techniques that are designed for execution on cloud environment. The third section describes 
and discusses our approach to scheduling parallel loop workflow. The simulation results are then 
presented and a conclusion is made along with future research directions. 
 
Related work 

Workflow scheduling has long been attracting researchers to tackle different types and 
characteristics of workflows. Beginning in 2008, many techniques have been proposed to cope with the 
distinct cloud resource model involving both cost and time aspects [3]. Workflow scheduling techniques 
can be grouped as batch scheduling and dependency based scheduling. Those of the former type have 
been used since the Grid and cluster computing era mostly focusing on minimizing workflow makespan. 
They iteratively schedule tasks that are ready for execution in each scheduling iteration based on certain 
resource performance metrics such as execution time [4], sufferage value [5] and resource competition 
[6]. However, these techniques cannot handle multiple scheduling objectives such as cost and time so 
well because they do not traverse the workflow to estimate the total makespan and cost. Thus, they are 
rarely applied to cloud workflow where the cost objective is dominant. The latter type of technique 
schedules workflow by traversing the workflow graph. Most of the existing cloud workflow scheduling 
techniques are of this group because cost and makespan can be estimated and controlled as the workflow 
is traversed. A number of approaches are employed including deadline distribution, critical path 
scheduling and workflow partitioning.  

The IC-PCP algorithm [7] recursively schedules the critical path of a workflow backward from the 
last task. The tasks in the critical path of the current scheduling iteration are assigned to the cheapest 
resource that can finish them within the deadline. The IC-PCPD2 algorithm [7], another variant of the IC-
PCP, distributes the deadline into individual deadline for each task, which is then scheduled to the 
cheapest resource that can finish it within its own deadline. The HCOC algorithm [8] partitions a 
workflow into groups of tasks. Each group contains the tasks in the same path, which are then scheduled 
to the same resource to avoid data transfer. The algorithm also employs rescheduling in the case that the 
deadline is expected to be violated. The PBTS algorithm [9] employs time based partitioning of a 
workflow based on the charge period of cloud provider (such as 1 h according to Amazon EC2). It tries to 
optimize the number of virtual machines in each partition based on a workflow graph and then reuses, 
launches or terminates virtual machines as necessary to minimize the total cost. 

In almost every cloud workflow scheduling technique, it is necessary to evaluate the makespan and 
the cost of a workflow. This usually relies on traversing the workflow graph. However, with the dynamic 
parallel loop workflow running as multiple concurrent workflow instances, the workflow graph cannot be 
traversed because the workflow instances are instantiated at run-time and may not be instantiated all at 
once. In such cases, the batch scheduling is more appropriate but a new method for evaluating the 
execution progress must be devised. Also, the control of workflow instantiation should be appropriate to 
the progress of execution, and additional virtual machines should be started as necessary to cope with the 
deadline of the workflow. 
 
Materials and methods 

In our context of a dynamically executing parallel loop workflow, each independent loop is 
considered to be an independent workflow instance. Thus, these workflow instances can be concurrently 
executed to accelerate the entire execution [2]. As mentioned earlier, the necessary mechanisms to handle 
such dynamism are the evaluation of workflow execution progress, the control of workflow instance 
arrival (i.e. workflow instantiation), and the adjustment of cloud resources. 
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Problem definition 
A parallel loop workflow is defined as a directed acyclic graph W = (V, E, L), where V is a set of 

vertices representing tasks in the workflow and E is a set of edges representing precedence dependencies 
between tasks. For a task to be ready for execution, all of its preceding tasks must have completed their 
execution. It is assumed that the number of loops L is known to the scheduler. Due to our workflow 
execution context, we distinguish a specific loop using the term “workflow instance” (i.e. each loop is 
executed as a separate workflow instance). Thus, the specific tasks in each workflow instance are referred 
to as “task instances”. 

A cloud provider P offers an unlimited number of virtual machine instances with different types. 
Each type is associated with a processing power denoted as Resource Capability Unit (RCU) and a cost 
per time unit. Each virtual machine instance can execute at most one task instance at a time. It is assumed 
that at least one virtual machine instance from P is initially running to host the input files for the 
workflow. We also assume that the workflow execution takes place within a single cloud provider region. 
This assumption, according to most commercial cloud providers, infers that the time and the cost for data 
transfer are negligible. 

