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Abstract 

In this paper, the homotopy perturbation method (HPM) is effectively applied to obtain the 
approximate analytic solutions of the time-fractional Fisher equation (TFFE) with initial conditions. The 
fractional derivatives are described in the Caputo sense. The initial approximation can be determined by 
imposing the initial conditions. Some examples are given. Numerical results show that the HPM is easy to 
implement and is accurate when applied to TFFE. 

Keywords: Time-fractional Fisher’s equation, homotopy perturbation method, Caputo fractional 
derivative  

 
Introduction 

Fractional calculus is considered to be the generalization of the classical (or integer order) calculus, 
with a history of at least 300 years. It can be dated back to Leibniz’s letter to L’Hospital, in which the 
meaning of the one-half order derivative was first discussed [1]. Although it has such a long history, 
research in the field remains in the realm of theory, due to the lack of proper mathematical analysis 
methods and real applications. However, the use of Fractional differential equations (FDEs) in 
mathematical models has become increasingly popular in recent years. The main reason for this is that the 
theory of derivatives of fractional (noninteger) stimulates considerable interest in the areas of 
mathematics, physics, engineering and other sciences. The number of scientific and engineering problems 
involving fractional calculus [2] is already large and is still growing, and perhaps fractional calculus will 
be the calculus of this century.  

In the present paper we use the HPM to construct an approximate solution to the Fisher equation 
with time-fractional derivative of the form; 

α ( ) ( ) λ ( )(1 ( )) ( ) [0 1] [0 1]

( 0) ( ),0

D u x y t D u x t u x t u x t x txxt

u x u x

, , = , + , − , , , ∈ , × , ,

, =






                                         (1) 

where 1 α 1< ≤ , λ  is real parameter, αDt  denotes the Caputo fractional derivative in time and 0 ( )u x  is 

the given function. 
2 ( )

2
u x tD uxx xxx

∂ ,
= =

∂
 is the linear differential operator.  

The time-fractional Fisher equation (TFFE), which is a mathematical model for a wide range of 
important physical phenomena, is a partial differential equation obtained from the classical Fisher 
equation by replacing the time derivative with a fractional derivative of order α , 1 α 1< ≤ . Eq. (1) is 
known as Fisher’s equation [3], which describe the propagation of a virile mutant in an infinitely long 
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habitat. It also represents a model equation for the evolution of a neutron population in a nuclear reactor 
and a prototype model for a spreading flame. Eq. (1) becomes one of the most important classes of 
nonlinear equations because of its occurrence in many biological and chemical processes.  

Many researchers have studied Fisher’s equation. Olmos and Shizgal [4] presented a pseudo-
spectral approach to obtain the numerical solutions. The finite difference algorithms have been reported 
by different authors, such as Parekh and Puri [5], Twizell et al. [6], Mickens [7,8], and Rizwan-Uddin [9]. 
The finite element method and Galerkin finite element method are used by some authors, Tang and 
Weber [10], Carey and Shen [11] and Roessler and Hüssner [12]. Also, some other methods have been 
conducted to derive the solutions for Fisher’s equation. For more details about these investigations, the 
reader is advised to see Refs. [13-23] and the references therein.  

We can see from the above description that there are many works about Fisher’s equation. However, 
there are few articles about the numerical methods for TFFE. In this paper, we aim to effectively employ 
the HPM to establish the numerical solutions for Eq. (1). Using the HPM, the numerical results of Eq. (1) 
can be obtained within a few iterations. The HPM has been successfully applied to solve many types of 
linear and nonlinear problems in science and engineering by many authors [24-29] and also been used to 
solve fractional differential equations, all in the Caputo sense [30-39].  

This paper is organized as follows: In Section 2, some basic definitions and properties of fractional 
calculus theory are given. In Section 3, the basic idea of the HPM for TFFE is given. In Section 4, we 
obtain the numerical solution of time-fractional Fisher equations with initial conditions. 

Preliminaries 

In this section, we give some basic definitions and properties of fractional calculus theory which are 
further used in this article.  

Definition 2.1 [40,41] A real function ( )u t , 0t >  is said to be in space θ (θ )C R∈  if there exists a real 

number θp > , such that 1( ) ( )pu t t u t= , where 
1
( ) (0 )u t C∈ ,∞ , and it is said to be in the space θ

nC  if and 

only if θ
nu C∈ , n N∈ .  

