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Abstract 

Feature Selection (FS) is viewed as an important preprocessing step for pattern recognition, 
machine learning, and data mining. Most existing FS methods based on rough set theory use the 
dependency function for evaluating the goodness of a feature subset. However, these FS methods may 
unsuccessfully be applied on dataset with noise, which determine only information from a positive region 
but neglect a boundary region. This paper proposes a criterion of the maximal lower approximation 
information (Max-Certainty) and minimal boundary region information (Min-Uncertainty), based on 
neighborhood rough set and mutual information for evaluating the goodness of a feature subset. We 
combine this proposed criterion with neighborhood rough set, which is directly applicable to numerical 
and heterogeneous features, without involving a discretization of numerical features. Comparing it with 
the rough set based approaches, our proposed method improves accuracy over various experimental data 
sets. Experimental results illustrate that much valuable information can be extracted by using this idea. 
This proposed technique is demonstrated on discrete, continuous, and heterogeneous data, and is 
compared with other FS methods in terms of subset size and classification accuracy. 

Keywords: Feature selection, mutual information, neighborhood rough sets, classification, boundary 
region 
 
 
Introduction 

Feature Selection (FS) is an essential technique used in data preprocessing in many fields of 
artificial intelligence, such as machine learning, pattern recognition, text categorization, and data mining. 
FS is a process which selects a subset of the original features of a data set while preserving the most 
essential information of the data set. FS has also been developed for decades, as in the examples of the 
statistical pattern recognition [1,2], machine learning [3-5], and data mining [6,7]. At the same time, it has 
been widely applied in a number of fields, such as text classification [8,9], intrusion detection [10,11], 
and gene expression analysis [12,13]. 

Over the past 10 years, a large number of feature selection methods have been proposed. The most 
widely used methods for filter-feature selection are rough set [14,15] and mutual information [16]. Most 
existing FS approaches [17-25] based on the rough set method take the subset evaluation method, which 
searches for a minimum subset of features that satisfies some goodness measures relying on the 
information gathered from the lower approximation alone. The mutual information (MI) approach is 
widely used for feature ranking [26-29], which assesses features individually and assigns them weights 
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according to their degrees of relevance. A subset of features is often selected from the top of the ranking 
list, which approximates the set of relevant features. However, the disadvantages of feature ranking are 
the difficulty in removing redundant features, because features are likely to have similar rankings. 
Besides this, this feature selection technique requires predefining of the number of features to be selected, 
and the optimal subset is taken from the best result of the classification accuracy. 

The rough set (RS) theory, proposed by Pawlak [14,15], provides a new mathematic model for 
dealing with imprecise, uncertain, and incomplete information. The rough set approach analyzes data 
relying on 2 important concepts, namely, the lower and upper approximation of a set. In RS theory, we 
desire to achieve reducts of an information system, in order to extract rule-like knowledge. A reduct is a 
minimal attribute subset of the original attributes, which has the same classification of objects of the 
universe as the whole set of attributes. Most existing RS-based FS approaches have been presented 
[17,20,22,24,30]. These rely on the key concept of the lower approximation, or region of certainty, for 
evaluating the goodness of a feature subset in the process of determining an optimal reduct, such as 
dependency function [20,22] and the significance of attributes[17,24]. Although this concept has been 
successfully applied to numerous FS problems, the approaches neglect the information that is contained in 
the boundary region or the region of uncertainty. Therefore, using the information from the lower 
approximation alone is insufficient for efficient feature selection when applied to data in which no 
equivalence class is consistent. In addition, ignoring the information contained in the inconsistent region 
during the feature selection process may lead to a loss of much valuable information. While there are 
some researches based on RS which determine the boundary region information [31,32], these approaches 
determine by using only the knowledge of the upper approximation as a whole, rather than considering 
the lower approximation and the boundary region, which are supposed to be conceptually separated. 
Therefore, some papers have successfully applied the method to solve several problems [2,33] which 
consider the lower approximation and the boundary region separately. 

We can divide feature selection methods into 2 categories: filter methods and wrapper methods 
[34,35]. Filter methods select a subset of features as a preprocessing step which is independent from the 
learning algorithm. Meanwhile, wrapper methods utilize the performance of the learning algorithm to 
evaluate the worth of feature subsets. Furthermore, we can roughly divide feature selection algorithms 
into 2 categories: discrete methods [22,36-39] and numerical methods [30,40]. However, those methods 
require the numerical features to be discretized before applying the FS techniques in order to segment the 
numerical features into several intervals and form discretized data sets. Similarly, discretization of 
numeric data is required in order to apply them to feature selection based on rough set theory [17-25]. 

Formally, discretization of numerical attributes does not determine the degrees of membership of 
numerical values to discretized values. Therefore, essential information or attributes may be lost. There 
are at least 2 categories of structure lost: neighborhood structure and order structure in real spaces [30]. 
Obviously, the distances between samples are different in real spaces, but similar in discretized spaces. 
Therefore, it is unreasonable to measure the similarity of discretized attributes in numerical methods with 
Euclidean distance. In paper [30], the authors introduce a neighborhood rough set model for 
heterogeneous feature subset selection and attribute reduction. In this method, neighborhood relations are 
also used to generate a family of the objects by using distances to measure the similarity. Therefore, the 
samples in the same neighborhood granule (family) are closer to each other, compared with those in the 
different neighborhood granule. However, evaluating the goodness of a feature subset still uses the 
concept of lower approximation based on rough set theory. Therefore, considering without boundary 
region information is not sufficient for feature selection in the case of dealing with high-dimensional or 
highly-noisy data. 

This paper presents a feature selection method which is based on neighborhood rough sets and 
mutual information. The neighborhood granular of each sample is computed by measuring the Euclidean 
distance of the samples to each other. The samples in the same neighborhood granule are equivalent to 
equivalence classes of the classical rough set. This proposed method can be applied to both numerical and 
mixture features, and the discretization process of numeric data is not required. This method determines 
the different amounts of information in the lower approximation and the boundary region in order to 
select the feature subsets. Noisy data has little influence on the results that can be produced by our 
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proposed method. It can also result in outperformance of the classification accuracies, compared to those 
obtained by RS dependency-based approaches. 

The remainder of this paper is structured as follows. Section 2 summarizes the theoretical 
background of neighborhood rough sets and mutual information. In Section 3, we propose an approach 
for feature selection based on neighborhood rough sets and mutual information. The pseudo-code of our 
algorithm is also presented in this section. Section 4 compares the proposed method with some current 
approaches, by running experiments for some data sets from the University of California, Irvine (UCI). 
Section 5 concludes the method proposed in this paper and points out some future research tasks.  
 
Background 

In this section, the basic concepts of the theories of neighborhood rough sets and mutual 
information based on rough sets are described. 
 

A: Neighborhood rough sets  
Let IS = (U, A) be an information system, where U is a finite nonempty set of n objects {x1, x2, ..., 

xn}, A is a finite nonempty set of attributes {a1, a2, ..., am} used to describe the samples, and f(x, a) is the 
feature value of sample x. Formally, <U, A> is also called a decision table if A = C   {D}, where C is a set 
of condition attributes, and D is a decision variable. 