Thus, given a parallel loop workflow W and a cloud provider P, our scheduling objective is to find 
the mapping between the task instances in W to the virtual machine instances that can be requested from 
P so that the overall makespan is within a specified deadline D while reducing execution cost. 

 
Evaluating execution progress 
To determine the progress of a workflow execution without traversing the workflow graph, we 

instead compare the number of completed task instances against the total number of task instances. The 
latter can be determined by simply multiplying the number of parallel loops L with the number of tasks 
|V| in the workflow. The progress ratio PR of the workflow is thus defined as follows; 

 

VL
instancestaskcompletedofnumberPR

×
=  (1) 

 
To establish a time-based benchmark, we define an elapse time ratio ER by comparing the elapsed 

time since the start of the workflow execution against the deadline D as follows; 
 

D
timeelapsedER =  (2) 

 
In order to determine whether the current progress would satisfy the deadline of the workflow, the 

progress evaluation PE is defined as the ratio between PR and ER as shown in Eq. (3); 
 

ER
PRPE =  (3) 

 
The PE can indicate whether the workflow execution is currently progressing at the proper pace. If 

the value of PE is less than 1, then the progress is estimated to be too slow to meet the deadline and 
actions may be taken. On the other hand, a value of 1 or higher indicates that the current progress is 
satisfactory to meet the deadline. This ratio is necessary in our technique for not only progress evaluation 
but also for instance arrival control and resource adjustment. 

 
Workflow instantiation control 
Workflow instantiation control is necessary when a parallel loop workflow is dynamically executed. 

The instantiation of each parallel loop should be controlled so that the scheduling process is not flooded 
with too many task instances in one scheduling iteration. Otherwise, these task instances would be 
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scheduled to a few running virtual machine resources before additional ones are launched causing an 
overall delay. Nevertheless, the control should also consider the current progress of the execution and 
generate more workflow instances if the progress is estimated to violate the deadline. 

After instantiating the first workflow instance at the start of the execution, it is not possible to 
evaluate the progress because no task instance has been completed (i.e. the number of completed tasks is 
zero and thus PE is zero), thus the workflow instantiation is suspended. After one task instance is 
completed, the instantiation control considers 2 conditions. The first condition is that the number of 
unscheduled task instances in each scheduling iteration is at least 6 times the number of idle virtual 
machines. This threshold guarantees that there is always a sufficient number of task instances to be 
scheduled as proven in [6]. The second condition depends on the value of PE. A workflow instance is 
generated if PE is less than 1 and that the progress of the execution has changed (i.e. a task instance is 
completed) since the latest workflow instance has been generated. The latter condition is for avoiding 
indefinitely instantiating workflow without re-evaluating the progress. 

 
Cloud resource adjustment 
Depending on the progress evaluation, additional virtual machine instances may be launched to 

speed up the execution to meet the deadline. Similar to the instance arrival control, cloud resource 
adjustment is suspended at the start of execution because it is not possible to evaluate the progress; it is 
resumed after the first task instance is completed. 

The first step in the resource adjustment is to check whether an idle virtual machine instance is 
available and whether the value of PE is more than or equal to one. If any of these conditions is true, then 
no additional virtual machine instance is launched. In addition to reusing existing virtual machines, this is 
to avoid launching virtual machine instances unnecessarily, which would increase the cost. 

If the value of PE is less than 1 and the progress of the execution has changed since the latest 
resource adjustment, then one virtual machine instance will be launched in each scheduling round. This is 
also to avoid launching too many virtual machine instances unnecessarily without re-evaluating the 
progress. In our early test, allowing several virtual machine instances to be launched in one scheduling 
round causes an excess number of virtual machine instances resulting in excessively high cost. The virtual 
machine type to be launched is decided by first determining the average resource capability unit RCUavg, 
which is calculated by the total RCU contributed by running virtual machine instances averaged over time 
as follows; 

 

( )

timeelapsed

uptimeRCU
RCU

VM

i
ii

avg

∑
=

×
= 1  (4) 

 
In Eq. (4), VM is the set of running virtual machine instances, RCUi is the resource capability unit of 

each virtual machine instance in VM according to its type, and uptimei is the duration since each virtual 
machine instance has started. To determine additional RCUreq that is required to meet the deadline, we use 
the following equation employing PE; 

