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Abstract 

This study investigates squeezing flow of viscous incompressible fluid in a highly permeable 
medium between 2 parallel, permeable, unsteadily rotating plates in the presence of a magnetic field and 
radiation. The plates at time t* are separated by a distance H(1−αt*)1/2. Using a similarity transformation, 
the governing equations have been transformed into a system of non-linear ordinary differential 
equations. The resulting equations have been solved numerically by a shooting method. Graphs are 
presented to depict the temperature and heat transfer profiles. The results show a decline in the 
temperature profiles under the effect of enhanced radiation. 
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Introduction 

The unsteady squeezing flow of a viscous incompressible fluid between 2 parallel plates moving 
normal to their own planes occurs in many hydro-dynamical machines, particularly in turbo-machinery. 
The rotor-stator system of turbo-machinery can be idealized by a system of 2 plates, in which one plate is 
in rotation and the other is stationary. The movement of underground water through hydraulic pumps can 
be simulated by the motion of 2 impermeable plates moving towards or apart from each other. The high 
performance of a turbo-machine is attributable to the occurrence of self-sustained, vortex-induced 
oscillating flow in the radial direction coupled with the effect of the centrifugal and Coriolis forces. These 
forces induce the heat transfer processes. The 2 plate problem with magnetic field has promising 
application in the field of hydromagnetic lubrication. These squeezing flows are also useful in polymer 
processing, compression and injection moulding. Earlier studies of squeezing flows involved the solution 
of a Reynolds equation. A study involving full Navier-Stokes equations is more useful in the analysis of 
porous thrust bearing and squeeze films involving high velocities. 

Kuhn and Yates [1] considered the pressure distribution of a thin liquid film between axially 
oscillating parallel circular plates by taking inertia terms into account. Hunt [2] examined pressure 
distribution in a plane fluid film subject to normal sinusoidal excitation. He showed that the maximum 
and minimum pressures in the fluid depend on the amplitude of oscillation. He found a good correlation 
between theoretical and experimental work. A similarity solution for the Navier-Stokes equations was 
given by Gupta and Gupta [3] for the unsteady flow between 2 plates approaching or receding from each 
other symmetrically. Bhatt and Hamza [4] presented similarity solutions for the squeeze film between 2 
rotating naturally permeable plates. 

Rajvanshi [5] considered the flow between 2 parallel plates, when both perform normal sinusoidal 
oscillations. In this paper, Navier-Stokes equations have been solved for; 

(i) where the Reynolds number R , based on maximum velocity of the oscillating plates, is so small 
that inertia terms can be disregarded, 
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(ii) where R is not small, but the terms of the order of Rε  can be omitted, where ε  is the non-
dimensional amplitude of the oscillation of the plates, 

(iii) where neither R  nor Rε  can be neglected. 
In a subsequent paper, Rajvanshi [6] studied the effect of slip velocity and axial current induced 

pinch on load capacity and film thickness-time of squeeze-film between annular plates. Singh and 
Rajvanshi [7] investigated the flow between 2 parallel pulsating plates. The flow profiles of the fluid 
squeezed between rotating plates have been a subject matter of extensive investigation with Gauthier et 
al. [8], Schouveiler et al. [9] and Serre et al. [10]. 

Many heat transfer phenomena occur in the form of electromagnetic waves which are a result of 
changes in the electronic configuration of the atoms. Thus, heat transfer by radiation becomes an 
important tool for various engineering applications, such as nuclear power plants, gas turbines, and space 
satellites, to name a few. 