For xi   U and B   C, a neighborhood δB(xi) of xi in subspace B is defined as; 
 

( ) ( )   ,  { | },B i j j B i jx x x U x xδ δ= ∈ ∆ ≤               (1) 
 
where Δ is a metric and δ is neighborhood size. This relation means that, for all x1, x2, and x3 in U, it 

satisfies the following 3 conditions: 
1) Δ(x1, x2) ≥ 0, and Δ(x1, x2) = 0 if and only if x1 = x2; 2) Δ(x1, x2) = Δ(x2, x1); and 3) Δ(x1, x3) ≤ 

Δ(x1, x2) +Δ(x2, x3).  
Let x1 and x2 be 2 samples in m dimensional space A = {a1, a2, . . . ,am}, f(x,ai) denotes the value of 

sample x in the ith attribute ai, then the Minkowsky distance is defined as;  
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From the above well-known distance measure, P = 1 represents the Manhattan distance (L1 norm), P 

= 2 represents the Euclidean distance (L2 norm), and P = ∞ is the distance for the Tchebyshev average (L∞ 
norm). 

The Heterogeneous Euclidean-Overlap Metric function (HEOM) has been proposed for distance 
measuring between samples which contain both numerical and categorical attributes. The HEOM distance 
between samples x and y, HEOM(x,y), can be calculated as; 
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Given <U, N> and X   U, the lower and upper approximations of X in terms of a neighborhood 

relation N are defined as; 
 

{ }| ( ) ,j B j jN X x x X x Uδ= ⊆ ∈                                           

{ }| ( ) ,j B j jN X x x X x Uδ φ= ∩ ≠ ∈ .                                          (4) 
 

For a neighborhood decision table (NDT; NDT = <U,C,D>), X1,X2, . . . , Xl are the sample subsets 
with decisions D, and the lower and upper approximations of decision D with respect to attributes B are 
then defined as 
 

1
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                                                                      (5) 

 
The positive region and boundary region of decision D with respect to attributes B is defined as; 
 

( )B BPOS D N D=                                                         (6) 
 

( ) B BBN D N D N D= − .                                                        (7) 
 

Note that, according to the above definitions of approximation sets, the lower approximation of set 
X can be interpreted as the collection of objects whose neighborhood sets can be classified into X. The 
upper approximation of X includes all the neighborhood sets that cannot be classified into −X. Finally, the 
boundary region is the subset of objects whose neighborhood comes from more than one decision class. 

 
B: Mutual information based on rough sets 

The information theory proposed by Shannon [41] provides useful tools to measure the information 
of a data set with entropy and mutual information. The mutual information is a measure of generalized 
correlation between 2 random variables, and can also be interpreted as the amount of information shared 
by 2 random variables. In information system, entropy can be an information measure for feature 
selection on probabilistic knowledge about a given feature. 

In RS theory, an equivalence relation induces a partition of the universe. The partition can be 
regarded as a type of knowledge. The meaning of knowledge in information theoretical framework of 
rough sets is interpreted as follows. 

For any subset B   A of features, let U/IND(B) = {X1, X2, ..., Xn} denote the partition induced by the 
equivalence relation IND(B). The information entropy of knowledge B, H(B), is defined as; 
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Let B and D be the subset of A. Let U/IND(B) = {X1, X2, ..., Xn}, U/IND(D) = {Y1, Y2, ..., Ym} denote 

the partitions induced by the equivalence relations IND(B) and IND(D), respectively. The conditional 
entropy of knowledge D given by the knowledge B, H (D|B), is defined as; 
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The mutual information is a measure of the amount of information that knowledge B contains about 

knowledge D, which is defined as; 
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If the mutual information between B and D are large (small), it means B and D are closely (not 

closely) related. The relation between the mutual information and the entropy can be defined as; 
 

( ) ( ) ( );   .|I B D H B H D B= −                                                      (11) 
 

When applying mutual information in feature selection, mutual information plays a key role in 
measuring the relevance and redundancy among features. The main advantages of mutual information are 
its robustness to noise and geometrical transformations such as rotation, translation and scaling. In this 
paper, mutual information is used as an information measure of correlation between the lower 
approximation N X and class X. Furthermore, mutual information of the boundary region ( )BN D with 
respect to decision class is measured. More details on information measuring of the lower approximation 
and the boundary region can be seen in the next section. 
 
Feature selection based on neighborhood rough sets and mutual information 

In this section, we describe the problem of FS by using RS dependency-based approaches in which 
the equivalence classes are inconsistent. In addition, the concept of dividing the sample set into decision 
positive regions and decision boundary regions, which is a concept used for finding the set of certainty 
and uncertainty, are described in this section. From these concepts, we present a strategy for feature 
subset selection based on the uncertainty information minimization and certainty information 
maximization. This idea yields a nonempty set of reducts when it is applied to the data sets in which all 
equivalence classes are inconsistent in terms of a single feature. 
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A: Problems of rough set-based feature selection methods 
As discussed previously, most existing RS-based FS approaches rely on the information of the 

lower approximation for evaluating the goodness of a feature subset in determining an optimal subset. 
Many approaches based on the theory of RS have employed the dependency function, which is based on 
the lower approximation as an evaluation step in the FS process. Unfortunately, these RS-based 
approaches yield an empty set of reducts when they are applied to data in which no equivalence class is 
consistent in terms of a single feature because the dependency of each single feature is zero. 

Figure 1 illustrates the idea for a binary classification problem in a one-dimensional space. The 
class probability density function of the feature space is divided into 3 parts: 1) a consistent region of 
class 1 (ω1); 2) a consistent region of class 2 (ω2); and 3) an inconsistent region of between class 1 and 
class 2. The inconsistent region contains samples with the same feature values, but which belong to 
different classes. 

 
 

 
 
Figure 1 Binary classification in a 1-D numerical feature space. 
 
 

 
 

Figure 2 Equivalence classes in a 1-D discrete feature space. 
 



mUMCNR Feature Selection Sombut FOITHONG et al. 
http://wjst.wu.ac.th 

Walailak J Sci & Tech 2017; 14(4) 
 

281 

Figure 2 shows a similar case in discrete spaces, where the samples are divided into a set of 
equivalence classes {E1, E2, . . . , E8} based on their feature values. Samples with the same feature 
values are grouped into one equivalence class. The height of the rectangles in Figure 2 denotes the 
probability p(Ei) of the equivalence class, and p(ωi,Ej) is the joint probability of ωi and Ej. We can 
observe that the equivalence classes are consistent, because each equivalence class is composed of 
samples from the same class, e.g., E1, E2, E3, E6, E7, and E8. However, some equivalence classes are 
inconsistent, like E4 and E5, where samples with the same feature values are assigned to different classes. 
Therefore, from Figure 2, the RS dependency-based approaches yield a nonempty set of reducts when 
they are applied to data in which some equivalence class is consistent in terms of a single feature, because 
the dependency of some single features is nonzero. 
 
 

 
 
Figure 3 Inconsistent in a 1-D numerical feature space. 
 
 

 
 
Figure 4 Inconsistent in a 1-D discrete feature space. 

 
 

    x1                                     x2                              x3 
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However, we may face problems when we apply the RS dependency-based approach to noisy data 
or combined features (e.g., XOR). These problems may affect the equivalence classes that lead to 
inconsistence, as shown in Figures 3 and 4. Therefore, in the case of all equivalence classes for each 
feature discrete space being inconsistent, the RS dependency-based approaches yield an empty set of 
positive regions because the dependency of each single feature is zero. 

