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Abstract 

With the development of the natural gas industry in the 20th century, the production, processing and 
distribution of natural gas under high-pressure conditions has become necessary. Under these conditions, 
it was found that the production and transmission pipelines were becoming blocked with what looked like 
to be ice. Hammerschmidt determined that hydrates were the cause of plugged natural gas pipelines. Gas 
hydrates and difficulties related to their formation in production and transmission pipelines and 
equipment, are the major concerns of the gas industry. The main objective of this study was to present a 
novel approach to access more accurate hydrate formation rate predicting models based on a combination 
of flow loop experimental data with learning power of adaptive neural-fuzzy inference systems and more 
than 900 data points of the CO2, C1, C3, and i-C4 hydrate formation rate. Using this data set different 
predictive models were developed. It was found that such models can be used as powerful tools, with total 
errors less than 6 % for the developed models, in predicting hydrate formation rate in these cases. 
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Introduction 

Gas hydrates are ice-like crystalline solid compounds formed from water and low molecular 
diameter non-polar or slightly polar molecules (usually gases) under low temperature, but well above the 
freezing point of water, and elevated pressure conditions. Based on the crystal structure, hydrates are 
classified into three well-known types of structures: sI, sII and sH [1]. With the development of the 
natural gas industry in the 20th century, the production, processing and distribution of natural gas under 
high-pressure conditions were necessary. Under these conditions, it was found that the production and 
transmission pipelines were becoming blocked with what looked like ice. Hammerschmidt [2] determined 
that hydrates were the cause of the plugged natural gas pipelines. Several processes were investigated in 
order to prevent and/or combat hydrate plugs and ensure regular flow: chemical, hydraulic, thermal and 
mechanical processes. The chemical method consists in injecting chemicals in the pipeline. These 
chemicals fall into three classes: Thermodynamic hydrate Inhibitors (THIs), Kinetic Hydrate inhibitors 
(KHIs) and anti-agglomerants (AAs) [3]. Unlike the THIs, the KHIs (generally polymers) do not alter the 
thermodynamics of the hydrate formation but instead, modify the kinetics of hydrate formation by 
preventing nucleation or by hindering or slowing down the crystal growth [1]. 

Prediction of gas hydrate formation rate (HFR) plays an important role in developing models that 
can describe and predict the hydrate formation processes and also in studying the mechanisms of 
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nucleation and growth of hydrate plugs in pipelines. Thus research has been performed concerning the 
measurement and modeling of hydrates formation rate based on the hydrate-former gases consumption 
values [4-8]. There are also some studies that investigate the effects of different inhibitors, surfactants and 
additives on the formation rate of different gas hydrates by using high pressure cells and flow mini-loops 
[9-12]. Talaghat et al. [11] proposed a new Rate equation to predict gas consumption rate during hydrate 
formation in the presence or absence of kinetic inhibitors in a flow mini-loop apparatus (the so called 
“Talaghat-model”). 

However, these models are not accurate enough to predict HFR in pipelines and often consider only 
simple pure gases. Most of them require complex and time consuming computations and also a lot of 
input information to achieve the answer. 

Based on the above discussion, it is obvious that there is a need for developing new models. These 
models should not have the limitations and complexities of the available models. In other words the new 
models should be more accurate, robust and less sensitive to noisy input data, adaptive to new input-
output information and also should require the least amount of input information. Intelligent models offer 
all of the above desirable characteristics. Therefore, the main objective of this study was to present 
(Adaptive Network-Based Fuzzy Inference System) ANFIS models for predicting the HFR of common 
hydrate-former gases (C1, C3, i-C4 and CO2), with or without the presence of KHIs using experimental 
data obtained from flow mini-loop apparatus. In the next step of this study, the overall performance of the 
developed models was evaluated by comparison between the rate predictions of the ANFIS models, the 
experimental data and the rate predictions of the Talaghat-model. As far as we are aware no research 
paper is available in this field of study of gas hydrates. 
 
Materials and methods 

Fuzzy inference system 
Fuzzy logic is a superset of conventional Boolean logic that has been extended to handle the 

concept of partial truth. It was first introduced by Dr. Lotfi Zadeh, a professor at the University of 
California at Berkley, in the 1960s as a means to model the uncertainty of natural language. Notions like 
rather tall or very fast can be formulated mathematically and processed by computers, in order to apply a 
more human-like way of thinking in the programming of computers [13]. 