 







 −×= 11

PE
RCURCU avgreq  (5) 

 
Eq. (5) estimates the required RCUreq based on the proportion between the progress and the elapsed 

time subject to the deadline. The adjustment then selects the virtual machine type with the RCU 
immediately higher than the RCUreq. For example, if RCUreq is 10 and there are virtual machine types 
with 12 and 16 RCU, then the one with 12 RCU is selected. The workflow instance control and the cloud 
resource adjustment work in harmony. By employing PE, as workflow instances are generated, virtual 
machine instances can be launched to handle them. 
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Scheduling technique 
The 3 mechanisms, which are our main contribution, described so far are developed to cope with the 

task instances and virtual machine resources. Here, we combine them into the proposed technique to 
schedule parallel execution of the dynamic parallel loop workflow. The whole body of the proposed 
scheduling technique is shown in Table 1, separated into 3 phases. The outermost while loop is the 
scheduling iteration control that repeats until the entire execution is completed. The workflow 
instantiation control is implemented from lines 2 to 10; the task instances instantiated according to the 
conditions in this phase are added to the set of unscheduled task instances T. Then, the task instances in T 
that are ready for execution according to their precedence dependencies are added to the set of ready task 
instances RT. The cloud resource adjustment in lines 12 - 15 is then performed given that the conditions 
specified in the previous section are met. 

A task mapping heuristic is then invoked on the set RT (line 16) to assign the task instances within 
to the virtual machine instances. In this research, we employ the Min-Min [4], the Max-Min [4] and the 
XSufferage [5] task mapping heuristics for the purpose of testing the scheduling technique because of 
their simplicity and decent performance [6]. The main reasoning behind the Min-Min heuristic is that it 
iteratively schedules the shortest task among those being ready to the resource that will complete the task 
at the earliest. On the other hand, the Max-Min heuristic iteratively schedules the longest task first [4]. 
The XSufferage heuristic, disregarding the size of tasks, iteratively schedules the task that would suffer 
the longest delay if not executed first to the resource that will complete it at the earliest. 
 
 
Table 1 The proposed scheduling technique. 
 

Phase Input: Parallel loop workflow, total number of parallel loop L, Cloud provider P 
Output: Schedule for executing parallel instances of parallel loop workflow 

Scheduling Iteration 1     while ((L > 0) || set of unscheduled task instances T is not empty) do 
Workflow instantiation control 2          Calculate progress evaluation PE using Eq.(3) 

3          if firstSchedulingIteration then 
4                Instantiate the first workflow instance for the first parallel loop, and decrement L 
5          else if (completed task > 0) then 
6                while (size of T < threshold) || ((PE < 1.0) && (progress changes)) do 
7                     Generate one workflow instance, and decrement L 
8                     Add task instances from the new workflow instance to set T 
9                end while  
10        end if 
11        Determine the task instances in set T that are ready and add them to set RT 

Resource adjustment 12        if ((PE < 1.0) && (!freeNode) && (completed task > 0) && (progress changes)) then 
13              Calculate required RCUreq using Eq.(5) 
14              Launch a new VM instance in P with RCU immediate higher than RCUreq 
15        end if 

Task mapping 16         Invoke a task mapping heuristic on the set of ready task instances RT 
17         T = T - RT 

Scheduling iteration 18         Wait for the next scheduling iteration 
19    end while 

 
 

Once scheduled, the task instances in RT are removed from the set T in line 17. The scheduler then 
waits for the next scheduling iteration, which is triggered either by a completion of a task instance or the 
conditions for workflow instantiation control being met. This process is repeated by the outermost while 
loop until the entire execution is completed. 
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Results and discussion 

Workflow simulation is employed in the evaluation. We implement our technique and the 3 task 
mapping heuristics, namely the Min-Min, the Max-Min and the XSufferage, as the workflow schedulers 
along with a simulation environment in the Nimrod/K system [2,10]. This system supports parallel 
execution of parameter sweep workflow, whose execution is in parallel loops, by dynamically running 
multiple instances of the workflow in parallel. 