Hu [42] described the problem of feature selection based on RS-dependency in the case of 
numerical feature spaces, in that it consists of only inconsistent regions of class, as shown in Figure 3. In 
addition, the author described that the inconsistent feature spaces that lead to the neighborhood of any 
sample would not be “pure” (homogeneous), and the samples in it would come from 2 classes. 
Furthermore, in this case, the dependency of neighborhood is zero, whereas the probabilities of Bayes 
errors are less than 1. Dependency cannot present the differences in information between these classes. 
Therefore, the author used the concept of the Bayes error rate for considering the neighborhood of sample 
between the positive region and boundary region. Subsequently, he defined the neighborhood decision 
function ND(x) as follows: 

Given NDT = <U, C, D>, xi   U, δ(xi) is the neighborhood of xi, and P(ωj |δ(xi)), j = 1, 2, . . . , c, is 
the class probability of class ωj . The neighborhood decision of xi is defined as ND(xi) = ωl if P(ωl|δ(xi)) = 
maxj P(ωj |δ(xi)), where P(ωj |δ(xi)) = nj/K, K is the number of samples in the neighborhood, and nj is the 
number of samples with decision ωj in δ(xi). 

From the above definition, Hu [42] used the ND(x) for dividing the sample of neighborhood into 
decision positive regions and decision boundary regions. Furthermore, Hu introduced the neighborhood 
decision error rate (NDER) to compute the averages of samples which were in the decision boundary 
regions. In addition, he proposed the Neighborhood Decision Error Minimization (NDEM) which is a 
procedure for feature selection involving minimizing the NDER or maximizing the 1-NDER in different 
feature subsets. Hu demonstrated that the NDEM can tolerate noisy data better than RS-based 
dependency, and can also be directly applicable to numerical data without data discretization. 
 

B: Certainty set and uncertainty set based on neighborhood decision  
As described previously, the RS dependency-based approaches raise problems with the discrete 

feature space, in that the equivalence classes are inconsistent. Therefore, in this paper, we propose a 
feature selection method based on the neighborhood error rate and the mutual information for measuring 
the goodness of feature subset. Evaluating the goodness of feature subset by using mutual information can 
provide a finer determination than the 0-1 loss function that is used in the method of NDEM [42]. This is 
because the NDEM method determines the loss function with value 1 for misclassified (boundary) 
samples and 0 for classified (positive) samples. Furthermore, the NDEM considers only information in 
the boundary region, but the positive region is neglected. In this paper, we use both the information 
contained in the lower approximation and the boundary region in the feature selection strategy. This 
proposed approach selects the feature that gives the lower approximation information that is mostly 
relevant to class. 

In this paper, we have defined the decision positive region (DPR) and decision boundary region 
(DBR) based on the neighborhood decision function. DPR is a set of samples determined to belong to the 
lower approximation, while DBR is a set of samples that is determined to belong to the boundary region. 
Both DPR and DBR are based on the concept of neighborhood decision, and are defined as follows. 

Given NDT = <U, C, D>, U/IND(D) = {X1, X2, , Xl}, {ω1, ω2, .., ωl} is a set of decision values, δ is 
neighborhood size , and the DPR (Certainty set) of decision value ωi with respect to conditional attribute 
B ⊆ C and with δ value is defined as; 

 

{ }( ) | ( ) ( )  ( )B i j j j j j iDPR x x U ND x x where xδ ω ω ω ω= ∈ ∧ = = ,         (12) 
 

and the DBR (Uncertainty set) of decision attribute D with respect to B and with δ value is defined as; 
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{ }( ) | ( ) ( )B j j j jDBR D x x U ND x xδ ω= ∈ ∧ ≠ .                        (13) 

For a subset of features B and δ value, the mutual information of the Uncertainty set ( )BDBR Dδ  
with respect to knowledge D can be defined as; 
 

( , ) ( ; ( ))BUI B I D DBR Dδδ =                                                      (14) 
 
The total information of mutual information between the Certainty set ( )B iDPR δ ω  and the 

equivalence class Xi with respect to B and δ value, denoted by CI(B, δ), can be defined as;  
 

1
( , ) ( , ( ))

l

i B i
i

CI B I X DPR δδ ω
=

=∑                                                      (15) 

 
Hence, the problem of selecting feature subset B is equivalent to the maximizing of CI(B, δ) and the 

minimizing of UI(B, δ) , that is, to maximize the objective function E(B, δ), where; 
 

( ) ( ) ( ),   ,   ,  .E B CI B UI Bδ δ δ= −                                        (16) 
 
Obviously, if CI(B, δ) = H(D) , and the objective function E(B, δ) value is maximum, it shows that 

the approximate information contains no uncertainty with respect to B and δ. Therefore, a subset of 
features B is determined as being strongly relevant features. Conversely, if UI(B, δ) = H(D), then B and δ 
bring about the approximating of information that has the highest uncertainty. Consequently, a subset of 
features B is determined as being irrelevant features that has no useful information related to decision 
attribute D. Different amounts of both values are obtained as both operate in the range of [0; H(D)], and 
the E(B, δ) has a value in the range of [−H(D); H(D)]. A new feature selection mechanism can be 
constructed by using the different amount of information between the certainty value and uncertainty 
value to guide the search for the best feature subset. 

 
C: mUMCNR feature selection algorithm 
In this section, we will present an algorithm for feature selection using the objective function E, as 

defined above, to evaluate the goodness of feature subset. Figure 5 shows the mUMCNRREDUCT 
algorithm. mUMCNRREDUCT is based on the idea of maximum certainty and minimum uncertainty. The 
proposed method is a searching scheme to find a superset for all candidates reducting with the value of δ, 
which varies from 0.02 to 0.2 in the step of 0.02. Here, the parameter δ is the size of the neighborhood of 
sample in a numerical feature space. Therefore, δ is used as a parameter for controlling the number of 
samples in the boundary and the effect of noise. 
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Figure 5 The mUMCNRREDUCT algorithm. 
 
 

Each candidate reduct is calculated by considering the δ value. Therefore, the maximum number of 
a candidate reduct equals the number in step of the divided δ interval. 

The mUMCNRREDUCT algorithm uses the maximum value of objective function E value of a 
subset to guide a candidate reduct selection process. If the E value of the current reduct is greater than 
that of the previous one, then this subset is retained and used in the next iteration of the loop. A candidate 
reduct selection process terminates when an addition of any remaining features results in the value of the 
objective function E reaching the information entropy of the decision classes. In addition, if the E value of 
the current candidate reduct is not better than the previous one, then the mUMCNRREDUCT algorithm 
will be terminated as well. 

The proposed mUMCNRREDUCT algorithm works on the idea of greedy search for the feature 
selection process. The algorithm begins with an empty subset R. The do while loop works by calculating 
the E value of a subset and incrementally adding a single conditional attribute at a time. For each 
iteration, a conditional attribute ak that does not belong to R will be temporarily added to subset R to 
compute the value of the objective function E (line 4). At the same time, the attribute ak that yields the 
maximum E value will be selected to compare with the previous subset R (line 7). If the information of 
the current subset R  {ak} is greater the previous subset (R), then the attribute added in (line 8) is retained 
as part of the new subset R. 

