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Abstract 

In the software industry, measuring the effort and time for developing of software is very 
challenging. Measuring development effort and time comprises several phases, but measuring the effort in 
each phase creates problems. It is also observed that estimation of the effort required for developing a 
project may be over-estimated or under-estimated. It can lead to enormous damage to the organization, 
with respect to budget and schedule. So, to address the aforementioned, a cognitive technique is proposed 
for measuring the development effort, time, and errors. After measuring the development effort, machine 
learning techniques: Bayesian Net, Logistic Regression, Multi-perceptron, SMO, and Lib-SVM are 
applied for software defect prediction. To estimate the software development effort and defects, NASA 
PROMISE: CM1, KC3, PC1, PC2, and JM1 datasets and devised datasets (proposed cognitive technique 
parameters of original datasets) are used. The experimental results of both the experiments prove the 
goodness of the proposed work of this paper. 
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Introduction 

The software industry grows every day, and estimation of effort for software systems has been 
investigated by researchers for the last 50 years. However, accurate estimation is still difficult to make. 
Software requires a lot of man power, money, and time to develop it; what happens when it fails? Due to 
the frequent failure of software, software engineering became popular [1]. The main objective of software 
engineering is to develop a quality software product within the pre-determined budget and time frame. So, 
before beginning to develop a software project, engineers start to estimate the costs of the project with 
respect to money, time, and the people required to finish it. The majority of researchers pay attention to 
estimating the required effort to develop software systems. Different effort estimation models have been 
proposed, and now these models are used in the software industry. Generally, there are 2 types of effort 
estimation models: Algorithmic models and Non-Algorithmic models. COCOMO, SLIM, Putnam, 
Function Points (FPs), and Halstead measure are algorithmic models, and Expert Judgment, Analogy, and 
Machine Learning (like Neural Networks, Fuzzy Logic) models fall in the non-algorithmic category. If 
the customer requirements are imprecise and dynamic, then the estimated results of these models fall 
under suspicion. 

The most traditional method to measure the required effort for software is Lines of Code (LOC) [2]. 
This technique is not applicable, because it is programmer dependent. To overcome this limitation, 
McCabe introduced another measure, called Cyclomatic Complexity (CC) [3]. McCabe measured the 
complexity of a software system with control flow, but disregards the internal structure of the software. 
After that, Halstead [4] proposed another method to measure the development effort, time, difficulty, and 
errors in 1977. Halstead used occurrences of the operators and operands to measure software projects. It 
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is linked to the internal structure of a software system, like input-output, but disregards the control 
structure.  

Therefore, the complexity of a program depends on both the control flow and the internal structure 
of the source code, and the cognitive approach can do this job very well. Cognitive Informatics (CI) [5] is 
used in many research areas for finding a solution of given problems, such as Artificial Intelligence, 
Software engineering, Cognitive sciences, and many more. It plays a decisive role for measuring the 
characteristics of software systems. CI [6] found that the complexity of software depends on 3 
parameters: Input, Output, and the Architectural flow. It considers both the internal structure and the 
control flow of the software. The cognitive complexity of software contributed to estimation of the 
development effort; development cost and time relied on the estimated effort. 

In this work, we propose a new cognitive approach to measure software systems in several aspects. 
The proposed work is based on the number of operands, operators, LOC executables, branch count, and a 
derived cognitive weight parameter. The whole work is carried out in 2 phases: in the first phase, the 
above mentioned attributes are used to measure the development effort, time, and the number of errors. In 
the second phase, software defect prediction is used, which allows us to find out the defected modules 
before delivery of the software to the customer and before they become severe. Software defect prediction 
is the most promising area in the field of software engineering [7,8]. The defect prediction models grade 
the modules as either defected or non-defected; this is very useful, especially for large-scale projects and 
iterative development environments. It enables the experts to concentrate on the critical portions of the 
software system which have higher chances of defects. Generally, the defect prediction models are built 
on the collected historical data of the developed software. The basic hypothesis for software quality 
prediction is that a software module which is currently under the development stage is likely to have 
defects if a similar software module with a similar process or product metrics in the previously released 
projects and which was developed in the same environment was fault prone [9]. Numerous classification 
techniques are used for software defect prediction; examples include logistic regression [10], optimized 
set reduction [11], artificial neural networks [12], genetic algorithms [13], and fuzzy classification [14]. A 
number of defect prediction studies have been made, and all were based on the machine learning 
approach or the statistical approach. Machine learning algorithms are used in software defect prediction 
models, for classification and regression. Many research studies employed recent machine learning 
techniques to enhance the defect prediction rate [15,16]. Preprocessing techniques are also significant in 
software defect prediction. Before building a defect prediction model, the subsequent techniques may be 
applied: feature selection technique [17-19], and data normalization and noise reduction [20,21], to 
improve the performance of machine learning techniques. Several feature selection techniques are used to 
extract the important features for defect prediction models. With the help of preprocessing techniques, 
several studies indicated that the prediction performance could be improved [19-21]. In several studies, 
preprocessing techniques were not applied, because this step is an optional step and can be ignored. 
However, in this work, the proposed cognitive technique parameters as aforementioned are taken into 
consideration for defect prediction. Machine learning techniques are applied on these important attributes 
for defect prediction. 