Hossain and Takhar [11] investigated the effect of radiation on mixed convection along a vertical 
plate with uniform free stream velocity and surface temperature, using the Roseland diffusion 
approximation. Hossain et al. [12] studied the radiation effects on flow past a vertical plate with free 
convection. Free convection flow past a moving plate under the effect of radiation was investigated by 
Raptis and Perdikis [13]. The magnetohydrodynamic (MHD) flow in the presence of solar radiation was 
studied by Chamkha [14]. The radiation effects on free convection flow past a semi-infinite vertical plate 
with mass transfer was presented by Chamkha et al. [15]. The unsteady MHD free convection flow 
through a porous vertical flat plate immersed in a porous medium with radiation was analyzed by Samad 
and Rahman [16]. Postelnicu [17] investigated the onset of a Darcy-Brinkman convection using a thermal 
non-equilibrium model. The analytic approximate solutions for unsteady two-dimensional and 
axisymmetric squeezing flows between parallel plates were found by Rashidi et al. [18] .The unsteady 
MHD free convective flow and heat transfer between heated inclined plates with magnetic field in the 
presence of radiation effects were studied by Sharma et al. [19]. Ali and Shahzad [20] extended the MHD 
flow to a non-Newtonian fluid past a vertical stretching sheet. They included convective boundary 
conditions for analyzing the flow. The radiation effects on unsteady flow through a porous medium 
channel with velocity and temperature slip boundary condition were considered by Chauhan and Kumar 
[21]. They used the Crank-Nicolson implicit difference scheme to solve the initial value boundary value 
problem numerically. Recently, Rajput and Sahu [22] analyzed the natural convection in an unsteady 
hydromagnetic Couette flow through a vertical channel in the presence of radiation using the Laplace 
transform technique. Rajvanshi et al. [23] investigated the MHD squeezing flow of a viscous 
incompressible fluid in a highly permeable porous medium contained between two permeable rotating 
plates using the Brinkman model. The effect of radiation and mass transfer on MHD free convection flow 
past an impulsively started isothermal vertical plate with dissipation was studied by Sangapatnam et al. 
[24]. The influence of MHD, radiation, and mass transfer on unsteady free convection flow past a heated 
vertical plate in a porous medium with viscous dissipation was investigated by Prasad and Reddy [25]. 

In quite a few industrial applications, the lubrication fluid is injected into the main flow to avoid 
contact between the 2 plates. For air-lubricated bearings, the injection is made through a porous medium. 
Therefore, in the present study, the squeezing flow of a viscous incompressible fluid in a highly 
permeable porous medium contained between 2 permeable rotating plates is studied using the Brinkman 
[26] model. The problem has applications to special porous media, such as mushy zones and 
ferromagnetic fluids, where magnetic drag plays a significant role. The solutions are obtained for an 
optically thin medium with relatively low density, and are valid for fluids with a thickness much larger 
than the wall roughness. The numerical results showing the effect of radiation on temperature and heat 
transfer are analyzed graphically. 
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Materials and methods 

We consider a thin film of a highly permeable medium saturated with Newtonian fluid squeezed 
between two parallel plates with different permeability. The plates placed at a distance h(t*), at any time 
∗t , are allowed to rotate in their own planes about the z*-axis with different angular velocities. The upper 

plate is set in motion along the z*-axis with velocity  𝑑𝑧
∗

𝑑𝑡∗
 towards the lower plate, which remains at a fixed 

position z* = 0. 
The governing equations for flow through porous medium as suggested by Brinkman [26] are; 
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where u*, v*, w* are the velocity components in the direction of r*, θ* and z* respectively, and p the  

pressure, υ  the kinematic viscosity, υ  the effective kinematic viscosity in porous medium,σ  the 
electrical conductivity, pC the specific heat at constant pressure, κ the permeability of the porous 

medium, κ  the effective thermal conductivity in porous medium, q* the radiation heat flux, ρ  the fluid 

density, and B the magnetic field. Owing to symmetrical considerations, 𝜕
𝜕θ∗

() =  0. 
Assuming the medium to be optically thin and with relatively low density, the radiative heat flux as 

represented by Cogley et al. [27] is taken as; 
 
𝜕𝑞∗

𝜕𝑦∗
=  4𝐼(𝑇∗ − 𝑇0) with 𝐼 =  ∫ Kλw  ∂P

∂T∗
 dλ∞

0  
 
where Kw is the absorption coefficient at the wall and P is Planck’s constant. 