Because there is no existing technique, to the best of our knowledge, that can schedule multiple 
parallel cloud workflow instances and estimate the workflow execution cost and time without relying on 
traversing the workflow structure [3], our evaluation aims to study the behavior of our proposed 
technique based on the 3 existing task mapping heuristics. We use a workflow scenario as shown in 
Figure 2 in the experiment. The workflow is composed of 5 tasks arranged in 2 parallel sequences 
merging at the last task; such structure is analogous to those commonly found in large scientific 
workflows. The experiment is set to run 100 parallel loops, totaling 500 task instances. As mentioned in 
our problem definition, the execution takes place within a single cloud provider region thus the data 
transfer time and cost are negligible. 
 
 

T1

T3

T2

T4

T5

 
Figure 2 The workflow scenario. 
 
 

Three general purpose instance types are adopted from the Amazon EC21 to define the RCU 
(referencing Amazon EC2 Compute Unit) and the cost per time unit of our virtual machine types as listed 
in Table 2. Based on the RCUs, we set the Estimated Execution Time (EET) in seconds of each task by 
each virtual machine type as listed in Table 3. One virtual machine of medium type is initially running to 
host the input files for the workflow. 
 
 
Table 2 Resource capability units and costs of virtual machine types. 
 

VM Type RCU Cost per time unit 
medium 3 0.067 

large 6.5 0.133 
xlarge 13 0.266 

 
 
Table 3 Estimated execution times of each task based on virtual machine types. 
 

EET medium large xlarge 
T1 6 2.8 1.4 
T2 5 2.3 1.15 
T3 9 4.2 2.1 
T4 12 5.6 2.8 
T5 4 1.8 0.9 

                                                        
1https://aws.amazon.com/ec2/pricing. 
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We define a base time equal to the time taken for one medium (slowest) virtual machine to finish 
one workflow instance, which is 36 (i.e. the sum of the first column in Table 3 regardless of workflow 
structures). The deadlines are then set based on the base time to test the proposed technique against 
deadlines ranging from tighter (equal to the base time) to more relaxed ones (the base time multiplied by 
half of the number of parallel loops, which is equal to 50 in the experiment). Thus, each test case is 
characterized by a deadline multiplier and one of the 3 scheduling heuristics. Each test case is repeated 5 
times to calculate the average makespan and the average cost with outliers removed. 

The average makespans and the standard deviations of the simulation are shown in Table 4. The 
proposed technique can satisfy the workflow deadline when it is set to 1.5 times of the base time or 
higher. An unexpected result is that the makespans are almost equal at least up to the deadline of 3 times 
of the base time. This means that such makespans are the minimum makespans that can be obtained by 
the proposed technique. In the case of the strictest deadline, the technique cannot react fast enough to 
instantiate additional virtual machine instances at the very beginning of the execution. However, it can 
react better with other longer deadlines. In fact, it performs much better than we have anticipated before 
the experiment, as can be seen in the cases of the deadline multipliers from 2.0 and higher. One reason for 
this observation is that the technique is ‘shocked’ by the initially slow progress evaluation (low PE value) 
at the start of the execution and thus starts many additional virtual machine instances in succession (but 
this happens too late to cope with the strictest deadline). These many virtual machine instances yield 
makespans much lower than the deadlines. 
 
 
Table 4 Makespans of the workflow execution. 
 

Heuristic 
Deadline (multiplier) 

36 
(1.0) 

54 
(1.5) 

72 
(2.0) 

90 
(2.5) 

108 
(3.0) 

1800 
(50) 

Min-Min 35.50 34.93 35.99 38.83 40.98 453.81 
SD 0.45 0.60 0.26 0.91 1.01 0.43 

Max-Min 41.98 42.29 41.82 42.56 43.08 407.03 
SD 1.02 1.06 0.66 1.31 0.44 1.05 

XSufferage 42.50 42.23 42.10 42.90 43.46 435.57 
SD 0.60 0.52 0.46 0.73 0.81 29.82 

 
 

The average costs of the experiments are detailed in Table 5 along with the standard deviations. 
Because virtual machine instances may wait idly for task instances to be scheduled to them, we separate 
the cost into the computing cost (when running tasks) and the idle cost (when waiting idly). The 
computing costs in most cases do not differ much ranging from 222 to 232. This is because the resource 
capability unit per cost is almost similar in the 3 virtual machine types used in our experiment, which 
reference the on-demand instances in Amazon EC2. 