Definition 2.2 [40,41] The Riemann-Liouville fractional integral operator of order α 0≥  of a function 

θ( ) θ 1u t C∈ , ≥ − , is defined as; 

0

0
1α α 1( ) ( τ) (τ) τ α 0 τ 0

Γ(α)
( ) ( ).

tJ u t t u d

J u t u t

∫
−= − , > , > ,

=






                                                                                   (2) 

For θ( ) θ 1 α β 0u t C∈ , ≥ − , , ≥  and γ 1≥ − , some properties of the operator αJ , which are needed here, 
are as follows;  

Γ(γ 1)β α β β β γ α γα α α α) ( ) ( ) ) ( ) ( ) )
Γ(α γ 1)

i J J u t J u t ii J J u t J J u t iii J t t
++ +. = ; . = ; . = .

+ +                    

Definition 2.3 [40,41] The fractional derivative in the Caputo sense of 1( ) 0mu t C m N t−∈ , ∈ , >  is 
defined as; 
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1α α 1( ) ( τ) (τ) τ 1 α0Γ( α)α ( )

( ) α .

md tm m mJ u t t u d m mmdt mD u tt md
u t mmdt

− − −= − , − < < ,∫
−=
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
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
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                                 (3) 

Lemma 2.4 [40,41] If θα 1 1 θ 1mm m m N f C< + ≤ + , ∈ , ∈ , ≥ − , then the following 2 properties hold; 

1 ( )α α α α) [ ( )] ( ) ) [ ( )] ( ) (0 )
0

km tki D J u t u t ii J D u t u t ut t k k

− +. = ; . = − .∑
= !

                                                      (4) 

The HPM for time-fractional Fisher’s equation 

We apply the HPM [24,25] to the time-fractional differential equations with initial conditions. We 
consider the following equation; 

α ( ) ( ) λ ( )(1 ( )) ( ) [0 1] [0 1]
( 0) ( ),0

D u x y t D u x t u x t u x t x txxt
u x u x

, , = , + , − , , , ∈ , × , ,

, =





                                                     (5) 

where ( )u x t,  is an unknown function, and x  and t  denote spatial and temporal independent variables. 
By  means of the HPM, one first constructs the homotopy which satisfies the relation; 

α ( ) [ ( ) λ ( )(1 ( ))]D u x t p D u x t u x t u x txxt , = , + , − , ,                                                                                         (6) 

where [0 1]p∈ ,  is the embedding parameter.  

The HPM [24,25] consists of decomposing the solution ( )u x t,  in Taylor series about the 
embedding parameter p into a sum of components given by the infinite series expanded; 

( ) ( )
0

mu x t u x t pm
m

∞
, = , ,∑

=
                                                                                                                       (7) 

where  

1 ( )
( ) 0

mu x t
u x tm m pm p

∂ ,
, = | .=! ∂

                                                                                                                   (8) 

As 1p = , we can get that;  

( ) ( )
0

u x t u x tm
m

∞
, = , .∑

=
                                                                                                                             (9) 

We substitute (7) into (6), then differentiate the result m -times with respect to p  and divide them by 

m! . After that, let 0p =  and apply the inverse operator αJ to the both sides of them, then by (4) we can 
get;  
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1α( ) [ ( ) λ ( ) λ ( ) ( )]1 1 1
0

m
u x t J D u x t u x t u x t u x tm xx im m m i

i

−
, = , + , − , , ,∑− − − −

=
                                          (10) 

for 1 2m = , , .   

The method suggests that the zeroth component 0u  is usually defined as terms arising from initial 
conditions. Furthermore, we equate selected components of (10), and obtain recursively;  

0 0 ( ),
1α( ) [ ( ) λ λ ] 11 1 10

u u x
m

u x t J D u x t u u u mm xx im m m ii

=
−

, = , + − , ≥ .∑− − − −=





                                                       (11) 

The convergence of the decomposition method has been discussed in [41] and all components will 
be easily determined; hence, the decomposition method provides a reliable technique that requires less 
work if compared with traditional techniques.  

Applications 

We will apply the HPM to the following fractional differential equations. 