We now analyze time complexity of mUMCNRREDUCT, before an empirical study of its efficiency 
is done. There are several main steps in this proposed algorithm. However, the proposed algorithm can 
calculate time complexity the same as the NDEM [42]. We can summarize the steps to calculate time 
complexity of the algorithm is as follows. First, the sorting technique and a sliding windows technique are 
used to find the neighborhood of each sample. Second, the neighborhood of a sample in a 
multidimensional space with the intersection of the neighborhoods of a sample in each feature space is 
computed. Then, the class probability of the neighborhood of each sample is calculated. Subsequently, the 
class probability of the neighborhood of each sample is calculated. Finally, the goodness of the remaining 
attributes is evaluated and the attributes are added into the R one by one. Therefore, the overall time 
complexity is Nm (n log n + kn + n), where N is candidate attributes, m is selected attributes, and k is a 
constant value for searching the neighborhood of each sample. 
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Experimental results and discussion  

In this section, we first test the influence of parameter δ on estimation for all candidate reducts, with 
the value of δ varying from 0.02 to 0.2 in the step of 0.02 increments. An optimal reduct of each classifier 
is selected from the candidate reducts with the highest predictive accuracy. Then, the results of 
mUMCNR-based feature selection are compared to some existing techniques. 
 

A: The influence of the size of the neighborhood δ on mUMCNR-based feature selection 
In this section, we show the influence of the neighborhoods size on the number of the selected 

features and an optimal subset of features for the learning algorithm on 15 data sets from the UCI 
Machine Learning Repository (see Table 1) [43]. We also consider 3 well-known learning algorithms, 
named SVM, C4.5, and PART, and estimate an optimal subset and classification accuracy based on a 
tenfold cross validation. 

To show the influence of the sizes of parameter δ, we consider a series of numeric values varying 
from 0.02 to 0.2 in the step of 0.02. For each value of δ, we are able to get a candidate reduct. Therefore, 
from the size of the neighborhoods from 0.02 to 0.2, we are able to get not more than 10 candidate 
reducts. However, there may be some values of δ in which the reduct will be empty, because all 
equivalence classes have an information of uncertainty set that is greater than the certainty set for each 
single feature. When considering both the subset size and classification accuracy, the δ in the range of 
0.02 - 0.2 is the best range. Besides, in the case where δ is greater than 0.2, each neighborhood increases 
the number of samples that come from different classes. Therefore, the uncertainty set of samples is 
greater than the certainty set, and leads to the problem of local maximal. 
 
 
Table 1 Description of UCI benchmark data sets. 
 
No. Data Type Samples Numerical Categorical Class 
1 Wine numerical 178 13 0 3 
2 Sonar numerical 208 60 0 2 
3 Ionos numerical 351 34 0 2 
4 Wdbc numerical 569 31 0 2 
5 Parkinsons numerical 195 22 0 2 
6 Cleveland numerical 297 13 0 2 
7 Glass numerical 214 9 0 6 
8 Votes category 690 0 15 2 
9 Soybean category 683 0 35 19 

10 Lymphography category 148 0 18 4 
11 Promoters category 106 0 57 2 
12 Ecoli mixed 336 5 2 8 
13 Heart mixed 270 7 6 2 
14 Hepatitis mixed 155 6 13 2 
15 German mixed 1000 7 13 2 
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Figure 6 Attribute significance versus the number of selected features. 
 
 

Figures 6 - 8 show changes of attribute significance with the number of selected features obtained 
for Hepatitis and Parkinsons data. The significance of the feature subset is computed with the RS-based 
dependency, NDEM-based NDER [42], and mUMCNR, respectively. The values of mUMCNR rapidly 
grow with relatively low size of δ before the set of features is formed. Then, the growth slows down until 
it completely stops when the value of significance has equaled the entropy of decision classes. The value 
of RS stops early at 2 features, with a dependency value of less than 0.4 on the Hepatitis data. Therefore, 
RS encounters the local maximum and is unsuccessful when applied to Hepatitis data. Meanwhile, the 
values of mUMCNR and NDEM proceeded to rapidly increase on Hepatitis data. mUMCNR can be 
successful when applied to Hepatitis data that finishes with the entropy of decision classes in every value 
of δ . However, NDEM terminates at 6 features, with the significant value of features subset as 0.99, 
which is an incomplete value. 

With regard to features selection of Parkinsons data, the values of NDEM proceeded to gradually 
increase. NDEM finishes at 8 features, with the significant value of 0.98. At the same time, RS stops at 8 
features, with the dependency value equal 1.0 on the Parkinsons data. The values of mUMCNR rapidly 
grow and it completely finishes at the entropy of the decision classes. The set of features is constituted 
with 4 features on δ = 0.02, 0.04, 0.06, 0.08, and 0.1. On other values of δ, mUMCNR yields an empty 
set, where the information of uncertainty set is greater than the certainty set. We can observe that NDEM 
encounters the local maximum on both Hepatitis data and Parkinsons data. However, mUMCNR can be 
successful when applied to Hepatitis data and Parkinsons data that finish with the entropy of decision 
classes. Therefore, we can observe that the efficiency of mUMCNR for selecting the subset of features in 
the phenomenon is greater than RS and NDEM on the Hepatitis data and Parkinsons data. 
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Figure 7 Attribute significance and classification accuracy on Hepatitis data with different sizes of 
neighborhoods. 
 
 

 
 
Figure 8 Attribute significance and classification accuracy on Parkinsons data with different sizes of 
neighborhoods. 
 
 

The classification accuracy of the candidate subsets with the values of δ on both Hepatitis and 
Parkinsons data is shown in Figures 7 and 8. The subset of features with the highest accuracy of classifier 
is chosen as an optimal subset, to compare performance with other FS techniques. We can see that the 
highest accuracy on Hepatitis data of SVM, C4.5, and PART is given when δ = 0.16, 0.2, and 0.18, 
respectively. While dealing with the Parkinsons data, the highest accuracies of SVM, C4.5, and PART is 
given with values of δ are 0.04, 0.08, and 0.04, respectively. The optimal subset of features and the values 
of parameter with the highest predictive accuracy of each learning algorithm are shown in Table 2. From 
Table 2, we see that each data set of the discrete data, including the Votes, Soybean, Lymphography, and 
Promoters, has only a single candidate reduct. This is because the size of 0.02 to 0.2 gets the same reduct 
of every value δ. In comparison, the performances of the proposed method with the RS-based attribute 
reduction method are compared to some existing classical techniques. The highest predictive accuracy on 
a learning algorithm is selected to compare its performance with these methods. 
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Table 2 The optimal subset and the δ values for classifier. 
 