Several challenges were present in the defect prediction models in 2000. The first challenge was 
that, is it really could be usable for software quality assurance before the software product was delivered 
to the customer? This can be more helpful when some changes have occurred in the source code. Mockus 
and Vollta [22] made it possible, and developed a model for changes. This defect prediction model is 
known as just-in-time (JIT). JIT models have been used by several other researchers in previous years 
[23-25]. The second problem is related to new projects which are not related with historical projects. 
Aforesaid, prediction models are based on the historical data of past completed projects; if the historical 
data is not available, or less available, then it became the one of the most challenging problems in the 
software industry [26]. To resolve this problem, various cross-project defect prediction models were 
proposed by the researchers [27,28]. Several researchers are still working to develop a more effective 
model to find out the defects from the given software. Can these prediction models really help to find the 
defects and be helpful to the software industry? To find the answer to this question, numerous case 
studies and real world applications have been accomplished [29,30]. In recent studies, different defect 



Development Effort and Time for Developing the Software’s Amit Kumar JAKHAR and Kumar RAJNISH 
http://wjst.wu.ac.th 

Walailak J Sci & Tech 2016; 13(6) 
 

467 

prediction models have been proposed, with new concepts like the personalized software defect 
prediction model [31] and the universal model [32]. The performance of any defect prediction model 
depends on the defect prediction rate and the overall accuracy of certain performance parameters. 

The main objective of this work is to measure the development effort, time, number of errors 
generated in developed code, and prediction of software defects more accurately. In this work, CM1, 
KC3, PC1, PC2, and JM1 datasets are collected from the NASA PROMISE [33] repository, and every 
dataset has a distinct number of attributes and defect percentage. After measurement of the result of each 
dataset, with the help of the proposed cognitive technique, the correlation is measured with the Halstead 
measure. Because the actual measurement of the projects is not available with the datasets, the Halstead 
measurement result is used as a gold standard in this study. The correlation shows that a better relation 
exists between the proposed cognitive technique and the Halstead measure. In addition, 5 machine 
learning techniques: Bayesian Net, Logistic Regression, Multi-perceptron, SMO, and Lib-SVM, are also 
applied for software defect prediction. To analyze the performance of machine learning techniques, 
several performance parameters are used. These parameters are: PD, PF, ACC, TNR, and PRECISION. 
The WEKA data mining tool is used for prediction of the software defects. 
 
Related works 

The related work of this paper is concerned in this section. The Halstead measure, cognitive 
measures, and machine learning techniques are described here. 

 
Halstead measure  
In 1977, Halstead [4] proposed a measure which was built on the number of operators (N1), number 

of operands (N2), number of unique operators (n1), and number of unique operands (n2). Halstead 
proposed a number of formulas based on the above mentioned parameters to measure the volume, length, 
development effort, time, and number of bugs in a given program (Table 1). 
 
 
Table 1 Halstead measure parameters. 
 
n1  Unique operators used in the program 
n2 Unique operands used in the program 
N1 Total number of operators used in the program 
N2 Total Number of operands used in the program 

 
 
Halstead measure describes the internal structure of the programs. Halstead parameters and their 

estimated results are given along with the original dataset. Operators and operands are counted from the 
source code of the software, but how the operators and operands are counted is neither clear nor 
unambiguous.  