To numerically define uncertainty, membership functions are employed. The role of a membership 
function is to allocate a degree of membership to each element of a fuzzy set. The degree of membership 
of a fuzzy set indicates the certainty or uncertainty that the element belongs to that set [14]. For fuzzy 
systems in general, the dynamic behavior of the system is characterized by a set of linguistic fuzzy rules. 
These rules are based on the knowledge and experience of a human expert within that domain. Basically, 
a fuzzy inference system (FIS) is composed of a knowledge base, which includes the information given 
by the expert in the form of linguistic fuzzy rules; a fuzzifier, which transforms the crisp inputs into 
degree of match with linguistic values; an inference system (engine), which uses them together with the 
knowledge base to make inference by means of a reasoning method; and a defuzzifier, which transforms 
the fuzzy results of the inference into a crisp output using a defuzzification method. The basic structure of 
a fuzzy inference system is shown in Figure 1. 

There are 2 major fuzzy inference methods: the first model was proposed by Mamdani in an attempt 
to control a steam engine by a set of linguistic control rules obtained from experienced human operators 
[15]. Eq. (1) shows the general form of a Mamdani model rule, where x, y, and z are the linguistic terms; 

 
If X is x and Y is y then Z is z                              (1) 
 

The Sugeno fuzzy model, which is also known as the TSK fuzzy model, was proposed by Tagaki 
and Sugeno [16] in an effort to develop a systematic approach to generate fuzzy rules from a given input-
output data set [16]. A typical fuzzy rule in a Sugeno fuzzy model has the following structure; 

 
if x is A and y is B then Z = 𝑓(𝑥,𝑦)                         (2) 



Prediction of Gas Hydrate Formation Rate Mohammad Javad JALALNEZHAD et al. 
http://wjst.wu.ac.th 

Walailak J Sci & Tech 2015; 12(2) 
 

127 

The main difference between these 2 methods is that Mamdani used fuzzy sets as the rule 
consequent, whereas Sugeno employed linear functions of input variables as the rule consequent [17]. In 
this article, both types of inference models are employed. Generally, there are 2 different approaches to 
construct the knowledge base of a fuzzy inference system. The first method is based on the knowledge of 
a human expert about the problem, which helps the expert to initially select the membership functions and 
rules. The second approach is to tune the membership function parameters using evolutionary algorithms 
or neural nets. The latter, which was first introduced by Jang [18,19] is called an adaptive network-based 
fuzzy inference system (ANFIS). 
 
 

 
 
Figure 1 Basic structure of a fuzzy inference system. 
 
 

Adaptive network-based fuzzy inference system 
An adaptive network is a multilayer feed forward network in which each node performs a particular 

function (node function) on incoming signals as well as a set of parameters pertaining to this node [18]. 
Like an ANN, ANFIS is capable of mapping unseen inputs to their outputs by learning the rules from the 
previously seen data. A simple structure of this type of network having just 2 inputs, x and y, and one 
output, f is shown in Figure 2. ANFIS contains five layers in its architecture, including the fuzzy layer, 
product layer, normalized layer, defuzzification layer, and total output layer. It should be noted that 
assuming just 2 membership functions for each of the input data x and y, the general form of a first-order 
TSK type of fuzzy if-then rule would be; 
 
If x is 𝐴𝑖  and y is 𝐵𝑖  THEN 𝑓𝑖  = 𝑝𝑖x + 𝑞𝑖y + 𝑟𝑖 ,  I = 1,2,..,n                                                                      (3) 
 
where n is the number of rules and 𝑝𝑖 , 𝑞𝑖, and 𝑟𝑖 are the parameters that are determined during the training 
process. Through the learning process, at the first stage, the membership degree (µ) of each of the 
linguistic labels 𝐴𝑖  and 𝐵𝑖  is calculated; 
 
𝑂𝑖1=µ𝐴𝑖(𝑥), i=1,2,..,n                           (4) 
 
𝑂𝑖1=µ𝐵𝑖(𝑥), i=1,2,..,n                      (5) 
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Figure 2 ANFIS structure. 
 
