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Abstract 

In this article, entropy generation on peristaltic blood flow of the Casson fluid model is investigated 
under the influence of magnetohydrodynamics. The present mathematical analysis consists of continuity 
equations, momentum, and energy equations, which are simplified using the approximation of long 
wavelength and creeping flow regime. The reduced coupled differential equations are solved analytically, 
and a closed form of solution is presented. The impact of all the physical parameters of interest, such as 
the Brinkmann number, Hartmann number, and Casson fluid parameter, are taken into account. Trapping 
phenomena is also discussed with the help of contours. It is observed that the Casson fluid parameter and 
magnetic parameter show similar effects on velocity. Further, it is also observed that entropy profile 
behaves as an increasing function for all the pertinent parameters. 
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Introduction 

Over the last 2 decades, non-Newtonian fluid flow has appeared in many environmental and 
industrial applications. Bio fluids models have been investigated, by many researchers in various 
physiological systems, in order to deal with diagnostic problems, which arise during circulation of blood 
in the human body. Several models have been proposed by different authors based on physiological fluid; 
however, their full potential has not yet been exploited. Among these several models, the Casson fluid 
model is a special type of non-Newtonian fluid. This type of fluid is basically based on the interactive 
behaviour of the solid and liquid phases. Its behaviour depends upon shear stress rate; when shear stress is 
small, it acts like a solid, while it starts to move like a liquid when shear stress becomes higher than the 
applied yield stress. Some prominent examples of Casson fluid are fruit juice, jelly, tomato sauce, soup, 
honey etc. Casson [1] was the first to introduce the Casson fluid model. He derived a semi empirical 
equation for the flow behaviour of varnishes and printing inks. Later, Misra and Pandey [2] investigated 
the peristaltic transport of blood in small vessels by assuming blood as being a Casson fluid. They 
developed a mathematical model for blood flow in small vessels, and blood is treated as a 2 layer fluid 
where the core region is described by the Casson model. Recently, various researchers investigated the 
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Casson fluid model in different geometrical aspects [3-7]. One of the important characteristics of Casson 
fluid is that it is the most compatible formulation to simulate blood flow [8,9]. Biological organisms are 
composed of blood in vessels and extravascular tissue; blood flows into these organisms through arteries 
and perfuses the tissues via blood capillaries. Veins collect the returned blood from the capillaries, which 
is then pumped back to the heart. Also, through either a decrease in blood pressure or an increase in blood 
resistance, the flow rate of blood is reduced. Several authors investigated blood flow, theoretically and 
experimentally, by developing different kinds of models [10-12]. Pinho et al. [13] studied blood flow 
through micro vessels and microfluidic systems. They discussed the role of temperature on red blood cells 
dispersion. 

Serious attention has been given by researchers to physiological systems, that is, fluids induced by a 
progressive wave of area expansion or contraction along the length of a distensible tube; this type of 
motion of fluid is called peristaltic motion. The mathematical model of peristaltic flow was first 
introduced by Latham [14] by taking the transport of urine, which moves from kidney to bladder. The 
occurrence of such motion can also be seen in blood pumps in the heart lung machine, chyme transport in 
the gastrointestinal tract, ovum movement in the female fallopian, and vasomotion of small blood vessels. 
Later, the pumping phenomenon of peristaltic flow in the ureter by using lubrication theory was studied 
by Carew and Padley [15]. After various investigations into peristaltic flow, several experimental and 
theoretical works have been reported [16,17]. Theoretical investigation of peristaltic flow of Williamson 
was reported by Nadeem and Akbar [18]. Moreover, peristaltic motion of magneto hydrodynamic 
(MHD), with certain problems of movement in physiological systems, is of great interest. Abbas et al. 
[19] discussed MHD peristaltic blood flow of Nano fluid in a non-uniform channel and derived the 
solution of temperature profile and concentration profile numerically as well as analytically. Sinha et al. 
[20] presented a theoretical study of MHD peristaltic flow and heat transfer in an asymmetric channel. A 
numerical solution of MHD peristaltic flow of a bio fluid in a circular cylindrical tube was studied by 
Ebaid [21]. It is quite possible that blood flow is influenced by the presence of magnetic fields because 
the red blood cell is a major bio magnetic substance. In addition, there are large numbers of Nano 
particles in blood, which are generally one thousand times smaller than a human hair, and the existence of 
these Nano particles cause many dangerous diseases, like blood cancer, etc. In most cases, traditional 
methods cannot be applied to remove these particles, but recently, Nano technology has been used to 
separate these particles from plasma [22]. According to this technology, magnetic fields can be used to 
separate drug-delivery nanoparticles from blood and pull them towards rings surrounding the chip’s 
electrodes. Further investigations into MHD peristaltic flow are available in the list of references [23-27]. 