Halstead’s measures are defined as follows: 
Vocabulary:  n = n1 + n2 
Length:   N = N1 + N2 
Volume:   V= N (log2 (n)) 
Difficulty:   D = (n1 / 2) × (N2 / n2) 
Effort:   E = D × V 
Dev. Time:  DT = E / 18 
No. of Bugs: Bugs = V / 3000 
The number of variables, constants, and strings are the part of operands, and the remaining 

everything else relates to operators. 
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Illustration of Halstead measure with an example: Assume that the parameters of a given code are as 
follows: 

n1 = 117 
n2 = 52 
N1 = 784 
N2 = 1918 

By using these above values the Halstead measures are calculated as follows: 
Vocabulary n = 117 + 52 = 169 
Length:  N = 784 + 1918 = 2702 
Volume:   V = 2702 (log2 (169)) = 19997.2 
Difficulty:   D = (117 / 2) × (1918 / 52) = 2157.75 
Effort:   E = 2157.75 × 19997.2 = 43148907 
Dev. Time:  DT = 43148907 / 18 =2397161.5 (in seconds)  
No. of Bugs:  Bugs: = 19997.2 / 3000 = 6.7  
Halstead measures are used only after the development of the source code, since they cannot be 

used in the early stages of the software development life cycle. Generally, Halstead measures are used for 
measuring the effort required in testing and in the maintenance phase. 

Cognitive methods are also developed for estimation of the software systems. Several related 
techniques are utilized for measuring the complexity of programs. Complexity defines the difficulty level 
of software that allows us to understand the behavior of the code. Cognitive Functional Size (CFS) [34] 
was proposed by Wang and Shao to measure the cognitive complexity of software. The functional size of 
the software depends on the input, output, and architectural control flow. Wang and Shao defined each 
possible BCSs of the program, and their corresponding cognitive weight is provided in Table 2. 
Cognitive weights indicate the difficulty level in comprehending a particular structure. 

 
 

Table 2 BCSs with their cognitive weights (Wc). 
 
BCSs Type BCSs Weight (Wc) 
Sequence Sequence (seq.) 1 
Branch If then else 2 

Switch - case 3 
 
Iteration 

For loop 3 
While loop 3 
Do-while 3 

Embedded components Function call 2 
Recursion 3 

Concurrency Parallel 4 
Interrupt 4 

 
 

CFS is calculated according to the following Eq. (1). 
 

𝐶𝐹𝑆 = (𝑁𝑖 + 𝑁𝑜) × 𝑊𝑐                     (1) 
 
Where Ni: number of inputs, No: number of outputs and Wc: BCSs cognitive weight. 

Other cognitive techniques have also been developed for measuring the complexity, development 
time, and understandability of programs. The Cognitive Program Complexity Measure (CPCM) was 
developed by Misra [35] in 2007 to measure the cognitive complexity of a program. This work shows that 
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total occurrences of input variables and total occurrences of output variables impose a strong effect on the 
complexity of software. A New Cognitive Complexity of Program (NCCoP) [36] was proposed by Jakhar 
and Rajnish in 2014. The number of programs is taken with their source code, and the complexity of 
programs is measured line by line. The other cognitive method, New Weighted Method Complexity 
(NWMC) [37] was proposed by Jakhar and Rajnish in 2014. In their work, an experiment was done with 
the help of 5 postgraduate students of their institute to develop 20 programs. Their development time was 
observed and the mean of the development time of all the students taken as the actual time required to 
develop the code, and the number of inputs, number of outputs, and local and global parameters are taken 
into account to measure the complexity of the program. In addition to measuring NWMC, a constant 
parameter has been evaluated, so that the actual development time can be achieved with the help of 
measured cognitive complexity value. The BCSs cognitive weights of Table 2 were used to measure the 
cognitive complexity of all the programs. 

