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Abstract 

 Hyperspectral data are valuable for urban studies because of the continuous narrow bands and high 
spectral resolution of such data. However, using hyperspectral data presents certain difficulties because of 
the high dimensionality. Hyperspectral data dimensionality should be reduced without losing the spectral 
detail of the data. In this study, we aim to assess the capability of hyperspectral data to discriminate roof 
materials and evaluate the feasibility of the genetic algorithm (GA) combined with the spectral angle 
mapper classification to identify significant bands that are effective in discriminating roof materials. The 
performance of GA was estimated using the overall classification accuracy. Field spectral reflectance 
from 4 types of roof materials in different conditions based on age (new and old) was collected using an 
Analytical Spectral Devices FieldSpec 3 Spectroradiometer with a wavelength range of 350 nm to 2500 
nm. In this study, we confirm the potential of GA, with high overall classification accuracy (85 %), for 
the selection of significant bands that have valuable information to discriminate various types of roof 
materials. Overall, the results from the GA analysis show 3 principle locations of bands which are located 
at 517, 823 and 2008 nm in the visible, near infrared and shortwave region for discriminating different 
materials. This finding is in agreement with previous studies in determining the significant bands for 
man-made materials discrimination. Previous studies also discovered similar locations and ranges in the 
electromagnetic spectrum. 
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Introduction 

 Urban environments consist of artificial and natural surfaces such as roads, grassy areas, and 
mixtures of concrete, steel, wood, stone, and other materials. Although remote sensing of urban areas can 
be complicated because of the different physical structures of roofing and paving materials, hyperspectral 
sensors are valuable tools for discriminating roof materials because of the high dimensionality over 
continuous narrow bands [1]. However, this high dimensionality causes difficulty in using hyperspectral 
data. Thus, hyperspectral data dimensionality should be reduced without losing the spectral detail of the 
data [2]. 
 Two methods are employed to reduce the dimensionality of hyperspectral data. The first approach is 
applying band extraction. In this method, the original dataset is transformed before a definite number of 
bands are selected using the noise-adjusted principal component analysis (PCA) and Karhunen-Loeve 
transform approaches [3]. The most efficient method is band selection. This method selects a subgroup of 
original bands without effecting their physical meaning. As data do not change physically, band selection 
is preferable to band extraction [2]. In band selection, the interpretation of features is not as complex as 
that in band extraction [4]. Moreover, band extraction can have less classification accuracy because of 
transforming low-frequency information to the noisy bands [5]. Methods for band selection are divided 
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into 2 groups of supervised and unsupervised approaches. Unsupervised methods are computationally 
effective and fast and do not need training for ordering the bands. By contrast, supervised methods 
require training data and are more computationally demanding than unsupervised methods. Supervised 
approaches include artificial neural network (ANN), principal component analysis (PCA), and genetic 
algorithm (GA), whereas unsupervised approaches include information entropy measures as well as first 
and second derivatives [6]. It was determined that each of these approaches may be suitable for specific 
applications. The PCA and information entropy measures are useful when most information content about 
selection of bands is determined. However, derivative methods can be used to define features that are 
absorbed. The ANN measure is suitable for selection of bands that are specific to the characteristic of a 
target with minimum information layoff [6]. A new band selection method was formulated using a 
combination of 3 supervised and 7 unsupervised approaches under classification accuracy and 
computational requirement limitations [7]. The unsupervised methods, namely, first and second spectral 
derivatives, information entropy, spatial contrast, correlation, PCA, and spectral ratio, were used to rank 
hyperspectral bands. Meanwhile, the supervised methods, namely, regression, regression tree, and 
instance, were used for score ranking bands. Results showed that the highest 4 to 8 bands obtained by 
entropy followed by regression tree estimation were the best bands. 
 The GA is a common type of evolutionary optimization computation based on the concept of natural 
selection [8]. It was observed that GA used in band selection performs better than many other algorithms 
[9]. The GA-based band selector technique is a beneficial alternative to the floating search feature 
selection system [10]. It was also determined that GA adjusts a population of solutions simultaneously 
instead of a single solution such as the classical optimization procedure [11]. The combination of GA as a 
band selection tool with a well-known spectral angle mapper (SAM) was proposed based on the nearest 
neighbor classifier as fitness criterion to discriminate 16 tropical mangrove species. The result showed 
that the GA-based band selector can deal with the similarity of spectra in the species level [8]. The 
effectiveness of GA as a band selection tool for classification was also examined in remote sensing 
applications. The result showed that one of the optimal bands can achieve a better classification result [5]. 
Further to that a hybrid feature selection method based on GA and support vector machine (SVM) was 
proposed [12]. The method utilizes conditional mutual information for band grouping and applies the 
branch and bound algorithm through post-processing to filter out irrelevant band groups. The results 
showed that the proposed approach is competitive and operative. A combination of GA with SAM to 
identify a significant subset of bands that are sensitive to discriminate 13 broadleaved vegetation species 
was proposed by [13]. They determined that GA band selection has high overall classification accuracy. 
Moreover, the bands selected by GA are more valuable for the discrimination of vegetation species 
compared with bands selected randomly. 
 Until recently, only a few studies on band selection of man-made materials have been published 
despite the success of GA as a band selection tool for vegetation [8,13]. The applicability of GA could 
also be tested for man-made roofing materials. Therefore, in this study, we aim to evaluate the 
combination of GA and SAM for selecting significant bands that maintain spectral separability between 
different roof material classes from visible to shortwave infrared data (350 nm to 2400 nm; 2050 bands). 
The finding of this study will be a prerequisite for designing new multiband sensors for unmanned aerial 
vehicles (UAV) and configuring the bands for airborne hyperspectral urban mapping missions. 
 