The studies mentioned above focus on peristaltic flow problems in the absence of entropy 
generation. Entropy generation can be expressed, as the various thermal systems are the subject of 
irreversibility phenomena, and are connected to viscous dissipation, magnetic field, and heat and mass 
transfer. Entropy generation clarifies energy losses in a system evidently in many energy related 
applications, such as the cooling of modern electronic devices or systems, geothermal energy systems. In 
the human body, oscillation of blood pressure is another important mechanism when patients conduct 
their normal routine work. Ambulatory blood pressure monitoring is also major clinical process to analyse 
blood pressure after every 20 - 30 min during 24 - 48 h. Further blood flow increases occur when the 
human body performs any physical activity, and in such kinds of situations blood circulation remains 
normal. When the temperature rises up to 20 °C, heat transfer takes place through the human body with 
the help of an evaporation process by sweating, whereas if it is less then 20 °C, the human body loses heat 
by conduction and radiation. To overcome this difficulty, entropy plays a major role in scrutinizing such 
systems. Few attempts have taken into account entropy generation on peristaltic flow. Akbar et al. [28,29] 
studied entropy and induced a magnetic field on the peristaltic flow of copper water fluid in an 
asymmetric horizontal channel and entropy generation on the peristaltic flow in a tube. Moreover, Rashidi 
et al. [30,31] investigated entropy generation on the MHD flow of third grade non-Newtonian fluid over a 
stretching sheet and MHD flow due to a rotating porous disk. Besides this, several researchers have 
analysed the irreversibility in systems and showed the pertinent parameters that might be chosen in order 
to minimize entropy generation [32-34]. 
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From the above analysis, the aim of this study is to analyse the entropy generation on the peristaltic 
blood flow of the Casson fluid model under the influence of a magnetic field in a non-uniform channel. 
The governing flow problem is simplified with the help of long wavelength approximation and creeping 
flow phenomena. The resulting coupled differential equations are solved analytically, and exact solutions 
are obtained for velocity distribution and temperature distribution. This paper is summarized as follows; 
after the introduction in Sec. (1), Sec. (2) is based on the mathematical formulation, Sec. (3) characterizes 
the entropy generation analysis, while Sec. (4) describes the solution methodology and, finally, Sec. (5) is 
devoted to numerical results and discussion. 

 
Mathematical formulation 

Let us suppose the unsteady irrotational, hydromagnetic flow of a Casson fluid, which is 
incompressible and electrically conducting by an external magnetic field, “B0” is applied through a 2-
dimensional non-uniform channel having a sinusoidal wave moving down towards its walls. We have 
selected a Cartesian coordinate system for the channel in such a way that 𝒙�-axis is taken along the axial 
direction and 𝒚�-axis is taken along the transverse direction. The geometry of the governing flow problem 
can be described as; 

 
Η(𝑥�, �̃�) = 𝑏(𝑥�) + 𝑎� sin 2𝜋

𝜆
(𝑥� − �̃��̃�),                (1) 

 
where 
 
𝑏(𝑥�) = 𝑏0 + 𝛫�𝑥�, 
 
 

 
 
Figure 1 Geometry of the problem. 
 