No. Data SVM C4.5 PART 
size δ size δ size δ 

1 Wine 6 0.2 3 0.02 3 0.02 
2 Sonar 10 0.18 4 0.06 6 0.12 
3 Ionos 11 0.2 10 0.1 10 0.1 
4 Wdbc 11 0.14 4 0.02 4 0.02 
5 Parkinsons 4 0.04 5 0.08 4 0.04 
6 Cleveland 10 0.12, 0.18 11 0.16 11 0.18 
7 Glass 6 0.16 8 0.12 8 0.2 
8 Votes 7 - 7 - 7 - 
9 Soybean 14 - 14 - 14 - 

10 Lymphography 8 - 8 - 8 - 
11 Promoters 4 - 4 - 4 - 
12 Ecoli 7 0.18 - 0.2 6 0.04 - 0.08 6 0.04 - 0.08 
13 Heart 6 0.02 6 0.02 6 0.02 
14 Hepatitis 5 0.16 7 0.2 5 0.18 
15 German 8 0.02 10 0.06 12 0.1-0.16 

 
 

B: Comparison of feature selection algorithms on UCI benchmark data sets 
In this paper, we experiment with different algorithms of feature selection using fifteen data sets, as 

detailed in Table 1, where 4 data sets come with discrete features (i.e., Votes, Soybean, Lymphography, 
and Promoters), 7 data sets come with numerical features (i.e., Wine, Sonar, Ionos, WDBC, Parkinsons, 
Cleveland, and Glass), and the rest of the data sets come with mixed numerical and categorical features. 
Before applying all of the feature selection techniques, the numerical features are required to be 
discretized by the minimum descriptive length (MDL) discretization [28], in order to segment the 
numerical features into several intervals and form the discretized data sets. Meanwhile, we also apply 
ReliefF, NDEM, and mUMCNR to directly select the continuous features which are normalized into [0, 
1]. We set δ = 0.14 for experiments of the NDEM [42]. Next, we use sequentially greedy forward search 
to form the best features when comparing the algorithms that evaluate features based on RS-dependency 
function (RS), consistency-based subset (CNS) [37], and correlation-based feature selection (CFS) [36], 
respectively. In addition, the proposed method is compared with ReliefF [40] which has special searching 
strategies. 

We first show the results of discrete, numerical, and mixed feature selection. The number of 
selected features of the data is given in Table 3, where the last 3 columns are the average number of 
features on 3 classifiers of the mUMCNR method. For each data set, mUMCNR gives not more than 10 
subsets, with δ in the range of 0.02 - 0.2. Subsequently, a subset of features that has the highest predictive 
accuracy for SVM, C4.5, or PART is chosen as the optimal subset of classifier (as described in Table 2). 
For example, on Wine data, 10 candidate subsets are reduced to 3 subsets which yield the highest 
predictive accuracy for 3 classifiers. On SVM, we select δ = 0.2, which gives the highest predictive 
accuracy, with subset size as 6 features. Meanwhile, on C4.5 and PART, we select δ = 0.02, which 
achieves with the highest predictive accuracy, and subset size as 3 features for both classifiers. Therefore, 
the subset size and classification accuracy of SVM, C4.5, and PART will compare favorably to the 
performance to other methods. 

Conversely, the NDEM method [42] achieves only one features subset on each data set with the 
neighborhood size valued 0.14. Then, the selected subset is applied to SVM, C4.5, and PART in order to 
compare the classification accuracies with mUMCNR and other methods. Meanwhile, RS, CNS, CFS, 
and ReliefF come with one feature subset on each data set, the same as NDEM. Furthermore, the 
classification accuracies for SVM, C4.5, and PART of the selected subset with these methods are 
compared to mUMCNR and NDEM. 
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Table 3 Number of selected features with different techniques. 
 

No. Data unselect RS NDEM CNS CFS ReliefF mUMCNR 
(SVM) 

mUMCNR 
(C4.5) 

mUMCNR 
(PART) 

1 Wine 13 5 5 4 7 4 6 3 3 
2 Sonar 60 - 7 4 12 4 10 4 6 
3 Ionos 34 8 9 5 5 8 11 10 10 
4 Wdbc 31 7 6 6 8 8 5 4 4 
5 Parkinsons 22 8 7 5 7 5 4 5 4 
6 Cleveland 13 - 8 7 5 9 10 11 10 
7 Glass 9 - 5 7 7 6 6 8 8 
8 Votes 15 - 8 8 3 11 7 7 7 
9 Soybean 35 13 11 11 21 19 14 14 14 

10 Lymphography 18 6 7 7 9 9 8 8 8 
11 Promoters 57 4 4 4 6 5 4 4 4 
12 Ecoli 7 - 7 7 6 3 7 6 6 
13 Heart 13 - 11 11 8 7 6 6 6 
14 Hepatitis 19 - 6 12 10 8 5 7 5 
15 German 20 - 11 14 3 9 8 10 12 
  Average 24.40 N/A 7.47 7.47 7.80 7.67 7.40 7.13 7.13 

 
 

Table 4 Classification accuracy of SVM classifier. 
 
No.  Data unselect RS NDEM CNS CFS ReliefF mUMCNR 

1 Wine 0.9775 0.9831 0.9775 0.9325 0.9775 0.9550 0.9944 
2 Sonar 0.7596 N/A 0.7933 0.7211 0.7644 0.7548 0.8125 
3 Ionos 0.8860 0.8291 0.9402 0.8148 0.8689 0.8262 0.9487 
4 Wdbc 0.9772 0.9543 0.9666 0.9648 0.9630 0.9402 0.9736 
5 Parkinsons 0.8718 0.8769 0.8718 0.8666 0.8512 0.8512 0.8769 
6 Cleveland 0.8283 N/A 0.8047 0.8215 0.8383 0.8383 0.8215 
7 Glass 0.5748 N/A 0.5697 0.5748 0.5841 0.5280 0.5939 
8 Votes 0.9433 N/A 0.9400 0.9333 0.9433 0.9433 0.9467 
9 Soybean 0.9385 0.8306 0.8608 0.8436 0.9218 0.9250 0.9136 

10 Lymphography 0.8311 0.8175 0.7971 0.7972 0.8243 0.8445 0.7771 
11 Promoters 0.9340 0.8584 0.8582 0.8584 0.9150 0.9433 0.8773 
12 Ecoli 0.8393 N/A 0.8393 0.8393 0.8333 0.7560 0.8393 
13 Heart 0.8296 N/A 0.8370 0.8333 0.8296 0.8444 0.8444 
14 Hepatitis 0.8516 0.7935 0.8196 0.8323 0.8323 0.8323 0.8438 
15 German 0.751 N/A 0.758 0.756 0.717 0.747 0.756 
  Average 0.8529 N/A 0.8423 0.8260 0.8443 0.8353 0.8546 

 
 
In Table 3, we observe that most of the features in the raw data have been deleted by all the feature 

selection algorithms. At the same time, we then apply SVM, C4.5, and PART classifiers to each of the 
newly obtained data sets (with only selected features), and obtain the average accuracy of 10-fold cross 
validation. The results show that these algorithms are effective in retaining the classification ability. The 
RS algorithm yields an empty set when it is applied to the “Sonar”, “Cleveland”, “Glass”, “Vote”, “Ecoli” 
“Heart”, “Hepatitis”, and “German” datasets, because all equivalence classes are inconsistent at the first 
stage. In this case, the positive region of each single feature is an empty set. However, all the other feature 
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selection algorithms can determine the subset of features. We can also find that the subset contains 
different features when applying different algorithms. 