Materials and methods 

 The methodologies used in this study are discussed in this section. Several procedures conducted to 
achieve the objectives include data acquisition, preprocessing, and band selection combined with 
classification and accuracy assessment. Data acquisition involves spectral reflectance data collected from 
4 types of roof materials, namely, clay, steel, concrete, and asbestos, using a spectroradiometer. 
Preprocessing includes conversion of the digital number (DN) into a reflectance value, conversion of the 
.asd format into an ASCII file of .txt format, and noise removal. The GA combined with the SAM 
classification was applied for band selection. Finally, the performance of GA was evaluated using the 
overall classification accuracy. The flowchart of this study is presented in Figure 1. 
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Figure 1 Methodology flowchart. 
 
 

Data acquisition 
Roof material sampling 
Four types of roof materials in different conditions based on age (new and old) are used in this 

study. The materials are from the Faculty of Engineering, Universiti Putra Malaysia (UPM), located 
approximately 23 km south of Kuala Lumpur and 16 km north of Putrajaya with latitude N 1°24′ to N 
2°32′ and longitude E 102°42′ to E 103°38′. Figure 2 shows the location and image of the study area. 
Figure 3 presents roof material sampling, including concrete, steel, clay, and asbestos, in different 
conditions based on age (old and new). 
 
 

 
Figure 2 Location and image of the study area. 
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Figure 3 Samples of the roof materials (different types and conditions). 
 
 

Spectral measurements 
Field spectral reflectance of roof materials (different types and conditions) was collected using the 

ASD FieldSpec 3 Spectroradiometer at 10 am to 12 pm under clear sky condition in February and March 
2013. The spectroradiometer has a spectral range of 350 nm to 2500 nm and a spectral resolution of 3 nm 
for a wavelength of 700 nm and 10 nm for bands from 1400 nm to 2100 nm. The data collected in the 
field included various types of roof materials, including steel, clay, asbestos, and concrete, in different 
conditions based on age (new and old). Thirty spectra were collected for each material at a height of 1 m 
and a field of view of 25° using bare fiber optic with 90° at nadir to achieve the target dimension with a 
spectral range between 350 nm and 2500 nm. 

Table 1 shows the different types of roof materials used for spectral measurement in this study. The 
number of spectra from each target material was at least 30, which were collected using a 2150 band 
spectroradiometer. We considered a specific code for each target material based on their names. 
 
 
Table 1 The roof materials used for spectral measurements. Thirty spectra were collected per roof 
material using a 2150 band spectroradiometer. 
 

