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Abstract 

In this paper, we investigate the position vectors of the curves and the general helices in Galilean 
space G3. We find the differential equations for the position vectors of such curves. 
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Introduction 

The helix is an important concept in differential geometry. The helices provide various conditions 
and results, so they contribute to comprehension of this geometry. Firstly, in 1802 Lancret presented the 
helices and in 1845 de Saint Venant proved the first condition for these curves. This well known 
condition is “A necessary and sufficient condition that a curve be a general helix that the function 𝑓 = 𝜏

𝜅
 

is constant along the curve, where κ and τ denote the curvature and the torsion, respectively”. 
In Euclidean 3-space E3, a general helix is a curve in which the tangent makes a constant angle with 

a fixed straight line called the axis of the general helix. The first 2 coordinates of a helix provide circular 
motion while the third coordinate lifts the curve out of the plane. In addition, a curve is defined uniquely 
by its curvature and torsion as a function of natural parameters. The curvature and torsion of this curve 
parameterized with s can be defined by respectively, which are called the natural or 
intrinsic equations of the curve. Scientists studying the helix have found some characterizations in 
Euclidean space [1-6]. 

The basic concepts of Euclidean plane geometry are points and straight lines, also the best known 
theorem is Pisagor theorem. But in nature, every surface is not a plane and every line is not a straight line 
like Euclidean geometry. The parallel postulate which is the 5th postulate in Euclid's Elements, is a 
distinctive axiom. The non-Euclidean geometry is a geometry which does not provide the parallel 
postulate. Furthermore, the absolute geometry (or neutral geometry) is a geometry which is independent 
of this 5th postulate (only assumes the first 4 postulates). In the 19th century Gauss and Bessel entertained 
the idea of non-Euclidean geometry. Moreover, Bolyai and Lobachevsky showed hyperbolic geometry 
and again Bernhard investigated the bases of elliptic geometry. These are very special types of 
Riemannnian geometry of constant positive curvature and constant negative curvature, respectively. 

Galilean geometry is a non-Euclidean geometry. Firstly, Galilean space was investigated by Keli in 
1869. The geometry of Galilean space G3 was widely developed by Röchel [7]. The ruled surfaces were 
described by Kamenarovic and also studied by Divjak and Milin-Sipus [8,9]. Furthermore Ergut, Bektas 
and Ogrenmis found the characterizations for the curves and the helices in Galilean space [10-13]. 

The literature survey indicated that, there are no position vectors of curves in Galilean 3-space. Thus 
the study is proposed to serve such a need. In this paper, we prove that the position vector of every space 
curve in G3 satisfies a vector differential equation of fourth order. We obtain position vectors of a general 
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helix in the parametric form. Also, we give some examples to illustrate how to find the position vector 
from the intrinsic equations of general helices. 
 
Basic notions and properties 

The Galilean space G3 is a 3 dimensional complex projective space P3, in which the absolute figure 
 consists of a real plane  (the absolute plane), a real line  (the absolute line) and 

two complex conjugate points  (the absolute points). 
We shall take, as a real model of the space G3, a real projective space  with the absolute  

consisting of a real plane  and a real line , on which an elliptic involution  has been 
defined. 

Let  be in homogeneous coordinates; 
 

               (1) 
 
In the nonhomogeneous coordinates, the similarity group H8 has the form; 

 

               (2) 
 
where aij and α are real numbers. 
For  we have the subgroup B6, the group of Galilean motions; 
 

              (3) 
 
In G3 there are 4 classes of lines: 

a) (proper) non-isotropic lines- they do not meet the absolute line  
b) (proper) isotropic lines- lines that do not belong to the plane  but meet the absolute line  
c) unproper non-isotropic lines- all lines of  but  
d) the absolute line  
Planes  are Euclidean and so is the plane w. Other planes are isotropic. In what follows, 

for , defines the group  of isometrics of the Galilean space G3. 
For a curve  parameterized by the invariant parameter  is given in the 

coordinate form; 
 

               (4) 
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the curvature  and the torsion  are defined by; 
 

               (5) 
 
The associated moving trihedron is given by; 
 

              (6) 
 

The vectors T, N and B are called the vectors of the tangent, principal normal and binormal line, 
respectively. 
For their derivates the following Frenet's formulae hold [10]; 
 
T ′  = κN ,  
N ′  = τB ,  
B ′  = −τN ,  
                  (7) 
 

Definition 1 Let  be a curve in 3-dimensional Galilean space G3, and  be the Frenet 
frame in 3-dimensional Galilean space G3 along  If  and  are positive constants along , then  
is called a circular helix with respect to the Frenet frame, [11]. 

