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Abstract 

In this paper, we focus on a combination of path following and trajectory tracking for a mobile 
robot. Both are basic motion control schemes for a robot. The advantages of path following over 
trajectory tracking are that path following can avoid the use of large control signals for large path errors; 
therefore, it can eliminate aggressiveness by converging to the path smoothly, and control inputs are less 
likely to be forced to saturation. However, there is no temporal specification for path following. 
Therefore, in this work, we propose to add a time-convergence penalty term into the optimization 
problem of model predictive control (MPC) that we use to control robot motion. MPC can handle the 
saturation of control signals explicitly. As a result, the robot can move safely. However, the major 
concern in the use of MPC is whether such an open-loop control scheme can guarantee system stability. 
To solve this problem, we apply the idea of a contractive constraint to guarantee the stability of our MPC 
framework. To illustrate its effectiveness, numerous simulation scenarios have been conducted. 
Furthermore, we depict remarkable advantages of path following over trajectory tracking. 

Keywords: Path following, contractive model predictive control, mobile robots, trajectory tracking, time-
convergence 
 
 
Introduction 

Trajectory tracking is defined as a mobile robot tracking a time-parameterized reference [1]. The 
major disadvantage of this basic motion is that large control signals are required for large position error, 
resulting in aggressive movement and saturation in control signals. To avoid such problems, path 
following is employed instead. Like trajectory tracking, path following is one of the fundamental motion 
control schemes of a robot. In general, path following is defined as a mobile robot required to converge to 
and to follow a path-parameterized reference, without any temporal specifications. Typically, to achieve 
path following control, the robot's forward velocity tracks a desired velocity profile, while the controller 
determines the robot's heading direction to drive it to the desired path. However, this standard path 
following control cannot meet the requirements of trajectory tracking, because there is no consideration of 
temporal specifications. Therefore, the objective of this work is to achieve both path following and 
trajectory tracking because we would like to gain the advantages of path following and to achieve the 
requirements of trajectory tracking. 

For path following, a virtual vehicle concept is employed in this work. It is defined as a reference 
point moving along the given path; the real robot tries to catch up with this virtual vehicle. To gain the 
advantage of path following, the desired behavior should be as follows: when the path error (the 
difference between the position of the real robot and the position of the virtual vehicle) is large, the virtual 
vehicle will wait for the real one; when the path error is small, the virtual vehicle will move along the 
path at a speed close to the desired speed assignment. This behavior is suitable in practice, because it 
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avoids the use of large control signals for large path errors. It can eliminate the aggressiveness of the 
trajectory tracking counterpart by converging to the path smoothly, and control inputs are less likely 
forced to saturation [2]. To obtain such a behavior mentioned above, a model predictive control (MPC) 
scheme is implemented. Furthermore, to meet the requirement of trajectory tracking, we add a time-
convergence penalty term into the objective function of MPC. As a result, the reference point of path 
following and the reference point of trajectory tracking is compromised via the optimization problem of 
MPC. 
 
The path following problem 

Typically, control laws of path following [3] are determined to steer a robot in order to reach and to 
follow a reference path, i.e., a manifold parameterized by a continuous scalar s, while the secondary goal 
is to command the robot to move along the path to satisfy some additional dynamic specifications, e.g., 
time, speed, or acceleration assignments [4]. This setting is more flexible than the standard trajectory 
tracking problem, since the path variable s can be used as an extra degree of freedom for the secondary 
goal. 

Diaz del Rio et al. [5] proposed a method called error adaptive tracking, in which the tracking 
adapts to the errors. They defined the function of s as )(egs = , where e is the distance error. They also 
proposed ),( etgs =  in order to preserve time determinism of trajectory tracking. Soeanto et al. [6] 

controlled s  by modeling the kinematic equations of motion with respect to the Frenet frame. A virtual 
vehicle concept was also employed by Egerstedt et al. [7], whose control law ensures global stability by 
determining the motion of the virtual vehicle on the desired path via a differential equation containing 
error feedback.  