 
Then, at the second layer, which is the product layer, the previously calculated membership degrees of 
linguistic variables are multiplied; 

𝑂𝑖2=𝑊𝑖 = µ𝐴𝑖(x) µ𝐵𝑖(y) ,  i=1,2,…,n                  (6) 
 
The third layer is the normalized layer, in which the ratio of each weight to the total weights is calculated; 

𝑂𝑖3=𝑤�𝑖=
𝑤𝑖

∑ 𝑤𝑖
𝑛
𝑖=1

  ,     i=1,2,..,n                              (7) 

 
The fourth layer is the defuzzification layer with adaptive nodes, which means that their outputs depend 
on the parameter(s) pertaining to these nodes and the learning rule specifies how these parameters should 
be changed to minimize a prescribed error measure [18]. The relationship for these nodes is as follows; 

𝑂𝑖4=𝑤�𝑖𝑓𝑖=𝑤�𝑖(𝑝𝑖x + 𝑞𝑖y + 𝑟𝑖)  , i=1,2,..,n                                (8) 
 
Finally, in the fifth layer, the summation of all of the incoming signals is performed where the result 
would be the output of the system; 

𝑂𝑖5=∑ 𝑤�𝑖𝑓𝑖𝑛
𝑖=1   ,i=1,2,..,n                                  (9) 

 
Data acquisition and processing 
In this study, there are 946 data points to measure gas hydrate formation rate. Available data have 

been extracted and collected from articles which investigate the phenomenon of gas hydrate formation in 
laboratory-scale [11]. Using a linear transformation first, data is normalized between (0 1), in order to 
data rate reduction, noise suppression and avoiding ill conditioning; 

 
Vnorm = (v − xmin) / (xmax− xmin)                (10) 
 
where v is a current value of the variable, xmin is the minimum value for this variable, and, xmax is the 
maximum value for that variable x in the data set. 
 
 
 



Prediction of Gas Hydrate Formation Rate Mohammad Javad JALALNEZHAD et al. 
http://wjst.wu.ac.th 

Walailak J Sci & Tech 2015; 12(2) 
 

129 

Fuzzy models input data 
To develop a Fuzzy model, the most important physical skill required is to make a decision as to 

what the principal inputs and output(s) of the system are. In this study, the inputs to the Fuzzy models 
were temperature, pressure, molecular weight of hydrate-former, time and concentrations of the KHIs. 
The desirable output of the models was the hydrate formation rate (gas consumption amount). With this 
motivation in mind 2 Fuzzy models, named HPNFS1 and HPNFS2 (Hydrate-formation-rate Prediction 
using Neural Fuzzy System) were considered. In the first model, HPNFS1, a system without the presence 
of the KHIs was considered. In this model, HFR was a function of temperature (T), pressure (P), 
molecular weight of hydrate-former (𝑀𝑊ℎ𝑓) and time(t); 
 
HFR = 𝑓HPNFS1 (T, P,𝑀𝑊ℎ𝑓, t)                                                             (11) 
 

The model HPNFS2 was a HFR predicting model with six input variables. In this model the 
concentrations of 2 KHIs (𝑃𝑉𝑃𝐶𝑂𝑁𝐶 , 𝐿 − 𝑇𝑦𝑟𝑜𝑠𝑖𝑛𝑒𝐶𝑂𝑁𝐶) were added to the set of the input variables. So, 
the HPNFS2 model was expressed in the form of; 
 
HFR = 𝑓HPNFS2(T, P,𝑀𝑊ℎ𝑓, t, 𝑃𝑉𝑃𝐶𝑂𝑁𝐶 , 𝐿 − 𝑇𝑦𝑟𝑜𝑠𝑖𝑛𝑒𝐶𝑂𝑁𝐶)                        (12) 
 

Neural -fuzzy modeling 
An effective method developed by Dr. Roger Jang (Fuzzy logic toolbox, 1995) for neuro-fuzzy 

modeling is called ANFIS (Adaptive Neuro-Fuzzy Inference System), which has been used in this study. 
The fuzzy HFR modeling systems used in this study is a multi-input single output (MISO) Takagi-Sugeno 
system. The first available data in the presence and absence of kinetic inhibitors were 467 and 479 
respectively which were divided into 2 parts of training data with the number of 350 and 359 and testing 
data with the number of 120 and 117. Choosing this configuration was done based on a trial and error 
procedure to achieve best results. Because of the large number of input variables, scatter partitioning was 
used to avoid the “curse of dimensionality” problem instead of grid partitioning. 