Definition 2 Let  be a curve in 3-dimensional Galilean space G3, and  be the Frenet 
frame in 3-dimensional Galilean space G3 along  A curve  such that; 

 

                 (8) 
 
is called a general helix with respect to Frenet frame, [10]. 
 
Positions vectors of curves and helices in G3 

Theorem 1 Let be a unit speed curve in Galilean space G3. Then position  satisfies the 
following vector differential; 

 

              (9) 
 

Proof.  Let  be a unit speed curve in G3. If we consider Eq. (7), we have; 
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              (10) 
 
and we can write the last equation of (7) as follows; 
 

             (11) 
 

where , so we have a vector differential equation of 4th order (9). 
From Eq. (11), we can write the following equation; 

 

             (12) 
 

where  and  This means the position vector of an arbitrary space curve 
can be determined by the solution of the above equation. 

Theorem 2 Let  be a unit speed curve in Galilean space G3. Then the principal normal 
vector N satisfies the following vector differential; 
 

           (13) 
 

where  and  
 
Proof. Let  be a unit speed curve in G3. If we consider this curve as where 

 we hold; 
 

            (14) 
 

where  From the new Frenet Eq. (14), after some calculations we have; 
 

              (15) 
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and differentiating the last equation, we have the vector differential (13). 
If we investigate and solve Eq. (13), we obtain the space curve  as follows; 

 

             (16) 
 
and in parametric representation; 
 

            (17) 
 

where  
 

Theorem 3 The position vector of a general helix in the natural parameter form; 
 

         (18) 
 
or in the parametric form; 
 

        (19) 
 

Proof. If ϕ is a general helix in Galilean space G3, we can write  So, the Eq. (19) 
becomes; 

 

              (20) 
 
or 
 

            (21) 
 
If we write the tangent vector  the general solution of (21) takes the form; 
 

          (22)  
 
where  for  

 
Since the curve ϕ is a general helix, the tangent vector of ϕ makes a constant angle  with the 

constant vector field which is called the axis of the helix. Therefore, without loss of generality, we take 

the axis of helix is parallel to e3. Then   and  Also, 
since the tangent vector T is a unit vector, we have; 
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                (23) 
 
and 
 

             (24) 
 
So, we have; 
 

           (25)
       
From Eqs. (23), (24) and (25), without loss of generality, we can write; 
 

            (26) 
 

where  If we integrate Eq. (26) with respect to s such that  we 
get Eqs. (18) and (19). This completes the proof. 
 
Examples 

Example 1 If we consider a curve with  the position vectors take the 
following form; 

 

        (27)  
 

If we integrate Eq. (27) and put  we get; 
 

         (28) 
 
which is the parametric representation of the curve. 

Example 2 If we consider a curve with  the position vectors take the 
following form; 

 

       (29) 
 
If we integrate Eq. (29), we get; 
 
 
 



Position Vectors of Curves from Intrinsic Equations in G3 Handan ÖZTEKIN and Serpil TATLIPINAR 
http://wjst.wu.ac.th 

Walailak J Sci & Tech 2014; 11(12) 
 

1017 

      

                       (30) 
 
which is the parametric representation of the curve. 

Example 3 If we consider a curve with  the position vectors take the following 
form; 
 

       (31) 
 
Then, if we integrate Eq. (31), we get; 

 

          (32) 
 
which is the parametric representation of the curve. 
 

Example 4 If we consider a curve with  the position vectors are similar to 
Example 3. 
 
Conclusions 

In this study, we give the position vectors of the curves and the general helices in Galilean 3-space. 
We prove that the position vector of every space curve in Galilean 3-space satisfies a vector differential 
equation of 4th order. Furthermore we get the position vector of a general helix in the parametric form. 
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