To achieve our goal, mentioned previously, we adapt the idea of [8] to obtain optimal motion of the 
virtual vehicle by using MPC. Since an MPC algorithm employs an explicit model of the plant, which is 
used to predict the future output behavior, the kinematic model of a differential-drive robot is given as 
follows (see Figure 1);  
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where [xm  ym  θm]T is the state vector in the world frame. vm and ωm stand for the linear and angular 
velocities, respectively. 
 
 

 
Figure 1 A graphical representation of a differential-drive mobile robot and a reference path. 
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In general, we wish to find the control laws of s  and ωm such that the robot follows a virtual 
vehicle with position [xd  yd θd]T. The error state vector between the robot state vector [xm  ym θm]T and a 
virtual vehicle's state vector [xd  yd θd]T can be expressed in the frame of the path coordinate as follows; 
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Using (1) and (2), the error state dynamic model chosen in a rotated coordinate frame becomes; 
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where κ is the path curvature. 

Due to the requirement of a time convergence for trajectory tracking, we introduce an acceleration 
control input am, where mm va = and, with dme vv −=η , we then obtain dme va  −=η . Thus, we can 
redefine the control signals as follows; 
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and the error state dynamic model then becomes; 
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(5) 

 
Besides steering the robot to the desired path, the forward velocity vm can be used as an extra degree 

of freedom. In this paper, it conforms to the desired velocity vd at specific time of trajectory tracking. 
 
Contractive model predictive control 

As the name suggests, an MPC algorithm employs an explicit model of the plant which is used to 
predict the future output behavior. This prediction capability allows computing of a sequence of 
manipulated variable adjustments in order to solve optimal control problems online, where the future 
behavior of a plant is optimized over a future horizon, possibly subject to constraints on the manipulated 
inputs and outputs [9,10]. 

Important issues of linear MPC theory are by now well developed. However, as many systems are 
nonlinear, nonlinear MPC must be used [9]. The major concern in the use of nonlinear MPC is whether 
such an open-loop control can guarantee system stability. Mayne et al. [10] presented essential principles 
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for the stability of MPC in constrained dynamical systems. We intentionally do not collect all published 
contributions because of the large number of publications. We refer the reader to [9,10]. 

Although MPC is apparently not a new control method, studies dealing with MPC of path following 
problems are rare. Recently, Faulwasser et al. [11] proposed a nonlinear MPC approach that is equivalent 
to setpoint stabilization in different coordinates, and they used the path as the terminal region. Yu et al. 
[12] presented a nonlinear MPC, where a polytopic linear differential inclusion (PLDI) based algorithm is 
used to choose the suitable terminal penalty and terminal constraint. A comprehensive survey paper 
related to MPC for a mobile robot can be found in [13]. However, this paper differs from other MPC 
schemes, because the objective of this paper is to combine path following and trajectory tracking. 
 

Problem formulation 
A nonlinear system is, in general, described by the following nonlinear differential equation; 
 

))(u),(x(f)(x ttt =  
 
subject to; 
 

0,)(u,)(x ≥∀∈∈ tUtXt  

(6) 

 
where x(t) ∈ Rn , u(t) ∈ Rm are the n dimensional state vector and the m dimensional input vector of the 
system, respectively. X ⊆ Rn and U ⊆ Rm denote the set of feasible states and inputs of the system, 
respectively. The input applied to the system is given by the solution of the following finite horizon open-
loop optimal control problem, which is solved at each time instant; 
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where uuxx)u,x( RQF TT +=  and xxx PT

p
=  with positive definite matrix P. The bar denotes an 

internal controller variable. Tp represents the length of the prediction horizon or output horizon, and Tc 
denotes the length of the control horizon or input horizon ( pc TT ≤ ). The deviations from the desired 
values are weighed by the positive definite matrices Q, and R. 