Noisy data had a great influence on the results that were produced by the RS algorithms. mUMCNR 
is based on the idea of dealing with noise with a parameter that controls the noise effect. The noisy 
instance has little influence on the feature selection process on both mUMCNR and NDEM. However, 
NDEM considers only the number of samples in the decision boundary region alone. Therefore, 
measuring the goodness of feature subset is not accurate enough. Besides, considering only samples in the 
boundary region and neglecting the positive region may lead to losing valuable attributes. At the same 
time, the mUMCNR method determines both information of the decision positive region and the decision 
boundary region simultaneously. Therefore, mUMCNR is able to create a subset of features which 
contains more valuable information than those obtained using NDEM. We can see that mUMCNR 
demonstrated better performance than NDEM, as shown by the experimental results. 
 
 
Table 5 Classification accuracy of C4.5 classifier. 
 
No.  Data unselect RS NDEM CNS CFS ReliefF mUMCNR 

1 Wine 0.9382 0.9494 0.9213 0.9662 0.9438 0.9550 0.9719 
2 Sonar 0.7115 N/A 0.7644 0.7500 0.7163 0.7211 0.7692 
3 Ionos 0.9145 0.9202 0.9288 0.9031 0.9088 0.8774 0.9316 
4 Wdbc 0.9332 0.9525 0.9473 0.9420 0.9332 0.9297 0.9684 
5 Parkinsons 0.8000 0.8718 0.8513 0.8820 0.8307 0.8461 0.8821 
6 Cleveland 0.7778 N/A 0.8182 0.7811 0.8249 0.7878 0.8182 
7 Glass 0.6729 N/A 0.6591 0.6449 0.6916 0.7290 0.6955 
8 Votes 0.9367 N/A 0.9367 0.9367 0.9400 0.9333 0.9367 
9 Soybean 0.9151 0.8175 0.8185 0.8045 0.8208 0.8436 0.9034 

10 Lymphography 0.7635 0.7364 0.7433 0.7432 0.7637 0.7740 0.7762 
11 Promoters 0.8113 0.8490 0.8491 0.8490 0.8301 0.8301 0.8773 
12 Ecoli 0.8423 N/A 0.8423 0.8423 0.8423 0.7649 0.8423 
13 Heart 0.8000 N/A 0.8111 0.7926 0.8037 0.7963 0.8185 
14 Hepatitis 0.8387 0.7935 0.8454 0.8323 0.8129 0.8258 0.8642 
15 German 0.705 N/A 0.7070 0.7260 0.7050 0.7290 0.7320 
  Average 0.8240 N/A 0.8296 0.8264 0.8245 0.8229 0.8525 

 
 

Among the fifteen data sets and 6 algorithms of feature selection, mUMCNR on PART comes with 
the minimal number of features, with 6 data sets; meanwhile, mUMCNR on SVM and C4.5 obtains the 
minimal number of features, with 4 data sets and 5 data sets, respectively. On average, mUMCNR on 
SVM, C4.5, and PART selects 7.40, 7.13, and 7.13, respectively, features for dimensionality reduction, 
which are the least 3 values among the size of the features that the 6 algorithms are applied to. With 
regard to the performance of SVM-based classification, as shown in Table 4, mUMCNR results in the 
highest predictive accuracy in 8 cases. At the same time, in Tables 5 - 6, the performance of mUMCNR 
achieved with the highest predictive accuracy are 11 and 9 cases, with regard to C4.5 and PART, 
respectively. On the average, mUMCNR on C4.5 and PART classifiers comes with the highest 
classification accuracy when comparing it with all other methods. By investigating the results in       
Tables 4 - 6, we conclude that the efficiency and capability of mUMCNR can be achieved impressively 
with the maximal number of the highest accuracy for all classifiers when comparing it with all other 
methods. Meanwhile, the average dimensionality reduction is still lower than all of the methods as 
reported in Table 3. 
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As described above, mUMCNR uses the neighborhood size, with numeric values varying from 0.02 
to 0.2 in the step of 0.02. Obviously, mUMCNR achieves a subset of features of not more than 10 subsets 
on each data set. At the same time, NDEM gets one subset of features, with the neighborhood size defined 
as 0.14 [42], while other methods yield one subset of features for each data set. Therefore, mUMCNR 
takes a much longer computation time to search for feature subsets than other methods. From the 
experiment, we can observe that the computation time the mUMCNR method uses is approximately 4 
times that of NDEM. In addition, we can illustrate the relation of using the computation time between 
mUMCNR and other methods to search for a feature subset as mUMCNR > NDEM > ReliefF > RS > 
CNS > CFS. 
 
 
Table 6 Classification accuracy of PART classifier. 
 
No.  Data unselect RS NDEM CNS CFS ReliefF mUMCNR 

1 Wine 0.9326 0.9438 0.9163 0.9438 0.9269 0.9438 0.9719 
2 Sonar 0.8029 N/A 0.7490 0.7740 0.7596 0.7211 0.7874 
3 Ionos 0.9174 0.9231 0.9204 0.8888 0.9088 0.8803 0.9203 
4 Wdbc 0.9332 0.9420 0.9561 0.9420 0.9455 0.9297 0.9632 
5 Parkinsons 0.8154 0.8410 0.8263 0.8564 0.8153 0.8205 0.8758 
6 Cleveland 0.7744 N/A 0.8113 0.7777 0.8013 0.8148 0.8172 
7 Glass 0.6776 N/A 0.6820 0.7196 0.6869 0.6869 0.7290 
8 Votes 0.9267 N/A 0.9367 0.9333 0.9433 0.9367 0.9433 
9 Soybean 0.9195 0.7850 0.7907 0.7622 0.8795 0.8762 0.8623 

10 Lymphography 0.8176 0.7770 0.7648 0.7635 0.7567 0.8040 0.7643 
11 Promoters 0.8491 0.9339 0.9336 0.9339 0.8490 0.8773 0.7927 
12 Ecoli 0.8363 N/A 0.8360 0.8363 0.8363 0.7619 0.8360 
13 Heart 0.7481 N/A 0.7741 0.7778 0.7815 0.7926 0.8111 
14 Hepatitis   0.8452 0.7935 0.8521 0.8000 0.8516 0.7935 0.8521 
15 German 0.702 N/A 0.699 0.702 0.715 0.706 0.729 
  Average 0.8332 N/A 0.8299 0.8274 0.8305 0.8230 0.8437 

 
 

The advantages of the mUMCNR method are that it can produce more than one features subset with 
δ value in the range of 0.02 - 0.2. Moreover, each value of δ may begin searching in the feature space 
with a different starting feature. Therefore, these subsets are expected to increase the opportunities that 
lead to a near-optimal subset or a globally optimal subset. In addition, mUMCNR is suitable for 
numerical and mixed features. This is because mUMCNR uses the Euclidean distance for distance 
measuring between samples, which is more suitable for numerical than for discrete features. However, the 
disadvantages of mUMCNR are that it takes a much longer computation time than NDEM and other 
methods. Furthermore, mUMCNR may be unsuitable with discrete features, because it computes the 
distance by using Euclidean distance. 