The proposed work of this paper is completely different from [36,37], because the source code of 
the projects is not available to analyze the cognitive complexity of the software, and also because we do 
not have developers who developed the projects. Only some measured values from the developed code 
are given, along with the original datasets. So, on the basis of these parameter statistics, an attempt is 
made to develop a cognitive technique which can measure the development effort, time, and number of 
errors more accurately. Therefore, some significant parameters are extracted from the dataset, such as the 
number of operands, operators, branch count, LOC executables, and, along with a cognitive weight, these 
are proposed to measure the software. The Halstead measure is used as a gold standard to compare with 
the proposed cognitive technique, because other existing cognitive measures require some other 
attributes, like the number of inputs, number of outputs, etc., which are not given in the original dataset. 
This is why existing cognitive measures are dropped to further study. The above mentioned parameters 
are used to predict the software defects as well. Machine learning techniques Bayesian Net, Logistic 
Regression, Multilayer Perceptron, SMO, and Lib-SVM are applied for defect prediction using original 
datasets and devised datasets (attributes of the proposed cognitive technique). 

 
Machine learning techniques 
Learning is of mainly 2 types: supervised learning and unsupervised learning. Basically, in 

supervised learning, the supervisor defines the class of each instance and is called learning by example. 
Unsupervised learning is known as clustering. This technique is the opposite of the supervised learning 
technique, meaning learning without a supervisor (learning from interpretations). In this paper, Bayesian 
Net, Logistic Regression, Multilayer Perceptron, SMO, and Lib-SVM are used to predict software 
defects. In other studies, experiments to analyze the performance of machine learning techniques are done 
with the WEKA data mining tool [38,39]. Some concerns about machine learning techniques are outlined 
in the following subsections. 

 
Bayesian Net 
Bayesian Net [40] is related to statistically based learning rules. In this technique, the significance 

of all attributes is equal, and the values of each attribute are calculated separately. Some bays rules are 
used for classification. 

 
Multilayer perceptron (MLP) 
The Multi-Layer Perceptron (MLP) is a feed-forward network. This machine learning technique 

comes under neural networks. Generally, a neural network model consists of 3 things: an input layer, in 
which the input is given, hidden (one or more) layers performing the complex mathematical functions, 
and the output layer that shows the result of the designed architecture [41]. In the neural networks, 
neurons are used for calculations. Neurons are interconnected through links, and every link has assigned 
some weight. Each neuron output depends on the activation functions, and the output of the neurons may 
become the input of the next layer neurons when the network is multi-layer. Activation function may be 
linear or non-linear, depending on the requirement. Mostly, non-linear activation functions are employed 
in the hidden layers [42]; these activation functions play a key role in neural networks. 
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Sequential minimal optimization (SMO) 
The SMO technique is used to solve quadratic programming problems. This is utilized to train 

purpose for support vector machines. The SMO solve optimization problems iteratively; it breaks the 
large problem into smaller sub-problems, and so on, solving each sub problem analytically. 

 
Logistic regression (LR)  
The regression term is defined as measuring and analyzing the relation between independent 

variables and dependent variables. This can be defined in 2 ways: Linear and Logistic regression. Logistic 
regression is a generalized form of linear regression [43]. LR is generally used for classification of data 
which is in the short dimension and has linear boundaries. The main objective of LR is that each variable 
should be determined correctly. It is also known as a logistic/logit model, which categorizes the target 
variable in 2 categories, such as light or dark, thin or thick. 

 
Evaluation of proposed work 

The whole work of this paper is carried out in 2 phases: in the first phase of study, a cognitive 
technique is proposed to estimate the development effort, time, and the number of errors. In this study, 4 
attributes are used to estimate the development effort, time, and number of errors. These attributes are the 
number of operands, operators, branch count, and LOC executables. In addition to it, a new parameter, 
called cognitive weight (Wc) is also proposed, to make the proposed cognitive technique more effective in 
terms of the control structure of the source code. The proposed technique is the combination of the 4 
attributes as discussed above, along with a proposed cognitive weight (Wc), and its flow chart is 
illustrated in Figure 1. Along this, it is also mentioned that the Halstead measure is used as the gold 
standard to measure the performance of our proposed cognitive technique, as the actual development 
effort, time, and errors are not mentioned in the original datasets. The development effort, time, and errors 
are computed using Eqs. (2) - (5) and these equations are described as follows. 

Eq. (2) is applied to compute the required effort to develop software. It consists of the number of 
operands, operators, branch count, LOC executables, and a proposed cognitive weight parameter. 
 