With a view to make the physical quantities dimensionless, we introduce the characteristic length, 
time, and angular velocity as H, α-1 and Ω respectively. The lower and the upper plate are assumed to 
rotate with angular velocities Ω1(1−αt*)-1 and Ω2(1−αt*)-1 respectively. The permeabilities of the lower 
plate, the upper plate and the porous medium are taken in the forms k1(1−αt*), k2(1−αt*) and k0(1−αt*), 
respectively. The solution of governing equations is valid for t* < 1

𝛼
 . 
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The boundary conditions on the plates are assumed in the form; 
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where 1σ  and 2σ   represent slip parameters for lower and upper disks respectively. 
Following Wang [28], we introduce the following non-dimensional quantities; 
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                                                                                       (8) 

 
The temperature T* is given by; 
 

𝑇∗ = 𝑇0𝑎(𝑦)
1−𝛼𝑡∗

+ 𝑇0                                                                                                                  (9) 
 
where 
 

𝑦 =  𝑧∗
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                                                                                                             (10) 

 
Non-dimensional quantities are also introduced as φ1 = 𝜈

𝜈 , φ2 = 𝑥
𝑥
 , where κ is the thermal 

conductivity of the fluid. 
With a view to maintain uniformity, we replace r* → r, z* → z and t* → t. 

 
Using Eqs. (7) - (10), in the governing Eqs. (2) - (5), we obtain; 
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where  𝑀2 =  (𝐻 𝐵0)2𝜎 𝜇−1,  𝑅𝑒𝑆(Squeeze Reynolds Number)  =  𝜌 α 𝐻2
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𝑁 =  2 Ω
𝛼

 , 𝜆3 =  𝐻
�𝑘0

, 𝜆4 = 𝜐
𝛼 𝑘0

,  𝛽 =  1
𝜙1
�𝜆3

2 + 𝑀2�         (15) 

 
Eq. (1) is satisfied identically. 
N may also be interpreted as follows; 
 

𝑁 =  2 Ω
𝛼

=  𝑅𝑒
 𝑅

𝑅𝑒  𝑠               (16) 
 
Where ReR = 𝜌 𝐻2

𝜇
 is the Rotational Reynolds number. Therefore, N defines the ratio of the Rotational 

Reynolds number to Squeeze Reynolds number. 
Elimination of p between Eqs. (11) and (13) gives; 
 
𝑓𝑖𝑣 =  𝑅𝑒𝑠(3𝑓 ′′ + 𝑦𝑓 ′′′ − 2𝑓𝑓 ′′′ − 2𝑁2𝑔𝑔′) + 𝛽𝑓 ′′                                                              (17) 
 
It is assumed that the plates are maintained at different temperatures given by; 
 
𝑇∗ =  𝑇0 on 𝑧∗ = 0 

𝑇∗ =  𝑇0 + 𝑇0
(1−𝛼𝑡∗)

  on  𝑧∗ = ℎ(𝑡∗)                                                         (18) 

 
The modified boundary conditions are; 
 
𝑓′′(0) =  𝜆1 𝑓′(0) , 𝑔′(0) =  𝜆1{𝑔(0) − 1}, 𝑓(0) =  0, 𝑎(0) =  0 

𝑓′′(1) =  −𝜆2 𝑓′(1) , 𝑔′(1) = − 𝜆2{𝑔(1) − 𝑠}, 𝑓(1) =  1/2, 𝑎(1) =  1         (19) 
 
The slip parameters are given by; 
 

𝜆𝑖 =  𝜎𝑖 𝐻
�𝑘𝑖

                                                                                                                                    (20) 

 
where 2,1, =iiσ  represents the slip parameter for the lower and upper plates respectively. Ratio of the 
rotational velocities of the plates is defined as; 
 

𝑠 =  Ω2
Ω1                                                                                                                               (21) 

 
such that; 
 
s = 1, depicts that the plates are rotating with the same angular velocities in the same direction, 
s > 0, shows that the plates are rotating in the same direction, 
s = 0, depicts that the upper plate is stationary, and 
s < 0, relates to the rotation of the plates in opposite directions. 
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Results and discussion 

The MATLAB differential equation solver bvp4c is used to find the numerical solution of the 
problem. For large mechanical devices, such as turbine generator rotor lines, the fluid is oil. Air is used 
for lighter mechanisms, such as dentist drills or computer disk drives. We have drawn the temperature 
profiles for Pr = 11.4 and Pr = 0.71. The variation in radiation parameter has been calculated and depicted 
graphically. 
 

