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Abstract 

The flow through porous boundaries is of great importance, both in technological and biophysical 
flows. The present paper is concerned with the study of unsteady pulsatile flow of blood through porous 
medium in a time dependent constricted porous channel subjected to time dependent suction/injection at 
the walls of the channel. The blood flow is subjected to a constant transverse magnetic field, considering 
blood as an incompressible electrically conducting fluid. Due to the permeability of the arterial wall, the 
no-slip condition at the wall is no longer valid, and one has to consider the slip condition at the channel 
wall because of more realistic approach. Perturbation analysis is used to solve the system of equations 
governing the flow. With a view to illustrating the applicability of the mathematical model developed 
here, the analytic explicit expressions of axial velocity, volumetric flow rate and wall shear stress are 
obtained. The computed numerical results are presented graphically for different values of the physical 
parameters of interest, to depict the variations in axial velocity, volumetric flow rate and wall shear stress. 

Keywords: Pulsatile blood flow, time dependent stenosis, porous channel, slip velocity, suction/injection, 
MHD, porous media 
 
 
Introduction 

The study of the flow through a channel with permeable walls not only possesses a theoretical 
appeal, but also models biological and engineering systems. The major activity of the entire 
cardiovascular system is to supply blood to tissues under a sufficient pressure gradient in order to 
exchange materials through the arterial wall. This is a 2-way exchange: the nutrients are carried to tissues 
and cells, and the fluid returns, along with the waste from cellular metabolism. Small arteries are thin-
walled and consist of endothelial cells. They contain ultra-microscopic pores through which substances of 
various molecular sizes can penetrate inside and pass into the lumen of the arteries from the surrounding 
tissues. One of the most important features of small arteries is the permeability of their walls. Examples 
of this are found in living organisms are fluid transport mechanisms, for example, blood flow in the 
circulatory system and transpiration cooling. 

Many investigators have theoretically studied the flow of blood through permeable walls. 
Elshehawey and Husseny [1] studied the peristaltic transport of a magneto-fluid with porous boundaries. 
Fluid entering the flow region through one plate at the same rate as it left through the other plate was 
considered. Sinha and Misra [2] investigated the blood flow through an artery with permeable wall. 
Makinde and Osalusi [3] studied steady magnetohydrodynamics (MHD) flow in a 2 dimension channel 
with permeable boundaries. Steady MHD flow through a circular vertical pipe with permeable boundaries 
has been investigated by Elangovan and Ratchagar [4]. Makinde and Chinyoka [5] studied the unsteady 
MHD flow in a porous 2 dimension channel with one wall impermeable and the other porous. Recently, 
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Sattar and Waheedullah [6] investigated the unsteady flow of a viscoelastic fluid through porous medium 
bounded by two porous plates. It was assumed that one plate is injected with certain constant velocity and 
that the other sucked it off with the same velocity. Xin-Hui Si et al. [7] studied the asymmetric laminar 
flow in a porous channel with expanding or contracting walls. Homotopy analysis method (HAM) was 
employed to obtain expressions for the velocity fields. 

Due to the permeability of the arterial wall, the no-slip condition at the wall is no longer valid, and 
one has to consider the slip condition at the artery wall. The slip condition plays an important role in 
shear skin, spurt and hysteresis effects. The boundary conditions relevant to flowing fluids are very 
important in predicting fluid flows in many applications. The fluids that exhibit boundary slip have 
important technological applications, such as in polishing valves of artificial hearts and internal cavities 
[8]. For many fluids, such as particulate fluids, the motion is still governed by the Navier-Stokes 
equations, but the usual no-slip condition at the boundary should be replaced by the slip condition given 
by Beavers and Joseph [9]. In this case, the use of slip boundary condition in preference to the no-slip 
condition was due to the fact that the walls allowed the fluid particles to slip. Much recent research has 
been made in the subject of slip boundary conditions [2-4,8,10-12]. 