In (7), Vt is a time-convergence penalty term, integrated into the objective function of our MPC 
framework in order to fulfill the requirement of trajectory tracking. It is defined as follows; 
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where Kt is a positive constant. This constant weighs the relative importance of convergence in time over 
spatial convergence to the path. st is the path length at the time-parameterized reference plus the length of 
the predictive horizon, while )( pTts +  is the internal path length at t+Tp. Note that this penalty term is 
not applied at each time instant along the future horizon, since it leads to aggressive motions. 

The constraints in (8b) denote bounded control inputs. From (4), we have the following system 
control inputs s , ωm and am;  
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and their boundaries; 
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The last inequality end constraint in (8d) is a so-called contractive constraint [14]. It requires that, at 

time t, the system states at the end of the predictive horizon, )(x pTt +  are contracted in norm with 

respect to the states at the beginning of the prediction, )(x t . The 2 additional parameters which determine 
how much contraction is required are the contractive parameter, α ∈ [0,1) and the positive definite matrix 
P. 

 
Stability analysis 
The following assumptions based on [14] are needed to ensure stability: 

 
Assumption 1 There exists a constant ρ ∈ (0, ∞) such that for all { }ρρ ≤∈=∈

P
nRBt x|x:)(x , we 

can find a contractive parameter α ∈ [0,1) so that with the chosen finite horizon TP all the constraints on 
the inputs and states can be satisfied, and the objective function is finite. 

Note that, if x(t0)∈ Bρ, then ρρα BBtx kk ⊂∈)(  where tk = t0 + kTp. Thus, using Assumption 1, if the 
optimal control problem is feasible at time t0, then the sequence of control problems at t > t0 is feasible as 
well.  
 
Assumption 2 There exists a constant β ∈ (0, ∞) such that the transient state, x(τ), of the model satisfies 

PP
t)(x)(x βτ ≤ , for all [ ]pTtt +∈ ,τ . 

Note that, since u(t) is constrained, Assumption 2 is always satisfied, except for systems with finite 
escape time. Then, the theorem based on [14] can now be given. 

 
Theorem 1 Suppose Assumptions 1 and 2 hold; the MPC algorithm described in Subsection Problem 
Formulation is exponentially stable, in such a way that the resulting trajectory of the closed-loop system 
satisfies the following inequality; 
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P
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(12) 
 
Proof. From Assumption 1, if the optimal control problem is feasible at time t0, the optimal control 
problem is feasible at time t > t0. Thus, we have; 
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where tk = t0 + kTp and k belongs to the set of nonnegative integers. From Assumption 2, x(t) satisfies the 
following inequality; 
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Since k = (tk − t0)/TP and (t − t0)/TP < (tk −t0)/TP ),[ 0 kttt∈∀ , we have; 
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Therefore, using (15) and (16), we finally have; 
 

PTtt
PP

ett /))(1(
0

0)(x)(x −−−≤ αβ . 
 

(17) 
 

This concludes the proof.                                                                                      ■                                                                                                                               
 
Simulation results and discussion 

To assess our proposed MPC framework, the following 8-shaped curve is chosen as a reference 
path, since its geometrical symmetry and sharp changes in curvature make the test challenging; 
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where t is time in the case of trajectory tracking, while this reference is numerically parameterized by the 
path variable s in case of the path following problem. All the parameters of our framework are set as 
follows; 
 
Q = diag (200, 800, 0.5, 0.5), R = diag (0.01, 0.01, 0.01), P = diag (1, 1, 0.01, 0.01), 
Kt = 1, N = 10, Tc = Tp = 0.5 s, δ (sampling time) = 0.05 s, vd = 0.2 m/s, s(0) = 0 m,  

maxs = 0.5 m/s, α = 0.999, vm,max = 0.5 m/s, vm,min = −0.5 m/s, ωm,max = 0.5 rad/s, ωm,min = −0.5 rad/s, 
∆ωm,max = 0.5 rad/s, ∆ωm,min = -0.5 rad/s, am,max = 0.5 m/s2 and am,min = −0.5 m/s2. 