 

In the above equation, 𝑏(𝑥�) is the half width of the channel at any axial distance 𝑥� from inlet, 𝑏0 is 
the half width at the inlet, 𝛫�(≪ 1) is a constant whose magnitude depends on the length of the channel 
and exit inlet dimensions, 𝑎� is the wave amplitude, 𝜆 is the wavelength, �̃� is the velocity of the wave 
propagation, and �̃� is the time. The governing equation of motion, continuity and energy equation can be 
written as [19]; 
 
𝜕𝑢�
𝜕𝑥�

+ 𝜕𝑣�
𝜕𝑦�

= 0,                 (2) 
 
𝜌 �𝜕𝑢�

𝜕𝑡
+ 𝑢� 𝜕𝑢�

𝜕𝑥�
+ 𝑣� 𝜕𝑢�

𝜕𝑦�
� + 𝜕𝑝�

𝜕𝑥�
= 𝜕

𝜕𝑥�
S𝑥�𝑥� + 𝜕

𝜕𝑦�
S𝑥�𝑦� − 𝜎𝐵02𝑢� ,            (3) 
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𝜌 �𝜕𝑣�
𝜕𝑡

+ 𝑣� 𝜕𝑢�
𝜕𝑥�

+ 𝑣� 𝜕𝑣�
𝜕𝑦�
� + 𝜕𝑝�

𝜕𝑦�
= 𝜕

𝜕𝑥�
S𝑦�𝑥� + 𝜕

𝜕𝑥�
S𝑦�𝑦� − 𝜎𝐵02𝑣�,             (4) 

 
𝜁0 �

𝜕𝑇
𝜕𝑡

+ 𝑢� 𝜕𝑇
𝜕𝑥�

+ 𝑣� 𝜕𝑇
𝜕𝑦�
� = 𝜅

𝜌
�𝜕

2𝑇
𝜕𝑥�2

+ 𝜕2𝑇
𝜕𝑦�2

� +
S𝑥�𝑦�
𝜌
�𝜕𝑢�
𝜕𝑦�
�.              (5) 

 
The stress tensor of the Casson fluid model is defined as [3,4]; 

 
𝜏1/𝑛 = 𝜏0

1/𝑛 + 𝜇�̇�1/𝑛 ,                  (6) 
 
𝜏𝑖,𝑗 = 2𝑒𝑖,𝑗�𝜇𝑏 + �2𝜋𝐷/℘𝑦�.                (7) 
 

In the above equation, we have considered  ℘𝑦 = 0 . Now, it is convenient to define the non-
dimensional quantities [19]; 

 

𝑥 = 𝑥�
𝜆

,𝑦 = 𝑦�
𝑏0

, 𝑡 = 𝑐̃𝑡
𝜆

,𝑢 = 𝑢�
𝑐̃

, 𝑣 = 𝑣�
𝑐̃𝛿

, 𝑝 = 𝑝�𝑏02

𝜆𝜇𝑐̃
, ℎ = Η

𝑏0
,𝜙 = 𝑎�

𝑏0
, Re = 𝑐̃𝜌𝑎�

𝜇
, 𝛿 = 𝑎�

𝜆
,𝑀 = �𝐵2𝑎�2𝜎

𝜇
, 𝑣 =

𝑣�𝑎�𝑐̃
𝜆

,𝜃 = 𝑇−𝑇0
𝑇1−𝑇0

, Pr = 𝜈𝜁0𝜌
𝜅

, Ec = 𝑐̃2

𝜁0(𝑇1−𝑇0)
, Br  = Pr Ec.              (8) 

 
where 𝑢, 𝑣  are the non-dimensional axial and transverse velocity respectively, 𝑝 is the dimensionless 
pressure, 𝛿  is the wave number, 𝜙  is the amplitude ratio, 𝜈 is the fluid kinematic viscosity, 𝜃 is the 
dimensionless temperature, 𝜎 is the electrical conductivity of the fluid, Re is the Reynolds number, Pr is 
the Prandtl number, 𝜅 is the fluid thermal conductivity, 𝜁 is the Casson fluid parameter, Ec is the Eckert 
number, Br is the Brinkmann number, 𝑀 is the Hartmann number, 𝜇𝑏 is the plastic viscosity, and Pr is the 
Prandtl number. Let us consider the creeping flow under the assumptions of long wavelength and low 
Reynolds number approximations. Using Eq. (8) in Eqs. (2) - (7) we get the resulting equations in 
simplified form as; 
 