Generally, a learning algorithm selects the optimal subset that is suitable for it. The optimal subset 
often measures from the classification accuracy of the learning algorithm. The optimal subset of features 
varies when changing from one learning algorithm to another. However, feature selection based on 
mUMCNR can create candidate reducts of more than one candidate reduct with a value of δ in the range 
of [0.02, 0.2]. Therefore, mUMCNR has the advantage over other FS methods, because it gives an 
opportunity to find a candidate reduct that is appropriate with SVM, C4.5, and PART classifiers as shown 
in Tables 4 - 6. 
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C: Comparison of feature selection algorithms with wrapper subset evaluation 
In many applications in machine learning, wrapper-based subset evaluation is necessary for pressing 

to select an optimal subset of features. The number of features in the optimal subset is greatly reduced 
with regard to a classifier. The optimal subset often measures based on the classification accuracy of the 
classifier. The optimal subset of features may differ in each learning algorithm. Therefore, it is difficult, 
or impossible, for one feature selection algorithm to choose one subset of features that is suitable for all 
learning algorithms. We will compare the proposed method with NDEM and wrapper subset evaluation, 
in order to illustrate the efficiency and effectiveness of mUMCNR, in this section. 

Tables 7 - 8 show the number of selected features and the corresponding classification performance 
based on NDEM, mUMCNR, and wrapper, on SVM, C4.5, and PART, respectively. Among the fifteen 
data sets, on average, the wrapper selects 3.87, 4.33, and 4.80 on SVM, C4.5, and PART, respectively, 
which are the minimal number of averages in all classifiers. Meanwhile, NDEM comes with the maximal 
number of averages in 2 classifiers. When considering the classification accuracy of classifiers, as shown 
in Table 8, wrapper on SVM and PART comes with the highest accuracy in 9 cases and 10 cases, 
respectively. Meanwhile, mUMCNR on SVM and mUMCNR on PART achieve the highest accuracy in 7 
cases and 4 cases, respectively. At the same time, mUMCNR on C4.5 achieves the highest accuracy in 8 
cases, which is more outstanding than wrapper on C4.5, at 7 cases. On average, mUMCNR on SVM and 
C4.5 classifiers comes with the highest classification accuracy when compared with all other methods. 
However, wrapper receives an accuracy of classification on PART that is higher than that of mUMCNR 
and NDEM, as shown in Table 8. 

 
 
Table 7 Number of selected features when compared to wrapper subset evaluation. 
 

No. Data 
SVM C4.5 Part 

Wrapper NDEM mUMCNR Wrapper NDEM mUMCNR Wrapper NDEM mUMCNR 
1 Wine 5 5 6 4 5 3 4 5 3 
2 Sonar 3 7 10 3 7 4 4 7 6 
3 Ionos 3 9 11 5 9 10 5 9 10 
4 Wdbc 8 6 5 6 6 4 5 6 4 
5 Parkinsons 2 7 4 4 7 5 6 7 4 
6 Cleveland 1 8 10 2 8 11 3 8 10 
7 Glass 4 5 6 4 5 8 4 5 8 
8 Votes 1 8 8 1 8 8 2 8 8 
9 Soybean 10 11 14 14 11 14 16 11 14 
10 Lymphography 5 7 8 3 7 8 3 7 8 
11 Promoters 6 4 4 1 4 4 3 4 4 
12 Ecoli 6 7 7 5 7 6 6 7 6 
13 Heart 1 11 6 5 11 6 4 11 6 
14 Hepatitis 1 6 5 2 6 7 2 6 5 
15 German 2 11 8 6 11 10 5 11 12 
  Average 3.87 7.47 7.47 4.33 7.47 7.20 4.80 7.47 7.20 
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Table 8 Comparison of classification accuracy on classifiers. 
 

No. Data 
SVM C4.5 PART 

Wrapper NDEM mUMCNR Wrapper NDEM mUMCNR Wrapper NDEM mUMCNR 
1 Wine 0.9831 0.9775 0.9944 0.9775 0.9213 0.9719 0.9607 0.9163 0.9719 
2 Sonar 0.7788 0.7933 0.8125 0.7356 0.7644 0.7692 0.7115 0.7490 0.7874 
3 Ionos 0.8917 0.9402 0.9487 0.9402 0.9288 0.9316 0.9373 0.9204 0.9203 
4 Wdbc 0.9719 0.9666 0.9719 0.9543 0.9473 0.9684 0.9543 0.9561 0.9632 
5 Parkinsons 0.8769 0.8718 0.8769 0.9333 0.8513 0.8821 0.8974 0.8263 0.8758 
6 Cleveland 0.7508 0.8047 0.8215 0.7744 0.8182 0.8182 0.8418 0.8113 0.8172 
7 Glass 0.6215 0.5697 0.5939 0.6729 0.6591 0.6955 0.6776 0.6820 0.7290 
8 Votes 0.9500 0.9400 0.9400 0.9500 0.9367 0.9367 0.9467 0.9367 0.9367 
9 Soybean 0.9429 0.8608 0.9136 0.9297 0.8185 0.9034 0.9283 0.7907 0.8623 
10 Lymphography 0.8378 0.7971 0.7771 0.8108 0.7433 0.7762 0.8311 0.7648 0.7643 
11 Promoters 0.9717 0.8582 0.8773 0.8019 0.8491 0.8773 0.8208 0.9336 0.7927 
12 Ecoli 0.8452 0.8393 0.8393 0.8304 0.8423 0.8423 0.8363 0.8360 0.8360 
13 Heart 0.7519 0.8370 0.8444 0.8000 0.8111 0.8185 0.8556 0.7741 0.8111 
14 Hepatitis 0.8452 0.8196 0.8438 0.8516 0.8454 0.8642 0.8581 0.8521 0.8521 
15 German 0.7200 0.7580 0.7560 0.7430 0.7070 0.7320 0.7430 0.6990 0.7290 
  Average 0.8493 0.8423 0.8541 0.8470 0.8296 0.8525 0.8534 0.8299 0.8433 

 
 

As described above, mUMCNR is effective in selecting an appropriate subset of learning 
algorithms, and can also select a subset that contains information that is valuable to the learning 
algorithm. Here, we will show the efficiency and effectiveness of mUMCNR when compared to NDEM, 
by combining the concept of filter with wrapper together. That is, we first select the relevant features that 
were evaluated with mUMCNR and NDEM. We then use a learning algorithm to evaluate the selected 
features by tenfold cross validation, where the selected features are added to the learning algorithm, one 
by one, by the order of selection. The results that are evaluated with SVM, C4.5, and PART are shown in 
Tables 9 and 10. The results also show that wrapper-based postpruning is essential for feature selection. 
The numbers of features in optimal subsets are greatly reduced in most of the cases. Also, each learning 
algorithm comes with an optimal number of features that is different. No feature selection algorithm is 
applicable to various learning algorithms. It is efficient to use mUMCNR to select a candidate subset that 
is suitable for a learning algorithm, and then use wrapper to select the optimal subset. 
 
 
Table 9 Subset size after postpruning with wrapper. 
 