)_)_()__.__.((
_

ExeLOCWcountBranchoperatorsofNooperandsofNo
EffortCal

c +×+×
=   (2) 

 
In Eq. (2), Wc is a proposed cognitive parameter. There are 2 cases to compute the proposed 

cognitive parameter. In the first case, if the branch count attribute is one, then we assume that, it is an “if” 
statement in the source code, and the constant “2” is used for the proposed parameter Wc. In the second 
case, a constant value “3” is used for Wc. This is the mean of all the BCSs cognitive weight, as mentioned 
in Table 2. A generalized formula to compute the cognitive weight is described in Eq. (3). 
 

𝑊𝑐 =  �
2,   𝑖𝑓 (𝐵𝑟𝑎𝑛𝑐ℎ_𝐶𝑜𝑢𝑛𝑡 < 2)

3,                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
�            (3) 

 
With the help of Cal_Effort, the development time is measured, and details are described in Eq. (4). 

It measures the time in seconds. 
 

10/)_(_._ EffortCalTimeDevCal =            (4) 
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Figure 1 Flow chart of the proposed cognitive technique. 
 
 

The number of errors that can occur in the developed code is also calculated with the help of 
Cal_Effort, as given in Eq. (2). Eq. (5) is used to measure the errors. 

 
5.1)_(__ 2.0 −= EffortCalErrorsofNumber         (5) 

 
In the second phase of this study, machine learning techniques are applied for defect prediction. 

These techniques are Bayesian Net, Logistic Regression, Multilayer Perceptron, SMO and Lib-SVM. The 
proposed cognitive technique of this work consists of 5 parameters to measure the development effort. 
Therefore, we consider only these most important 5 parameters as attributes, and the aforementioned 
machine learning techniques are applied for defect prediction. In addition to it, it is also mentioned that all 
these machine learning techniques are also applied with the original datasets of this study. The result of 
both the experiments is evaluated on behalf of some performance parameters: PD, PF, ACC, TNR, and 
PRECISION. The description of these performance parameters is given in the next section. These 

No Yes 

Datasets with all given attributes 

Extract: No. of operands, operator, branch count, and LOC Executables 

If (Branch_count < 2) 

Wc = 2 

Cal_Effort = ((No_of_operands × No_of_operators) + 
(Branch_count ×Wc) + LOC_exe) 

Wc = 3 

No._of_Errors = (Cal_Effort0.2) -1.5 

Print the calculated Results 

Cal_Dev._Time = (Cal_Effort) / 10 

Start 

End 
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performance parameters are evaluated from the outcome of the machine learning techniques. From the 
experimental results, it is noted that the performance of all machine learning techniques is enhanced with 
our devised datasets in comparison to the original ones. Alongside this, it is also observed that the LR, 
MLP, and SMO classifiers provide better results with most of the devised datasets in aspects of several 
performance parameters. 
 
 Performance assessment parameters 

To validate the proposed work of this paper, various performance parameters are utilized. 
Correlation and some other performance parameters are used to analyze the performance of experiments. 
Correlation is used to validate the existence of proposed cognitive techniques and the performance of 
machine learning techniques is evaluated using several performance parameters with each dataset 
(original datasets and devised datasets). Performance parameters used in this study are PD, PF, ACC, 
TNR, and PRECISION. These parameters are evaluated from a confusion matrix, generated by each 
machine learning technique. In this work, the modules which are defect prone are treated as “positive” 
cases and the modules which have no defects are treated as “negative” cases. The confusion matrix 
categorizes the instances into 4 classes, which are described below and shown in Table 3. 

• True positive (TP): how many positive cases are predicted correctly as positive. 
• True negative (TN): how many negative cases are predicted correctly as negative. 
• False positive (FP): the modules which are not defective but predicted as defective. 
• False negative (FN): the modules which are defective but predicted as not defective. 

 
 

Table 3 Confusion matrix for defect prediction. 
 

 Defect prediction? 
 

Modules with defects? 
 No Yes 

No  True negative False positive 
Yes False negative True positive 

 
 

Performance parameters are analyzed to find out how well the machine learning techniques perform 
while predicting software defects; some of the parameters are described below. 

Probability of Detection (PD) or recall is the percentage of defective modules which is accurately 
predicted as defective by the machine learning technique. This is calculated as follows: 

 

FNTP
TPPD
+

=               (6) 

 
Probability of False Alarm (PF) is the percentage of defect free or negative modules that were 

classified as defect prone modules. It is determined as given in Eq. (7). 
 