Roof materials Code Spectra number 

Old asbestos OA 30 

Old clay OCL 30 

Old steel OS 30 

Old concrete OC 30 

New asbestos NA 30 

New clay NCL 30 

New steel NS 30 

New concrete NC 30 
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The graph shown in Figure 4 represents the average of the 30 spectra for each target material in 
reflectance value with a wavelength range of 350 nm to 2400 nm. In general, the spectral reflectance 
shape, intensity, width, and depth of absorption of the spectral curves are different in every target 
material. Notably, the spectral reflectance of roof materials was measured at different ages (new and old). 
The new and old types of spectral reflectance in asbestos are similar, except for the visible range. The 
difference between materials in the visible range is related to the color of the coating. Old and new clay 
have similar reflectances in the visible range because they have similar color of coating. Strong 
absorption on new and old clay observed in the visible range near 550 nm was caused by liquid water and 
hydroxyl groups [14]. The spectral reflectance of old and new concrete is completely different. New 
concrete has a low reflectance compared with old concrete because the coating of old concrete has a dark 
color. The spectral signatures of new and old steel are similar. However, new steel has high reflectance. 
The high spectral variability of the roof materials is due to the inconsistent mixture of ingredients in man-
made materials and environmental variables, such as soil and water, which affect the reflectance spectra 
of the target materials. In summary, spectral curves varied between different materials because of the 
content of these materials and the color of their coating, although similarities in the absorption and 
reflectance of some wavelength ranges were observed. 
 

Preprocessing 
The DN of the raw data should be converted into reflectance values. Moreover, spectral data, which 

are in .asd format, are converted into ASCII in .txt format because data received from the 
spectroradiometer cannot be viewed using Microsoft Excel. Furthermore, hyperspectral data have more 
noise compared with multispectral data due to a low signal water vapor band and a transition at shortwave 
region [15], so we should deal with the noise. Denoising can be conducted by minimizing or eliminating 
the noise. In this case, the data range from 1350 nm to 1420 nm and from 1800 nm to 1950 nm; those 
greater than 2400 nm are eliminated because they render the feature shape of the spectra unrecognizable 
as a result of spectral stretch. Figure 5 shows the spectral curves of new steel before and after noise 
removal. 
 
 

 
Figure 4 Mean spectral reflectance of different types of roof materials. 
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      (a)                                                          (b) 

 
Figure 5 Spectral curves of new steel (a) before and (b) after noise removal. 
 

Band selection 
Genetic algorithm 
MATLAB software was used for processing in this study. GA is the technique used to optimize any 

type of data based on natural selection without evaluating all the candidate cases [16]. GA was 
determined to be a powerful tool for searching and solving complex problems as well as providing a 
population of solutions rather than a single solution [11]. GA produces an original population of 
individuals. Each individual is estimated using its overall fitness. New individuals are produced using 3 
operations, namely, crossover, mutation, and selection. The production of new individuals continues until 
we obtain the individual that satisfies the conditions. A population contains chromosomes and each 
chromosome includes genes appointed to a band in this study [17]. 

In the crossover process, 2 chromosomes mate and create 2 offspring that have half of the character 
of one parent and the other half from another parent, which is called single-point crossover. Random 
mutations alter a single gene in the offspring chromosome, such that the characteristics of the offspring 
and parent are different. 

One of the most important aspects of the GA is fitness function. In this study, we use the SAM 
classifier to estimate the fitness values of the chromosome population during processing. The SAM is a 
physically based spectral classification that uses an n-dimensional angle to match the pixel to the 
reference spectra [18]. The algorithm determines the spectral similarity between 2 spectra by calculating 
the angle between them. For calculating the fitness function, half of the spectra of each target (15 spectra 
per target) are used for training purposes and the remaining half for testing purposes. The reference 
spectrum for each target is calculated using the average spectrum of the training dataset [13]. 

The selection is conducted based on the fitness values. In this study, the fitness score is calculated 
based on the overall classification accuracy from the SAM classification. Chromosomes with higher 
classification accuracy have a higher chance of being selected for the next generation. 
 

Significant bands 
The GA is used to select the significant bands based on the overall classification accuracy of the 

SAM. The bands with higher overall classification accuracy have a higher chance of being selected. There 
is valuable information in significant bands compared with the other bands. 
 

Accuracy assessment 
Accuracy assessment is an important aspect of classification, which is normally evaluated by 

comparing the classification data with the reference data. Accuracy assessment reflects the difference 
between our classification data and the reference data. Overall classification accuracy was applied to 
estimate the performance of GA combined with SAM as band selection method. 
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Table 2 Forty best chromosomes with fitness scores (%). 