Example 1 We consider the following time-fractional problem; 

0

α ( ) ( ) λ ( )(1 ( )) ( ) [0 1] [0 1]

( 0) ( ),

D u x t D u x t u x t u x t x txxt

u x u x

, = , + , − , , , ∈ , × , ,

, =





                                                        (12) 

with λ 1=  and ( 0) βu x, = , where β  is a constant. The corresponding integer order problem, α 1=  in 
the limit sense, has the exact solution;  

1
β

( )
1 β βexact

te
u x t te, , = .

− +
                                                                                                                         (13) 

By the analysis in Section 3, we construct the homotopy which satisfies the relation  

α 2( ) [ ( ) ( ) ( )]
( 0) β

D u x t p D u x t u x t u x txxt
u x

, = , + , − , ,

, = .





                                                                                       (14) 

We assume the solution of Eq. (12) to be in the form; 

2 3
0 1 2 3u u pu p u p u= + + + + .                                                                                                            (15) 

Substituting (15) into (14) and equating the coefficients of like powers of p , we get the following set of 
differential equations;  
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0 α 1 α 20 ( ) β0 0 1 0 0
2 α 3 α 12 22 1 0 1 3 2 0 2 0
4 α 2 24 3 0 3 1 2

α 2α
2 2 3( ) β ( ) (β β ) ( ) (β 3β 2β )0 1 2Γ(1 α) Γ(1 2α)

3α
2 3 4( ) (β 5β 8β 4β ) (β3 Γ(1 3α)
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p D u u u u p D u u u u ut t

p D u u u u u ut

t t
u x t u x t u x t

t
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: = , = , : = − ,

: = − , : = − − ,
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⇓

, = ; , = − , , = − + ,
+ +
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+



3αΓ(1 2α)2 3 42β β ) 2Γ (1 α)Γ(1 3α)
4αΓ(1 2α)2 3 4 2 3 4( ) (1 2β)[(β 5β 8β 4β ) (β 2β β ) ]4 2 Γ(1 4α)Γ (1 α)

4αΓ(1 3α)2 2 32(β β )(β 3β 2β )
Γ(1 α)Γ(1 2α)Γ(1 4α)

t

t
u x t

t

+
− + ,

+ +

+
, = − − + − − − +

++

+
− − − + ,

+ + +

,
                               (16) 

the rest of components can be obtained using Maple or Mathematica in the same manner. It should be 
pointed out that when α 1= , the results obtained by (16) become; 

,

,
!4

)12121)(21)(1(),(

,
!3

)661)(1(),(

,
!2

)21)(1(),(

,)1(),(
,),(
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2
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1

0
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ttxu
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ttxu

ttxu
txu

βββββ

ββββ

βββ

ββ
β

+−−−=

+−−=

−−=

−=
=

                                                                            (17) 

moreover, we get the solution in a series form as;  

2 3
2( ) β β(1 β) β(1 β)(1 2β) β(1 β)(1 6β 6β )

2 3
4

2β(1 β)(1 2β)(1 12β 12β )
4

t t
u x t t

t

, = + − + + − − + − − +
! !

+ − − − + + ,
!



                                                 (18) 

 
and, after some algebra, the solution in a closed form is given by;  
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t

t

e
etxu
ββ

β
+−

=
1

),(                                                                                                                              (19)                              

which is in full agreement with the results in [21]. Then, the 4 th-order approximation solution can be 
obtained as ( ) Φ ( )4 0 1 2 3 4u x t x t u u u u u, ≈ , = + + + + .  

Figure 1 shows the exact solution of the corresponding integer order problem 1( )exactu x t, ,  along 

with the HPM 4th-order approximation solution of Eq. (12) with β 2 3= /  for different values of α . For 
α 1=  and β 2 3= / , in Figure 2, we draw the absolution error functions 

1( ) ( ) Φ ( )4exacterror x t u x t x t,, =| , − , | , where 1( )exactu x t, ,  is the form of (13). 

 

 
Figure 1 The 4th-order approximation solutions of u(x,t) of example 1 for different values of α. 
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Figure 2 Absolute error obtained by 4th-order approximation for α = 1. 