�1 + 1

𝜁
� 𝜕

2𝑢
𝜕𝑦2

− 𝑀2𝑢 = 𝜕𝑝
𝜕𝑥

,                (9) 
 
𝜕2𝜃
𝜕𝑦2

= −Br �1 + 1
𝜁
� �𝜕𝑢

𝜕𝑦
�
2

,               (10) 
 

Subject to the respective boundary conditions; 
 
𝜕𝑢(0)
𝜕𝑦

= 0, 𝜃(0) = 0,               (11) 
 
𝑢(ℎ) = 0, 𝜃(ℎ) = 1,               (12) 
 
where ℎ = 1 + 𝜆𝐾�𝑥

𝑏0
+ 𝜙 sin 2𝜋(𝑥 − 𝑡). The above result reduces to a Newtonian fluid model by taking 

𝜁 → ∞. 
 
Entropy generation analysis 

The dimensionless volumetric entropy generation can be written as [32-36]; 
 

𝐒𝐆𝐞𝐧′′′ = 𝜿
𝑻𝟎
𝟐 �

𝝏𝑻
𝝏𝒚�
�
𝟐

+ 𝟏
𝑻𝟎
�𝝁𝐒𝒙�𝒚� �

𝝏𝒖�
𝝏𝒚�
� + 𝝈𝑩𝟎

𝟐𝒖�𝟐�.             (13) 
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The above equation in dimensionless form can be written as; 
 

𝑵𝒔 = 𝐒𝐆𝐞𝐧
′′′

𝐒𝐆
′′′ = �𝝏𝜽

𝝏𝒚
�
𝟐

+ 𝚲𝐁𝐫 �𝟏 + 𝟏
𝜻
� �𝝏𝒖

𝝏𝒚
�
𝟐

+ 𝚲𝐁𝐫𝑴𝟐𝒖𝟐,     

      (14) 
 
where 
 

𝐒𝐆′′′ = 𝜿�𝑻𝟏−𝑻𝟎
𝑻𝟎
𝟐𝒃𝟎

𝟐 � ,𝐁𝐫 = 𝒄�𝟐𝝁𝑻𝟎
𝜿(𝑻𝟏−𝑻𝟎)

,𝚲 = 𝑻𝟎
(𝑻𝟏−𝑻𝟎)

.                (15) 
 

Eq. (13) is divided into 2 groups. The first term in the entropy generation is due to the temperature 
difference, and the second part depicts the fluid friction irreversibility. 
 
Solution of the problem 

The solution of Eqs. (9) and (10) can be obtained by integrating twice, and thus we have; 
 

𝑢(𝑦) = 𝑑𝑝
𝑑𝑥

1
𝑀2 �cosh 𝑀𝑦�𝜁

�𝜁+1
sech 𝑀ℎ�𝜁

�𝜁+1
− 1� ,            (16) 

 

𝜃(𝑦) =  
�4𝑀4𝑦𝜁−Br�

𝑑𝑝
𝑑𝑥�

2
(ℎ−𝑦)�−1+�−1+2ℎ𝑀2𝑦�𝜁�+�𝑦�4𝑀4𝜁+Br�

𝑑𝑝
𝑑𝑥�

2
(1+𝜁)� cosh2𝑀ℎ�𝜁

�𝜁+1
−Brℎ�

𝑑𝑝
𝑑𝑥�

2
cosh2𝑀𝑦�𝜁

�𝜁+1
��  

8ℎ𝑀4𝜁cosh2𝑀ℎ�𝜁
�𝜁+1

.      (17) 

 
The instantaneous volume rate is defined as; 