TNFP
FPPF
+

=               (7) 

 
Accuracy (ACC) shows how many modules are predicted correctly by the machine learning 

technique. TP and TN are correctly classified values. It is measured as follows: 
 

FPFNTPTN
TNTPACC

+++
+

=             (8) 



Development Effort and Time for Developing the Software’s Amit Kumar JAKHAR and Kumar RAJNISH 
http://wjst.wu.ac.th 

Walailak J Sci & Tech 2016; 13(6) 
 

473 

The PRECISION indicates the proportion of predicted defect prone modules which are correct. The 
PRECISION is measured as given in Eq. (9). 

 

FPTP
TPPRECISION
+

=               (9) 

 
The proportion of the modules that are correctly identified as being defect free is known as True 

Negative Rate (TNR), calculated as follows: 
 

FPTN
TNPFTNR
+

=−=1                     (10) 

 
Experimental results and discussion 

This section illustrates the characteristics of the concerned datasets of this work; the experimental 
results are also discussed in the following subsection. 

 
Data collection 
Five NASA PROMISE [33] datasets CM1, PC1, PC2, JM1, and KC3 are used to evaluate the 

proposed work. All datasets have different number of features, modules, and defect percentage. A 
description of each dataset is given in Table 4. 

 
 

Table 4 Dataset description. 
 

Projects Source code No. of Instances Percentage defects 
CM1 C 327 12.80 % 
PC1 C 759 8.10 % 
PC2 C 1585 1 % 
JM1 C 9371 18.50 % 
KC3 C++ 200 18 % 

 
 

The experimental process of this work is done in 2 phases. In the first phase, the development effort, 
time, and number of errors generated in the code are measured with the help of the proposed cognitive 
technique. The proposed technique comprises Eqs. (2) - (5), and its flow chart is shown in Figure 1. The 
results of the proposed technique and Halstead measure are correlated with respect to the development 
effort, time, and number of errors. Correlated results of both techniques are given in Table 5 along with 
the datasets. In the second phase of the experiment, software defects are predicted with the help of various 
machine learning techniques. These techniques are applied to devised datasets, as well as the original 
datasets. The results of all the machine learning techniques, using both of the datasets, are shown in 
Tables 6 - 7. Table 6 provides the results of each machine learning technique using original datasets 
(datasets which are originally reported), whereas Table 7 contains the results of devised datasets (datasets 
formed with the help of our proposed cognitive technique). To validate the results of each machine 
learning technique, the 10 cross-fold method is used. 

 
Discussion  
In this research work, a cognitive technique is proposed to estimate the development effort, time, 

and number of errors. The working of the proposed cognitive technique is illustrated in Eqs. (2) - (5) and 
in Figure 1. In addition, the result of the proposed cognitive technique is correlated with the Halstead 
measure. Correlation is used because it reveals the relationship existing between the 2 variables up to 
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some extent. The range of the correlation is always between −1 (indicates no relation exists) to +1 
(indicates a strong relation exists). After evaluation of the correlation of the proposed cognitive technique 
with the Halstead measure, it is found that correlation between the two is in an acceptable level. The 
correlation of CM1, JM1, and KC3 datasets is near to or greater than 0.95, and the correlation of the 
remaining PC1 and PC2 datasets is close to 0.90. The correlation results indicate the goodness of the 
proposed technique. The result of correlation between the 2 techniques of this work is verifiable from 
Table 5. 
 
 
Table 5 Correlation between Halstead measure and the proposed measure. 
 

Projects Hal_Effort / 
Cal_Effort Hal_Dev_Time / Cal_Dev_Time Hal_Errors / 

Cal_Errors 
CM1 0.97 0.98 0.92 
PC1 0.89 0.89 0.85 
PC2 0.87 0.88 0.83 
JM1 0.94 0.94 0.76 
KC3 0.97 0.97 0.93 

 
 