Chromosome no. Genes (nm) Fitness scores (%) 
1 352 392 750 766 928 87.5 
2 391 391 715 914 2386 86.66 
3 416 592 682 804 879 86.66 
4 361 390 400 749 943 87.5 
5 352 476 614 731 739 86.66 
6 363 531 675 686 733 86.66 
7 359 556 670 828 891 86.66 
8 490 660 1970 2103 2298 84.16 
9 468 498 501 746 855 86.66 
10 373 461 605 693 892 87.5 
11 466 1268 2011 2067 2310 78.33 
12 540 668 679 780 955 86.66 
13 429 445 535 547 692 86.66 
14 446 474 680 848 934 87.5 
15 493 510 621 688 933 86.66 
16 415 512 667 748 2341 87.5 
17 411 496 1222 1975 2365 82.5 
18 404 802 1799 2192 2397 80 
19 405 479 623 726 731 86.66 
20 436 494 1301 2314 2370 79.16 
21 494 1245 2018 2282 2324 78.33 
22 354 397 416 735 1982 85.83 
23 440 449 543 601 714 86.66 
24 384 629 638 784 988 87.5 
25 354 402 499 647 728 87.5 
26 369 426 504 722 900 87.5 
27 435 487 736 994 2010 86.66 
28 358 499 746 904 927 87.5 
29 466 493 661 739 821 86.66 
30 391 634 756 817 943 87.5 
31 396 691 786 986 999 87.5 
32 451 750 773 793 847 87.5 
33 355 459 736 755 916 87.5 
34 489 1291 1978 2123 2310 78.33 
35 438 518 677 901 944 86.66 
36 475 738 782 833 837 87.5 
37 387 528 649 756 865 86.66 
38 490 735 789 841 974 87.5 
39 354 384 627 725 802 87.5 
40 382 418 758 877 1970 85 
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Results and discussion 

Preliminary parameters are organized as follows: population size = 1000, number of generations = 
500, crossover rate = 100 %, and mutation rate = 1 %. The fitness function was determined based on the 
SAM classification accuracy during the evolution procedure. The consistency of the result was checked 
by running the GA 40 times. 

Table 2 presents the winning chromosomes of every run with the proportion of fitness scores. 
Notably, the chromosome size for the classification of different types of roof materials was 5. The fitness 
scores of all 40 chromosomes were greater than 78 %. The highest fitness score was at the 87 % level of 
classification accuracy. Then, genes were grouped into 3 waveband regions of visible (380 - 700 nm), 
near infrared (700 - 1000 nm), and shortwave infrared (1000 - 2400 nm) based on the mean and standard 
deviation. 

Table 3 shows a summary of the selected genes (bands) in 3 spectral regions. In general, 
wavelength ranges were selected based on the mean wavelength location and standard deviation. Notably, 
3 principal locations of 40 runs were located at 517, 823, and 2008 nm. The number of genes was 
calculated to be 48, 41 and 22 for the visible, near infrared and shortwave infrared region, respectively. In 
conclusion, the significant bands based on GA were grouped into 3 spectral regions based on the mean 
and standard deviation. 

The graph in Figure 6 shows the significant bands (highlighted parts) based on the reflectance value 
between wavelengths of 350 nm and 2400 nm obtained using GA. In general, the significant bands were 
grouped into 3 spectral regions of visible, near infrared, and shortwave infrared. In the visible area, the 
417 - 617 nm range was selected as the significant band. For the second spectral (near infrared) region, 
the 737 - 909 nm range was considered as the significant band. Moreover, the 1633 to 1799 and 1951 to 
2383 nm range was selected as the significant band in the shortwave infrared region. In summary, we 
observed that significant bands for best separability of room materials appear in almost all parts of the 
spectrum, especially in the visible and shortwave infrared region.  
 
 
Table 3 Grouping of selected genes (bands) in 3 spectral regions. 
 

Spectral region Mean 
(spectral band, nm) 

Standard 
deviation (nm) 

No. of genes 
(bands) 

Mean ± standard 
deviation 

Wavelength 
range (nm) 

Visible 517 100 48 517±100 417 to 617 

Near infrared 823 86 41 823± 86 737 to 909 

Short wave infrared 2008 375 22 2008± 375 1633 to 1799 
1951 to 2383 
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Figure 6 Significant bands based on GA. 
 
 

Table 4 shows a confusion matrix of the average of 40 runs for 4 different roof materials in 
different conditions based on age (new and old). In general, the overall classification accuracy of the 
training and testing datasets was 100 and 85.78 %, respectively. Notably, the overall classification 
accuracy in the testing dataset is not 100 % because some materials were not classified correctly. For 
instance, new steel was misinterpreted as old clay (OCL) and old concrete (OC) in the majority of the 
runs. In summary, the 2 tables show the overall classification accuracy for the testing and training 
datasets, with the average confusion matrix of 40 runs. 
 