 
𝑄 = ∫ 𝑢dyℎ

0 .               (18) 
 

𝑄 = 1
𝑀3

𝑑𝑝
𝑑𝑥
��𝜁+1

𝜁
tanh ℎ𝑀� 𝜁

1+𝜁
− ℎ𝑀�.             (19) 

 
The pressure gradient (𝑑𝑝/𝑑𝑥) can be calculated from the above equation, and thus we have; 

 
𝑑𝑝
𝑑𝑥

= �𝜁𝑀3𝑄

�𝜁+1�tanhℎ𝑀� 𝜁
1+𝜁−ℎ𝑀�

𝜁
1+𝜁�

.              (20) 

 
The non-dimensional form of the pressure rise (ΔP𝐿) and along the wall with the length of the non-

uniform channel 𝐿 is given by; 
 
ΔP𝐿 = ∫ 𝑑𝑝

𝑑𝑥
dx𝐿/𝜆

0 .               (21) 
 
Numerical results and discussion 

In this section, the influence of different parameters of interest is investigated graphically. 
Computational software has been used to examine the novelties of all the pertinent parameters against the 
velocity profile, temperature profile, pressure rise, and entropy profile. To discuss the above results more 
vigorously, we assume that for instantaneous volume flow rate 𝑄(𝑥, 𝑡)  is periodic in (𝑥 − 𝑡) and is 
defined by; 

 
𝑄(𝑥, 𝑡) = 𝑄� + 𝜙 sin 2𝜋(𝑥 − 𝑡),              (22) 
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where 𝑄�  describes the average time flow over one period of the wave. Figures 2 - 6 are plotted to show 
the expression of velocity distribution, pressure rise, temperature profile, and entropy generation for 
various parameters, such as the Hartmann number 𝑀 , the Casson fluid parameter 𝜁 , the Brinkmann 
number Br and the temperature difference parameter Λ. Figure 2 depicts the behavior of the velocity 
profile for the parameters 𝑀  and 𝜁 . It is observed that, with the increase in the Hartmann number      

𝑀�= �𝐵2𝑎�2𝜎
𝜇

� , the velocity profile decreases initially but starts to increase with the increase in  𝑦 . 

Basically, the transverse magnetic field is introduced in the flow, due to the Hartmann parameter and, as a 
result, the Lorentz force generates and tends to resist the flow. Physically, a magnetic field is applied on 
the body to generate blood polarization and, with a magnetic field on the skin, a magnetic signal is 
received from electrodes in the blood. Similar behaviour of velocity distribution can be seen from Figure 
2(b) for the Casson parameter 𝜁. Yield stress is inversely proportional to Casson fluid, and the increase in 
Casson parameter causes acceleration in a fluid flow. From Figure 3(a) it is noticed that pressure rise 
increases with the increase in Hartmann number 𝑀, but its reaction is opposite near the walls of the 
channel. Pressure rise decreases with the increase in Casson fluid parameter 𝜁, which can be analyzed in 
Figure 3(b). Graphical behavior of pressure rise versus volume flow rate is plotted in Figure 4. It is 
revealed in Figure 4(a) that pressure rise increases in the retrograde pumping region (∆PL > 0, Q < 0) 
when M increases, while decreasing behaviour can be found in the co-pumping region (∆PL < 0, Q > 0) 
and the opposite response of pressure rise for Casson fluid parameter 𝜁 is observed as shown in Figure 
4(b). Figure 5 demonstrates the behavior of temperature profile and entropy generation for Brinkmann 
parameter Br. It is observed in both figures that, with the increase in Br, temperature profile and entropy 
generation increases. It is of true significance physically, since Br(= Pr Ec) is a coefficient of fluid 
friction irreversibility (from Eq. (13)), and its increase raises fluid temperature through increase in 
viscous dissipation. The Brinkmann number is the product of the Prandtl number �𝜈𝜁0𝜌