Temperature profiles 
Figure 1 shows the variation of temperature profiles of the porous medium under the effect of 

radiation with M = 0.01, N = 80, Pr = 11.4, ReS = 0.02, λ1 = λ2 = 0.05, φ1 = φ2 = 1, s = 0.5. At large 
Prandtl numbers the momentum transfer plays a dominant role. By increasing the radiation parameter, the 
transfer of heat from the boundary increases. This results in decrease in the temperature profiles for Pr = 
11.4. The effect of radiation for Pr = 0.71 on the temperature profiles has been depicted in Figure 2, with 
M = 0.01, N = 80, Pr = 0.71, ReS = 0.02, λ1 = λ2 = 0.05, φ1 = φ2 = 1, s = 0.5. At low Prandtl numbers, the 
ratio of momentum transfer to the heat transfer is small. There is decrease in the temperature of the 
porous medium squeezed between the plates with increase in radiation. Here, radiation plays a dominant 
role. The temperature profiles do not have a significant qualitative difference. 

In Figure 3, the variation of the parameter φ1 on the temperature profile has been depicted with M = 
0.01, N = 80, L = 0.4, Pr = 11.4, ReS = 0.02, λ1 = λ2 = 0.05, φ2 = 1, s = 0.5. As the influence of effective 
kinematic viscosity is increased, the temperature profiles start decreasing. The effect of variation of φ2 on 
the temperature profiles is also shown in Figure 4, with M = 0.01, N = 80, L = 0.4, Pr = 11.4, ReS = 0.02, 
λ1 = λ2 = 0.05, φ1 = 1, s = 0.5. The increase in the ratio of effective thermal conductivity in porous 
medium and thermal conductivity of the fluid results in an increase in the temperature profiles. 
 

Heat transfer profiles 
Following Hamza [29], the Nusselt number is defined as; 

 

𝑁𝑢∗ = − 𝐻
𝑇0

𝜕𝑇
𝜕𝑧∗

= − 𝛼′(𝑦)
(1−𝛼𝑡)3/2                                            

 
We further define; 
 
𝑁𝑢 = 𝑁𝑢∗ (1 − 𝛼 𝑡 )3/2 = −𝑎′(𝑦)             (22) 
 

The heat transfer profiles for Pr =11.4 and Pr = 0.71, versus permeability of the lower plate along 
the x-axis, have been depicted in Figures 5 and 6, with M = 0.01, N = 80, ReS = 0.02, λ2 = 0.05, φ1 = φ2 = 
1, s = 0.5. As the radiation parameter is increased, the heat transfer first decreases, and after the value λ1 = 
0.58 with α(y) = 0.9983, it starts increasing for both Pr =11.4 and Pr = 0.71. 

The heat transfer profiles for Pr = 11.4 and Pr = 0.71, versus permeability of the upper plate along 
the x-axis, have been depicted in Figures 7 and 8, with M = 0.01, N = 80, ReS = 0.02, λ1 = 0.05, φ1 = φ2 = 
1, s = 0.5. The heat transfer increases as permeability of the upper plate is increased. Under the effect of 
enhanced radiation, the heat transfer profiles decrease, but with increase in the permeability of upper 
plate, these decrease. The trend is reversed after λ2 takes the value 0.58, with α(y) = 1 for both graphs. 
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Conclusions 

Under the enhanced effect of radiation, the temperature profiles of the porous medium squeezed 
between the plates are lowered both for air and water at freezing point. The increase in the ratio of 
effective thermal conductivity in porous medium to thermal conductivity of the fluid results in an increase 
in the temperature profiles. The heat transfer profiles show a change in behavior and, with an increase in 
radiation, the magnitude is enhanced. The effect has been analyzed for air and water at freezing point. 
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