However, the idle costs are much lower with the Min-Min heuristic when the deadline is stricter. 
The idle cost of the Min-Min heuristic starts to decrease from the deadline of 1.5 times of the base time, 
while the idle costs of the other 2 heuristics remain higher and start to decrease from the deadline of 2.5 
times of the base time. The Min-Min heuristic prioritizes smaller task instances first, leading to a faster 
progress feedback to the scheduler. Therefore, the workflow instantiation control can react faster and the 
resource adjustment mechanism can launch a more proper number of virtual machine instances. 
Nevertheless, when the deadline is relaxed, such as the base line multiplied by half of the number of 
parallel loops, all the 3 heuristics incur almost the same idle costs. 
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Table 5 Costs of the workflow execution. 

Heuristic 
Deadline (multiplier) 

36 
(1.0) 

54 
(1.5) 

72 
(2.0) 

90 
(2.5) 

108 
(3.0) 

1800 
(50) 

Min-Min 

Computing Cost 223.92 224.65 226.83 228.67 229.66 232.04 
SD 2.05 2.39 1.97 2.68 1.28 0.23 

Idle Cost 74.87 57.71 31.02 13.41 6.55 2.21 
SD 4.73 7.49 2.85 3.52 0.92 0.26 

Max-Min 

Computing Cost 222.79 226.34 225.49 227.43 228.88 228.73 
SD 2.53 1.17 2.31 0.90 1.81 0.15 

Idle Cost 89.23 73.69 73.82 46.20 38.32 4.96 
SD 9.20 15.14 3.21 5.93 5.05 0.72 

XSufferage 
Computing Cost 226.53 225.29 226.21 227.95 229.97 230.92 

SD 2.16 0.90 2.22 2.36 0.91 1.94 
Idle Cost 84.55 74.95 78.06 51.76 30.32 2.77 

 SD 4.27 8.48 5.84 10.02 6.14 0.50 
 
 

In summary, our technique is proven to be practical and prefers a greedy approach such as the Min-
Min heuristic to try finishing more task instances as soon as possible in order for the progress evaluation 
to be more accurate. The technique can satisfy most of the deadlines specified in the experiment except 
for the strictest deadline. The proposed resource adjustment mechanism that launches one new virtual 
machine instance in each scheduling round cannot react fast enough to handle the strictest deadline. 
However, the strictest deadline is equal to the time that the slowest virtual machine takes to execute only 
one parallel loop while the experiment is set to run 100 parallel loops. This is an extreme case designed to 
test the proposed technique and it is reasonable that the technique cannot meet the deadline. Moreover, 
such strict deadlines are unrealistic and are not likely to be used in the real world. 
 
Conclusions 

This paper presents a novel scheduling technique for dynamic parallel loop workflows based on the 
objective of reducing the cost of cloud resource usage while preserving a deadline. The contribution of 
this paper consists of 3 components. Firstly, the technique features a new method to evaluate the 
workflow execution progress based on the number of completed tasks and elapsed time in order to avoid 
relying on traversing the workflow graph traditionally used in existing works. The new workflow 
progress evaluation is employed in the other 2 components, which are the workflow instantiation control 
and the cloud resource adjustment proposed in order to cope with the dynamic parallel execution of the 
parallel loop workflows. According to the simulation results, our technique is practical and incurs lower 
cost when the workflow deadline is more relaxed. It also prefers task mapping heuristics that facilitate 
faster progress feedback, which leads to a more accurate progress evaluation. 

With our finding, a number of issues can be improved. The current progress evaluation treats all 
tasks equally; this can lead to an inaccurate estimation when task sizes are dispersed. Normalization of the 
task sizes may prove useful. 

Regarding the execution environment, the technique can be extended to cover a hybrid cloud 
deployment model in which data transfer times and costs must be considered. Also, the technique can be 
improved to incorporate a limited number of virtual machine instances, which may involve a virtual 
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machine termination mechanism in order to launch faster ones instead. For such cases, the task mapping 
heuristic may also need to be specifically designed. 

Finally, with the growing concern on the environmental impact, the objective of reducing the carbon 
footprint or energy consumption has begun to receive attention in workflow scheduling research [11]. 
However, most of the commercial cloud providers do not make available the information regarding the 
power consumption of their services to the users. This challenge will thus have to be investigated further. 
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