The HPNFS1 model was developed to predict the HFR of C1, C3, i-C4 and CO2 gases. To develop 
this model 467 data (Table 1) was used and with a random selection, 350 of the data was used as train set 
data and the remaining 117 data was used as test set data. The HPNFS2 model was developed to take into 
consideration the effect of the KHIs (𝑃𝑉𝑃𝐶𝑂𝑁𝐶 , 𝐿 − 𝑇𝑦𝑟𝑜𝑠𝑖𝑛𝑒𝐶𝑂𝑁𝐶) on simple gas hydrate formation of 
the mentioned gases in the absence of the KHIs. To develop this model 479 data (Table 2) was used and 
with a random selection, 359 of data was used as train set data and the remaining 120 data was used as 
test set data. Table 3 shows the details of the optimal fuzzy model designed for the models, HPNFS1 and 
HPNFS2. This arrangement resulted by a trial and error procedure. The best parameters of obtained fuzzy 
clustering designed for models of HPNFS1 and HPNFS2 are respectively shown in Tables 4 and 5. 
Hybrid optimization methods were used to optimize generated fuzzy inference systems (FIS) and the best 
models were selected according to minimum total average absolute deviation percent (TAAD%). The 
structure of the designed models for HPNFS1 and HPNFS2 are respectively shown in Figures 3 and 4. 
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Table 1 Ranges of the input variables used in developing the HPNFS1 model. 
 

Parameter Hydrate-Former Minimum Maximum 
Temperature (K) C1, C3 277.15 277.15 
 i-C4 275.15 275.15 
 CO2 280.15 280.15 
Pressure (MPa)  C1 5 8 

 C3 1 2 

 i-C4 1 2 
 CO2 4 7 

   Molecular Weight (gr/mol) C1,C3, i-C4, CO2 16.043 (C1) 58.123 (i-C4) 

Time (min) C1,C3, i-C4, CO2 0 185 

 
 

Table 2 Ranges of the input variables used in developing the HPNFS2 model. 
 

Parameter Hydrate-Former Minimum Maximum 
Temperature (K) C1, C3 277.15 277.15 

 i-C4 275.15 275.15 

 CO2 280.15 280.15 

Pressure (MPa)  C1 5 8 

 C3 1 2 

 i-C4 1 2 

 CO2 4 7 
     Molecular Weight (gr/mol) C1,C3, i-C4, CO2 16.043 (C1) 58.123 (i-C4) 

Time (min) C1,C3, i-C4, CO2 0a 185a 

  0b 485b 

     PVP concentration (ppm) C1,C3, i-C4, CO2 0 200 

   L-Tyrosin concentration (ppm) C1,C3, i-C4, CO2 0 200 
a In the absence of KHIs 
b In the presence of KHIs  

 
 

Table 3 Characteristics of fuzzy model for models of HPNFS1 and HPNFS2. 
 

Parameter Operator 
AND prod 
OR probor 

Implication prod 
Aggregation max 

Difuzzification wtaver 
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Table 4 The best parameters set parameters for the ANFIS (Genfis2) in the absence of inhibitors Kinetic. 
 

Parameter Value 
Range of influence 0.23 
Squash factor 1.25 
Squash factor 0.5 
Reject ratio 0.15 

 
 
Table 5 The best parameters set parameters for the ANFIS (Genfis2) in the presence of inhibitors Kinetic. 
 

Parameter Value 
Range of influence 0.18 
Squash factor 1.25 
Squash factor 0.5 
Reject ratio 0.15 

 
 
 

 
 
Figure 3 ANFIS model structure of the HFR prediction in the absence of kinetic inhibitors. 
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Figure 4 ANFIS model structure of the HFR prediction in the presence of inhibitors. 
 
 
Results and discussion 

Figures 5 to 8 show the results of the testing model for HPNFS1, along with the Talaghat 
experimental model compared with the experimental results in this study. Moreover, 4 different types of 
fuzz component gas hydrates, including  CO2, C1, C3, and i-C4 at different pressures are illustrated. 
Figures 9 and 13 show the results of the testing model for HPNFS2, along with the Talaghat 
experimental model compared with the experimental results in this study. In addition, 4 different types of 
component gas hydrates, including CO2, C1, C3, and i-C4 at different pressures are shown. 