In the second phase of the experiment, 5 machine learning techniques are used for software defect 
prediction. As aforementioned, the parameters of the proposed cognitive technique acted as attributes of 
our devised dataset, which are further used for defect prediction. Machine learning techniques are applied 
to the original datasets, as well as the devised datasets. The experimental results of both the datasets 
(original and devised datasets) are shown in Tables 6 - 7, respectively. The results of the machine 
learning techniques are evaluated on the basis of some performance parameters, which are given as PD, 
PF, ACC, TNR, and PRECISION. A description of these performance parameters is given in the previous 
section. The values of these performance parameters are derived from a confusion matrix, which is 
generated by the each machine learning technique. Each machine learning technique classifies all 
instances of the datasets as either defective or non-defective. The outcome of the machine learning 
techniques is structured as shown in Table 3. The results of the concerned performance parameters of 
each machine learning technique, along with the corresponding datasets, are shown in Tables 6 - 7. These 
tables summarize the results of each machine learning technique using original datasets and devised 
datasets separately. The result of each machine learning technique: Bayesian Net, Logistic Regression, 
Multilayer Perceptron, SMO, and Lib-SVM is analyzed on the basis of the above mentioned performance 
parameters. In Table 7, calculated results of the performance parameters are indicated in the colored 
format (yellow and green). The yellow color of Table 7 indicates that the performance of the machine 
learning techniques with the original datasets (shown in Table 6) and the devised datasets (shown in 
Table 7), is identical, and the green color indicates that the devised datasets enhances the performance of 
the machine learning techniques over the original datasets in perspective to some performance 
parameters, shown in Table 7. 

Experimental results for the devised CM1 dataset show that the Accuracy (ACC) and True Negative 
Rate (TNR) show better performance (shown in Table 7) over the original CM1 dataset (shown in Table 
6). The results of the devised PC1 dataset reveal that the ACC and TNR have been improved, and the 
PRECISION is further enhanced by applying Logistic Regression and Lib-SVM than with the original 
PC1 dataset (refer to Tables 6 - 7). The result of the devised PC2 dataset shows that the performance of 
machine learning techniques is enhanced with respect to ACC and TNR parameters, and the Probability 
of Detection (PD) has also improved by applying Bayesian Net. The PD of the devised JM1 dataset 
shows the better result of machine learning techniques than the original JM1 dataset, and the ACC and 
TNR parameters are identical for both the datasets. The performance of the machine learning techniques 
over the devised KC3 dataset, according to the Probability of False Alarm (PF), ACC, and TNR, shows 
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they provide better results, and the Multilayer Perceptron model enhances the performance of the 
PRECISION over the original KC3 dataset. After analyzing the results of each machine learning 
technique with both the datasets with regard to the performance parameters, it is found that the devised 
datasets (results shown in Table 7) have better capability to predict the software defects than the original 
datasets (result shown in Table 6) when machine learning techniques are applied for the prediction of 
defects. Please refer to Tables 5 - 7 for cross verification of the experimental results.  

From the above discussion, we can conclude the following: 
1. A new cognitive technique is proposed to measure the software development effort, time, and 

errors with the help of newly generated formulas. The proposed cognitive technique utilizes several 
parameters, like the number of operands, operators, branch count, LOC executables, and a cognitive 
weight parameter to measure the software. Their outcome obtains good correlation factor in comparison 
to the Halstead measure. 

2. New datasets have been formed from the original datasets by using parameters of the proposed 
cognitive technique. Both of the datasets have been used in prediction of the software defects. 

3. Five machine learning techniques are applied for defect prediction by using the original 
datasets, as well as the devised datasets. The performance of each machine learning technique is 
measured on the basis of some performance parameters like PD, PF, ACC, TNR, and PRECISION.  

4. From the analyzed results, it is noted that the devised datasets enhance the performance of 
machine learning techniques over the original datasets. 

5. Among all of the machine learning techniques used in this paper, it is found that LR, MLP, 
and SMO provide better results in several aspects (refer to Table 7 for cross verification). 
 
 
Table 6 Performance parameters of machine learning techniques with the original datasets. 
 

Projects Performance 
parameters 

Bayesian 
Net 

Logistic 
Regression 

Multilayer 
Perceptron SMO Lib-

SVM 
CM1 

 
 