 
Table 4 The average of confusion matrix of 40 runs for the training and testing dataset. 

 NCL NS NA NC OA  OCL OC OS 
NCL 15 0 0 0 0 0 0 0 
NS 0 15 0 0 0 0 0 0 
NA 0 0 15 0 0 0 0 0 
NC 0 0 0 15 0 0 0 0 
OA  0 0 0 0 15 0 0 0 

OCL 0 0 0 0 0 15 0 0 
OC 0 0 0 0 0 0 15 0 
OS 0 0 0 0 0 0 0 15 

Total accuracy classification of training dataset = 100 % 
 

 NCL NS NA NC OA  OCL OC OS 
NCL 15 0 0 0 0 0 0 0 
NS 2.7 0 0 0 0.425 4.975 6.9 0 
NA 0 0 15 0 0 0 0 0 
NC 0 0.275 0.875 13.85 0 0 0 0 
OA  0 0 0 0 15 0 0 0 

OCL 0 0 0 0 0.075 14.925 0 0 
OC 0 0 0 0 0 0.325 14.675 0 
OS 0 0.325 0 0 0.075 0.1 0 14.5 

Total accuracy classification of testing dataset = 85.78 % 
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In this study, we assessed the capability of hyperspectral remote sensing data in analyzing the 
different types of roof materials. The physical structure and chemical content of the material makes it 
possible to discriminate different roof materials. The color of the coating has an effect on the spectral 
curves. Black coatings cause a more similar spectral reflectance to gray coating compared with brown and 
blue color coatings. The same materials at different ages (new and old) and environmental conditions 
could be separated by comparing their spectral reflectance shapes. The results of the field spectra 
comparison confirm that the hyperspectral data are able to discriminate different roof materials. 
Moreover, we investigated the applicability of GA for selecting significant bands to discriminate different 
roof materials in different conditions. GA has been extensively used for plant species discrimination. 
However, only a few studies on urban areas have been published. The result of this study shows overall 
classification accuracy greater than 78 % (Table 2), such that band selection by GA was meaningful. 

One important aspect that affects the performance of GA is the fitness function, which is typically 
estimated based on the training samples. In this study, the classification accuracy of the SAM was applied 
to calculate the fitness scores, although other well-known classifiers could replace SAM, such as SVM 
[8]. The outcomes show 3 principal locations of significant bands, namely, 517, 823, and 2008 nm, for 
discriminating roof materials in 3 spectral regions of visible, near infrared, and shortwave infrared, 
respectively. The spectral ranges of 417 - 617 nm, 737 - 909 nm, 1633 - 1799 and 1951 - 2383nm, which 
are selected based on the mean and standard deviation of winning genes (bands) on 40 runs by GA, are 
considered as the significant range bands. In the visible and shortwave regions, more significant bands 
were compared with the near infrared region. The GA was evaluated through accuracy assessment of the 
training and testing datasets.  

Accuracy classifications were 85 and 100 % for the testing and training datasets, respectively. By 
contrast, some materials were misinterpreted because of similar absorption. The highest accuracy 
classification confirmed the potential of GA as an optimal band selection method for discriminating 
different types of roof materials. 
 
Conclusions 

In conclusion, this study confirmed the capability of hyperspectral data with high spectral resolution 
collected using a ASD FieldSpec 3 Spectroradiometer to discriminate various types of roof materials in 
different conditions based on age (new and old). Moreover, GA has the potential to select significant 
bands with valuable information on the materials. The performance of GA was estimated with an overall 
classification accuracy of 85 %. Overall, the result from the GA analysis shows that the principle bands 
are located at 517, 823 and 2008 nm in the visible, near infrared and shortwave region respectively to 
discriminate different types and conditions of materials. This finding is in agreement with previous 
studies conducted by [15,19,20] in determining the significant bands for man-made materials 
discrimination. Previous studies as mentioned also discovered similar locations and ranges in the 
electromagnetic spectrum. Future work could apply the band selected to airborne hyperspectral data to 
discriminate different roof materials. The development of sensors for UAV can also benefit from using 
the optimal bands to produce a light and cost-effective sensor. A toolbox for processing field spectrum 
data can also be developed to assist non-experts in hyperspectral remote sensing to extract useful 
information effectively. 
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