 
 

 
Figure 5 Results of testing the HPNFS1 model for the rate of CO2 hydrate formation as a function of time 
at 280.15 K. 
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Figure 6 Results of testing the HPNFS1 model for the rate of methane hydrate formation as a function of 
time at 277.15 K. 
 
 

 
Figure 7 Results of testing the HPNFS1 model for the rate of propane hydrate formation as a function of 
time at 277.15 K. 
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Figure 8 Results of testing the HPNFS1 model for the rate of iso-butane hydrate formation as a function 
of time at 275.15 K. 
 
 

 
Figure 9 Results of testing the HPNFS2 model for CO2consumed during hydrate formation as a function 
of time at 280.15 K and 4 MPa. 
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Figure 10 Results of testing the HPNFS2 model for CO2 consumed during hydrate formation as a 
function of time at 280.15 K and 7 MPa. 
 

 

 
Figure 11 Results of testing the HPNFS2 model for Methane consumed during hydrate formation as a 
function of time at 277.15 K and 8 MPa. 
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Figure 12 Results of testing the HPNFS2 model for Propane consumed during hydrate formation as a 
function of time at 277.15 K and 1.5 MPa. 

 
 

 
Figure 13 Results of testing the HPNFS2 model for iso-Butane consumed during hydrate formation as a 
function of time at 275.15 K and 2 MPa. 
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The accuracy of the presented models in comparison with the latest models of hydrate formation 
rate, model of Talaghat to predict gas consumption rate during hydrate formation in an experimental flow 
loo, is evaluated. Based on Table 6, the presented models for HPFNFS1, HPFNFS2 are more accurate 
than the Talaghat model. TAAD% is the overall average of absolute deviation for normalized data and R 
is the correlation coefficient for normalized data. 
 
 
Table 6 Error analysis of different models. 
 
Condition Model TAAD% R 
In the absence of KHIs        ANFIS-Model 3.3523 0.9998 
       Talaghat-Model 14.9 0.9901 
In the presence of KHIs        ANFIS-Model 5.3964 0.9994 
       Talaghat-Model 15.8 0.9815 
 
 

Good performance models for testing data which have no role in training models show their high 
universality. In Figures 7 and 8, actual results against outputs for the HPNFS1 and HPNFS2 models, 
respectively are shown moreover, they are efficient and consistent. 

 
 
 

 
 
Figure 7 Experimental data versus HPNFS1 model outputs. 
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Figure 8 Experimental data versus HPNFS2 model outputs. 
 
 
 

 
 
Figure 9 HPNFS2 model generated surface. 
 
 

The output surfaces built for the HPNFS2 mode is shown in Figure 9; the first and second inputs in 
the figures are pressure and time respectively. 
 
Conclusions 

Gas hydrate formation in production and transmission pipelines and consequent plugging of these 
lines have been a major flow-assurance concern of the oil and gas industry for the last 75 years. The gas 
hydrate formation rate is one of the most important topics related to the kinetics of the process of gas 
hydrate crystallization. In this work, utilization of the neural fuzzy technique for predicting the hydrate 
formation rate has been investigated. 
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Two ANFIS (adaptive neural fuzzy system) models (HPNFS1and HPNFS2) were developed to 
predict the HFR in the presence or absence of KHIs (PVP and L-Tyrosine) in the pipeline of a mini-loop 
apparatus. Based on the results of this study, the following conclusions can be pointed out: intelligent 
techniques can recognize the possible patterns between input and output spaces. Combination of the 
explicit knowledge representation of fuzzy logic with the learning power of neural nets can alleviate the 
problems associated with each of these technologies. Neural fuzzy systems are data driven fundamentally. 
Thus, more data for training the system, better performance and more generalization will be achieved. 
Our comparison between experimental results, models of HPNFS1 and HPNFS2 and the Talaghat model 
show that the predictions of the designed models match well with experimental data so that Top of Form 
HPFNFS1 model is more than 4 times while the HPFNFS2 model is over 2 times more accurate than the 
Talaghat model. The HPNFS1and HPNFS2 models can be used to predict the hydrate formation rate of 
the hydrate-formers C1, C3, i-C4 and CO2 in different situations in the presence or absence of KHIs when 
the operational conditions conform to the ranges of the input data used to develop these models. 
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