PD 61.90 21.43 4.76 
 

14.29 0.00 
PF 30.88 6.67 5.96 6.32 0.00 

 ACC 68.20 84.10 82.56 83.49 87.16 
 TNR 69.12 93.33 94.04 93.68 100.00 

PRECISION 22.81 32.14 10.52 25.00 0.00 
PC1 

 
PD 75.41 18.03 1.64 14.75 0.00 
PF 29.08 1.86 0.14 2.15 0.87 

 ACC 71.28 91.70 91.96 91.17 91.44 
 TNR 70.92 98.14 99.86 97.85 99.43 

PRECISION 18.47 45.83 50.00 37.50 0.00 
PC2 

 
PD 62.50 0.00 0.00 6.25 0.00 
PF 12.56 0.83 0.00 0.45 0.00 

 ACC 87.19 98.17 98.99 98.61 98.99 
 TNR 84.44 99.17 100.00 99.55 100.00 

PRECISION 4.83 0.00 0.00 12.50 0.00 
JM1 

 
 

PD 47.63 8.09 5.72 0.17 2.66 
PF 20.86 1.64 1.28 0.00 0.09 

 ACC 73.32 81.70 85.54 81.57 81.95 
 TNR 79.14 98.36 98.72 100.00 99.91 

PRECISION 34.08 52.83 50.25 100.00 86.79 
KC3 

 
 

PD 36.11 38.89 33.33 5.56 0.00 
PF 14.02 10.98 9.76 0 0.00 

 ACC 77.00 80.00 80 83 82.00 
 TNR 85.98 89.02 90.24 100 100.00 

PRECISION 36.11 43.75 42.86 100 0.00 
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Table 7 Performance parameters of machine learning techniques with the devised datasets. 
 

Projects Performance 
parameters 

Bayesian 
Net 

Logistic 
Regression 

Multilayer 
Perceptron SMO Lib-

SVM 
CM1 

 
 

PD 4.76 4.76 0.00 0.00 0.00 
PF 4.91 2.10 0.00 0.00 0.00 

 ACC 83.48 85.93 87.16 87.16 87.16 
 TNR 95.08 97.89 100.00 100.00 100.00 

PRECISION 12.51 25.00 0.00 0.00 0.00 

PC1 
 
 

PD 63.93 4.92 4.92 0.00 6.56 
PF 39.26 0.43 0.40 0.00 0.86 

 ACC 61.00 91.96 91.96 91.97 91.70 
 TNR 60.74 99.57 99.87 100.00 99.40 

PRECISION 12.46 50.00 50.00 0.00 40.00 

PC2 
 
 

PD 68.75 0.00 0.00 0.00 0.00 
PF 15.36 0.06 0.00 0.00 0.00 

 ACC 84.48 98.93 98.99 98.99 98.99 
 TNR 84.64 99.94 100.00 100.00 100.00 

PRECISION 4.87 0.00 0.00 0.00 0.00 

JM1 
 
 

PD 53.01 6.13 7.23 0.29 5.09 
PF 24.62 1.24 1.75 0.00 0.08 

 ACC 71.25 81.66 81.46 81.59 81.83 
 TNR 75.38 98.76 98.25 100.00 99.85 

PRECISION 32.77 52.74 48.26 100.00 59.06 

KC3 
 
 

PD 13.89 5.56 19.44 5.56 0.00 
PF 6.10 1.83 3.66 0.00 1.22 

 ACC 79.50 81.50 83.50 82.00 81.00 
 TNR 93.90 98.17 96.34 100.00 98.78 

PRECISION 33.33 40.00 53.80 0.00 0.00 
 
 
Conclusions and future work  

In this paper, CM1, PC1, PC2, JM1, and KC3 datasets from the NASA PROMISE repository are 
used for measurement of the software development effort, time, and errors. In addition to these, 5 
machine learning techniques are used for prediction of the software defects. The whole work is carried 
out in 2 phases. In the first phase, an attempt is made to develop a new cognitive technique to measure the 
development effort, time, and number of errors in the software system. The goodness of the proposed 
technique is measured on the basis of correlation between the proposed cognitive technique and the 
Halstead measure, and the result is shown in Table 5. It indicates that the correlation is in the acceptable 
level (for some datasets it is near to 0.95, and for remaining, it is near to 0.90). In the second phase, defect 
prediction has been done with both datasets (original datasets and devised datasets); the result of both of 
the dataset is shown in Tables 6 and 7, respectively. Machine learning technique like LR, MLP, and SMO 
predict the software defects better with the devised datasets than the original datasets. 

The real statistics of the developed projects are not mentioned in the original dataset; only the 
Halstead metric measured parameters are given. If the actual development effort, time, and number of 
errors are provided along with the datasets, then this work can be further validated.  
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