 
The following simulation scenarios have been conducted to show the effectiveness of our proposed 

control scheme. Note that the circles in all figures below are snapshots of robot location at every 2.5 s and 
the robot trajectories are shown as dashed lines. 
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 Time-convergence penalty 
An additional penalty term Vt in (7) is integrated into the objective function in order to fulfill the 

requirement of trajectory tracking. The simulation results of path following without a time-convergence 
penalty term, of trajectory tracking (see [15] for details), and of path following with a time-convergence 
penalty term, are illustrated in Figure 2a, Figure 3a, and Figure 4a, respectively. As seen in Figures 3a 
and 3b, the robot moves aggressively, due to the large distance error and because the control signals are 
forced to saturation at the beginning, while in Figures 2a and 2b, the robot converges to the path 
smoothly, and control signals are less likely pushed to saturation. Although robot motion in the case of 
path following is less aggressive, the time constraints are not achieved. With Vt in (7), the robot converges 
smoothly to the desired path, similar to the results in Figure 2a, and then reacts to achieve zero trajectory 
tracking error, i.e., the robot reaches the same position and the same velocity as the results of trajectory 
tracking, shown in Figure 4a, at the same time. Therefore, in this work, we can achieve both smooth 
spatial convergence and time convergence by penalizing the objective function with Vt. 

 
 
 

 
(a) 

 
(b) 

 
Figure 2 The simulation results with the initial posture set to [−0.6,−0.25,−π/4]T: (a) superimposed 
snapshots of path following without a time-convergence penalty term, and (b) velocity and acceleration 
corresponding to (a). 
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(a) 

 
(b) 

 
Figure 3 The simulation results with the initial posture set to [−0.6,−0.25,−π/4]T: (a) superimposed 
snapshots of trajectory tracking, and (b) the velocity profiles corresponding to (a). 
 
 
 

 
(a) 

 
(b) 

 
Figure 4 The simulation results with the initial posture set to [−0.6,−0.25,−π/4]T: (a) superimposed 
snapshots of path following with a time-convergence penalty term, and (b) velocity and acceleration 
corresponding to (a). 
 
 

Parameter turning 
We only test our MPC algorithm with 3 different values of the control horizon Tc (note that, in this 

work, we choose Tc = Tp), while the other tuning parameters, i.e., the sampling period δ and the penalty 
weight matrices Q, R, P and Kt, are fixed. The results of Tc = 0.25 s (i.e., N = 5 steps), Tc = 0.5 s (i.e., N = 
10 steps), and Tc = 1.0 s (i.e., N = 20 steps) are shown in Figure 5a, Figure 4a and Figure 6a, 
respectively. As obviously seen in the results, the shorter control horizon causes worse performance, 
while the longer control horizon improves performance but leads to an increase of online computation. 
Thus, the control horizon must be chosen to compromise between performance and computation. 
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(a) 

 
(b) 

 
Figure 5 The simulation results of path following with a time-convergence penalty term using Tc = 0.25 s 
(a) superimposed snapshots, and (b) velocity and acceleration corresponding to (a). 
 

 

 
(a) 

 
(b) 

 
Figure 6 The simulation results of path following with a time-convergence penalty term using Tc = 1.0 s 
(a) superimposed snapshots, and (b) velocity and acceleration corresponding to (a). 
 
 
Conclusions and future work 

In this paper, we presented a new approach to achieve both path following and trajectory tracking. 
The key idea is to add a time-convergence penalty term into the object function of the MPC scheme used 
to control robot motions. Furthermore, we also satisfied the following objectives using our proposed MPC 
framework: (i) path following control with stability guarantee, (ii) optimal forward velocity for a virtual 
vehicle, and (iii) bounded control signals, i.e., the MPC scheme is used to produce a sequence of control 
inputs by taking into account input boundaries, a contractive constraint, and time-convergence 
requirements. 
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Currently, a real mobile robot which can be used to validate our control law in real-world 
environments is being developed. We also would like to extend our controller to accomplish the path 
following task in dynamic environments with static and moving obstacles. 
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