𝜅
� and the Eckert 

number � 𝑐̃2

𝜁0(𝑇1−𝑇0)
�. The Prandtl number is described as the ratio of thermal to the momentum diffusivity, 

whereas the Eckert number is described as the conversion of kinetic energy in a channel/tube flow to heat 
through viscous dissipation. Temperature profile increases due to the increase in fluid temperature and, 
consequently, there is an increase in entropy generation. Figure 6 shows that entropy generation is an 
increasing function of 𝑀  and Λ. It is necessary to mention that there is a slight increase in entropy 
generation with an increase in magnetic parameter  𝑀 . The reason behind this is that the magnetic 
parameter is not too much of an influence on entropy generation, so a large variation in 𝑀 results in a 
small variation in entropy. It is depicted in Figure 6(b) that entropy profile increases significantly along 
the whole region for higher values of Λ �= 𝑇0

(𝑇1−𝑇0)
�. The next most engrossing part of this section is the 

trapping mechanism, which is plotted with the help of contours. It is a composition of internally moving 
bolus bounded by streamlines, called trapping. For this purpose, streamlines are drawn for different 
values of Hartmann number 𝑀 and Casson fluid parameter 𝜁. It can be understood from Figure 8 that, 
when the Hartmann number 𝑀 increases, then the magnitude of the trapping bolus reduces, while the 
number trapping bolus also reduces. It can be observed from Figure 9 that, when the Casson fluid 
parameter 𝜁  increases, then the size of the bolus reduces slowly, while the number of bolus remains 
constant. 
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   (a)                     (b) 

Figure 2 Velocity distribution for various values of 𝑀 and 𝜁 when 𝜙 = 0.5,𝑄� = 0.1. 
 
 
 

         
 (a)                     (b) 

Figure 3 Pressure rise for various values of 𝑀 and 𝜁 when 𝜙 = 0.5,𝑄� = 0.1. 
 
 
 

         
   (a)                     (b) 

Figure 4 Pressure rise vs average volume flow rate for various values of 𝑀 and 𝜁 when 𝜙 = 0.5. 
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   (a)                     (b) 

Figure 5 (a) Temperature distribution for various values of Br, (b) Entropy generation for various values 
of Br when 𝜙 = 0.5,𝑄� = 0.1, 𝜁 = 0.5. 
 
 

          
   (a)                     (b) 

Figure 6 Entropy generation for various values of 𝑀 and Λ when 𝜙 = 0.5,𝑄� = 0.1, 𝜁 = 0.5, Br = 1. 
 
 

            
               (a)                   (b)                  (c) 

     
Figure 7 Stream lines for different values of 𝑀 (a) 2, (b) 3, (c) 4, when 𝜙 = 0.5,𝑄� = 0.1, 𝜁 = 0.5. 
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      (a)              (b) 

 

 
     (c) 

 
Figure 8 Stream lines for different values of 𝜁 (a) 1, (b) 2, (c) 4, when 𝜙 = 0.5,𝑄� = 0.1,𝑀 = 2. 
 
 
Conclusions 

In this article, entropy generation on the peristaltic blood flow of a Casson fluid model under the 
influence of MHD was studied. The governing flow problem was simplified with the help of long 
wavelength and creeping flow regime. The resulting ordinary coupled differential equations were solved 
analytically and the closed form solution was obtained. The effect of various pertinent parameters on 
temperature distribution, velocity distribution, pressure rise, and entropy profile were presented 
graphically with the help of the computational software Mathematica. The results obtained in this present 
analysis are as summarized below: 

• When the Hartmann number (𝑀) and Casson fluid parameter (𝜁) increases, then the velocity 
profile shows the opposite behavior at the walls.  

• Pressure rise increases for the Hartmann parameter (𝑀), whereas the opposite response is shown 
for fluid parameter (𝜁). 

• It was observed that pressure rise versus volume flow rate increases with an increase in 𝑀, but it 
behaves as a decreasing function for fluid parameter (𝜁). 

• The behavior of entropy generation is increasing for all the physical parameters. 
• The present analysis can also be reduced to Newtonian fluid by taking 𝜁 → ∞. 
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