No. Data SVM C4.5 Part 
Wrapper NDEM mUMCNR Wrapper NDEM mUMCNR Wrapper NDEM mUMCNR 

1 Wine 5 4 5 4 3 3 4 4 3 
2 Sonar 3 7 10 3 6 3 4 5 6 
3 Ionos 3 9 11 5 5 4 5 4 3 
4 Wdbc 8 3 5 6 3 3 5 4 3 
5 Parkinsons 2 2 2 4 6 3 6 5 3 
6 Cleveland 1 5 6 2 8 7 3 3 3 
7 Glass 4 4 5 4 4 5 4 5 8 
8 Votes 1 1 1 1 1 1 2 2 2 
9 Soybean 10 11 10 14 9 13 16 11 12 

10 Lymphography 5 5 4 3 4 2 3 3 2 
11 Promoters 6 3 4 1 3 4 3 4 2 
12 Ecoli 6 6 6 5 5 6 6 6 6 
13 Heart 1 11 6 5 4 4 4 4 3 
14 Hepatitis 1 6 1 2 6 6 2 6 5 
15 German 2 11 2 6 6 7 5 10 10 
  Average 3.87 5.87 5.20 4.33 4.87 4.73 4.80 5.07 4.73 
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Table 10 Comparison of classification accuracy on classifiers. 
 

No. Data SVM C4.5 PART 
Wrapper NDEM mUMCNR Wrapper NDEM mUMCNR Wrapper NDEM mUMCNR 

1 Wine 0.9831 0.9719 0.9831 0.9775 0.9157 0.9719 0.9607 0.9213 0.9719 
2 Sonar 0.7788 0.7933 0.8125 0.7356 0.7644 0.7885 0.7115 0.7548 0.7874 
3 Ionos 0.8917 0.9402 0.9487 0.9402 0.9316 0.9316 0.9373 0.9204 0.9231 
4 Wdbc 0.9719 0.9666 0.9719 0.9543 0.9525 0.9684 0.9543 0.9561 0.9632 
5 Parkinsons 0.8769 0.8769 0.8769 0.9333 0.8615 0.8923 0.8974 0.8513 0.9026 
6 Cleveland 0.7508 0.8249 0.8451 0.7744 0.8182 0.8215 0.8418 0.8418 0.8418 
7 Glass 0.6215 0.5981 0.6028 0.6729 0.6822 0.7430 0.6776 0.6820 0.7290 
8 Votes 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9467 0.9467 0.9467 
9 Soybean 0.9429 0.8608 0.9268 0.9297 0.8243 0.9034 0.9283 0.7907 0.8624 

10 Lymphography 0.8378 0.8041 0.8243 0.8108 0.7770 0.8041 0.8311 0.7905 0.8041 
11 Promoters 0.9717 0.9057 0.8773 0.8019 0.8585 0.8773 0.8208 0.9336 0.8113 
12 Ecoli 0.8452 0.8452 0.8452 0.8304 0.8304 0.8423 0.8363 0.8363 0.8360 
13 Heart 0.7519 0.8370 0.8444 0.8000 0.8370 0.8444 0.8556 0.8556 0.8593 
14 Hepatitis 0.8452 0.8196 0.8452 0.8516 0.8454 0.8710 0.8581 0.8521 0.8521 
15 German 0.7200 0.7580 0.7560 0.7430 0.7350 0.7390 0.7430 0.7240 0.7390 
  Average 0.8493 0.8502 0.8607 0.8470 0.8389 0.8632 0.8534 0.8438 0.8553 

 
 
Tables 9 - 10 show the number of selected features and the classification accuracy based on the 

wrapper, NDEM+wrapper, and mUMCNR+wrapper. From the 15 data, wrapper on SVM and C4.5 
achieves a minimal number of features in 10 data sets and 8 data sets, respectively. Meanwhile, 
MUMCNR+wrapper achieves a minimal number of features in 7 data sets and 8 data sets on SVM and 
C4.5, respectively. However, on the PART classifier, MUMCNR+wrapper can achieve the minimal 
number of features in 10 data sets, which is more outstanding than wrapper on PART and 
NDEM+wrapper. On average, MUMCNR+wrapper selects 5.20 features on SVM which have a value less 
than NDEM+wrapper. In addition, mUMCNR+wrapper selects a size of features that is smaller than 
NDEM+wrapper on both C4.5 and PART classifiers. 

With regard to the performance of classification based on SVM, C4.5, and PART, as shown in 
Table 10, mUMCNR+SVM achieves the highest accuracy in 10 cases. At the same time, 
mUMCNR+C4.5 and mUMCNR+PART achieve the highest accuracy in 9 cases on 2 classifiers. In 
addition, on average in Table 10, mUMCNR+wrapper can achieve impressive results by producing 
accuracies that are the highest 3 values among the performance of classifiers on the e algorithms offered. 
By observing the results in Tables 9 - 10, we conclude that the efficiency and capability of mUMCNR 
can be achieved with the maximal number of the highest accuracy for all classifiers, when compared with 
all other methods. Therefore, it is an indication that information considering both the positive region and 
boundary region of mUMCNR can extract a subset of features which contain much more valuable 
information to the learning algorithm than NDEM. 
 
Conclusions 

Selecting a subset of attributes with mUMCNR, and maximizing information of the certainty region 
while minimizing that of the uncertainty region, leads to an impressive improvement in accuracy over 
various data sets when compared with the RS and NDEM approaches. Therefore, it is clear that a subset 
of attributes obtained from mUMCNR contains much more valuable information than those obtained 
using the dependency function alone, and also that using this idea for feature selection by minimizing the 
number of samples in the boundary region (the idea of NDEM) is beneficial. 

In this paper, we proposed a feature evaluation measure strategy called mUMCNR, which can be 
directly applied to both discrete and continuous features. In addition, a search algorithm based on 
mUMCNR can be used to deal with heterogeneous features without the discretizing of numerical features. 
We used the neighborhood decision to define and compute a decision positive region and a decision 
boundary region in metric spaces. The difference of information between the decision positive region and 
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the decision boundary region is used to measure the goodness of feature subset. The NDEM method 
focuses on the number of samples in the boundary region, so that measuring the goodness of feature 
subset is not elaborated on. Meanwhile, the mUMCNR method considers the information of the samples 
that belongs to both the positive region and boundary region, and is more accurate in measuring the 
goodness of feature subset. For this reason, from the experiments, we can see that mUMCNR yields 
results of higher average classification accuracy than NDEM on SVM and C4.5. 

We have presented a forward greedy strategy for searching feature subsets to minimize the 
information of the positive region and maximize the information contained in the boundary region. We 
compared the proposed method with some classical algorithms, e.g., CFS, CNS, and ReliefF. The results 
have shown that the proposed algorithm is effective when dealing with discrete data, numerical data, and 
mixed data. We have demonstrated the phenomenon of effectiveness on classification accuracy and 
efficiency of subset size which occurs in selecting the optimal subset of features by using the wrapper 
technique. Combining mUMCNR with the wrapper technique can bring improvement to classification 
performance that is more notable than NDEM on SVM, C4.5, and PART. Although mUMCNR does need 
to predefine the value of δ that is suitable for the classifier, the value of δ is specified without using 
domain knowledge. Furthermore, it can be seen that the idea of mUMCNR leads to an impressive 
improvement of the classification accuracy over various data sets when compared with the RS and 
NDEM approaches. To increase the efficiency and effectiveness on the selected features, the wrapper-
based postpruning method is necessary for optimal subset selection. When considering the number of 
selected features and the corresponding classification performance on classifiers, mUMCNR is better 
suited for applying to wrapper-based postpruning. 
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