 

 

 

 

Figure 3 The surfaces show the solution u(x,t) of example 2, obtained by 3rd-order approximation for 
different values of α. 
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Example 2 We consider the following time-fractional Fisher equation; 
 

α ( ) ( ) λ ( )(1 ( )) ( ) [0 1] [0 1]

( 0) ( )0

D u x t D u x t u x t u x t x txxt

u x u x

, = , + , − , , , ∈ , × , ,

, = ,






                                                        (20) 

 
with λ 6=  and 1( 0) 2(1 )

u x xe
, =

+
. The corresponding integer order problem, α 1=  in the limit sense, has 

the exact solution; 
 

2
1

( ) 5 2(1 )
exactu x t x te

, , = .−+
                                                                                                                     (21) 

 
By the analysis in Section 3, we construct the homotopy which satisfies the relation; 
 

2

2

α ( ) [ ( ) 6 ( ) 6 ( )]
1

( 0)
(1 )

D u x t p D u x t u x t u x txxt

u x xe

, = , + , − , ,

, = ,
+






                                                                                   (22) 

 
As per the analysis in Example 1, we can get following set of differential equations; 
 

10 α 0 ( )0 0 2(1 )
1 α 26 61 0 0 0
2 α 6 122 1 1 0 1
3 α 26 12 63 2 2 0 2 1

1
( )0 2(1 )

α
( ) 101 3 Γ(1 α)(1 )

2α( 1 2 )
( ) 502 4 Γ(1 2α)(1 )

( )3

p D u u xt xe

p D u D u u uxxt

p D u D u u u uxxt

p D u D u u u u uxxt

u x t xe
xe t

u x t xe
x xe e t

u x t xe

u x t

: = , = ,
+

: = + − ,

: = + − ,

: = + − − ,

⇓

, = ,
+

, = ,
++

− +
, = ,

++

, =



3αΓ(1 2α)2 350 (5 6 15 20 12 )2 6Γ (1 α) (1 ) Γ(1 3α)

tx x x x xe e e e e xe

+
− − + − ,

+ + +

,

                                (23) 
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the rest of components can be obtained using Maple or Mathematica in the same manner, and when 
1p =  the solution is thus obtained as;  

0 1 2 3 4u u u u u u= + + + + .                                                                                                                   (24) 

It should be pointed out that when α 1= , the results obtained by (23) become;  

,

,
)1(

)471(
3

125),(

,
)1(
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,
)1(

10),(

,
)1(

1),(

3
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3

2
42

31

20



t
e

eeetxu

t
e

eetxu

t
e

etxu

e
txu

x

xxx

x

xx

x

x

x

+
−+−

−=

+
+−

=

+
=

+
=

                                                                                    (25) 

moreover, we get the solution in a series form as;  

2 2 3

2 3 4 5
1 ( 1 2 ) ( 1 7 4 )

( ) 10 50 250
(1 ) (1 ) (1 ) 2 (1 ) 3

x x x x x xe e e t e e e t
u x t tx x x xe e e e

− + − + −
, = + + − + ,

+ + + ! + !
               (26) 

and after some algebra, the solution in a closed form is given by; 

,
)1(

1),( 25txe
txu −+
=                                                                                                                             (27) 

which is in full agreement with the results in [22]. 
The 3rd-order approximation solution can be obtained as ( ) Ψ ( )3 0 1 2 3u x t x t u u u u, ≈ , = + + + . 

Figure 3 shows the solution ( )u x t,  of Example 2, obtained by 3rd-order approximation for different 
values of α . It is seen from Figure 3 that ( )u x t,  increases with the increase in x  for given t  but 
decreases with the increase in α . 

When α 1= , it is worth noting that by applying the scheme proposed above for the Fisher equation;  

α ( ) ( ) λ ( )(1 ( ))D u x t D u x t u x t u x txxt , = , + , − ,                                                                                             (28) 

with the initial condition 
λ

26( 0) 1 (1 )
x

u x e, = / + , we can get the solution;  

5λ
6 6 λ 2

( )
1

(1 )x t
u x t

e
−

, ,=
+

                                                                                                                          (29) 

which is the same as the results in [20]. 
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Conclusions 

In this paper, the HPM was used for obtaining approximate solutions of the TFFEs with initial 
conditions. The examples are presented to illustrate the accuracy of the present scheme of HPM. The 
approximate solutions were almost identical to analytic solutions of the considered equations for α 1= . It 
may be concluded that this methodology is a very powerful and efficient technique in finding 
approximate solutions for a wide classes of problems. Also, it is to be noted that the accuracy can be 
improved by computing more terms of approximated solutions. This shows that the HPM is a very useful 
method to get high-precision numerical solutions for many problems. 
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