In human circulatory system, blood flow, under normal conditions, depends on the pumping action 
of the heart. The pumping action of the heart produces a pressure gradient throughout the arterial and 
venous network. Pulsatile flow occurs in many areas of engineering fluid dynamics, like pressure surges 
in pipelines, cavitations in hydraulic systems, pumping of slurries, refrigeration systems, combustion 
mechanisms, de-watering devices, and cardiovascular biomechanics. Considerable attention has been 
given to the study of the problems of pulsatile flow of fluids in channels of various cross-sections, due to 
their increasing application in the analysis of blood flow and in the flows of other biological fluids [13]. 

The study of pulsatile flow in a porous channel or porous pipe has recently becomes the object of 
scientific research because of its importance in some practical phenomena, such as transpiration cooling 
and gaseous diffusion. Particularly, the study of pulsatile flow in a porous channel is useful in 
understanding the process of dialysis of blood in artificial kidneys and in industrial applications in 
relation to heat exchange efficiency. Also, the pulsatile flow between permeable walls is important in 
understanding blood flow in the circulatory system, where the nutrients are supplied to tissues of various 
organs and waste products are removed. In 1971, Wang [14] studied the interesting problem of pulsatile 
flow in a porous channel bounded by rigid walls. Many researchers studied the effect of slip velocity at 
permeable boundaries [2-4]. Recently, Eldesoky [8] investigated the unsteady pulsatile flow of blood 
through porous medium in an artery under the influence of periodic body acceleration and slip condition 
in the presence of magnetic field, considering blood as an incompressible electrically conducting fluid. 

Most of the researchers dealing with steady incompressible laminar flow with uniform injection or 
suction have attempted to determine the axial pressure variation, wall shear stress on the porous walls, 
and shapes of the velocity profiles within the tube. The unsteady suction problem was considered by 
Tsangaris et al. [15]. The case of periodic suction for flow through parallel plates was considered by 
Ramanamurthy et al. [16]. The steady flow of micropolar fluid through a circular pipe under a transverse 
magnetic field with constant suction/injection at the walls of the tube has been investigated by Murthy 
and Bahali [17]. Recently, many researchers studied the injection/suction at the permeable walls [18-20]. 

The study of flow of an electrically conducting fluid through a channel with permeable walls not 
only possesses a theoretical appeal but also provides a model for many biological and engineering 
problems, such as MHD generators, plasma studies, nuclear reactors, geothermal energy extraction, the 
boundary layer control in the field of aerodynamics, blood flow problems, etc. The application of MHD in 
physiological flow is of growing interest. The flow of blood can be controlled by applying the appropriate 
magnetic field. Many researchers have shown that blood is an electrically conducting fluid. The Lorentz 
force will act on the constituent particles of blood, and this force will oppose the motion of blood and thus 
reduce its velocity. This decelerated blood flow may help in the treatment of certain cardiovascular 
diseases and in diseases with accelerated blood circulation, such as hypertension, hemorrhage etc. 
Therefore, it is essential to study the blood flow in presence of a magnetic field. Much work has been 
done in this field by various investigators [8,13,21,22]. 
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Atherosclerosis is a disease of the cardiovascular system which involves a hardening of the arteries 
due to the deposition of plaque. Localized atherosclerotic constrictions in arteries, known as arterial 
stenoses, are predominantly found in the internal carotid artery which supplies blood to the brain, the 
coronary artery which supplies blood to the cardiac muscles, and the femoral artery which supplies blood 
to the lower limbs. Blockage of more than about 70 % (by area) of the artery is considered clinically 
significant, since it presents significant health risks for the patient [23]. Complete closure of the artery can 
occur if a blood-clot becomes lodged in the stenosis, and this can lead to a stroke or a heart attack. In 
addition to this, moderate as well as severe stenoses can have long-term health consequences. First, the 
presence of a constriction results losses which can reduce blood supply through the artery and also 
impose an additional load on the heart. Secondly, the fluctuations in the blood flow downstream of the 
stenosis can damage and weaken the internal wall (intima) of the artery. It is accepted that both wall 
pressure and shear stress play a role in this. 

For many decades, cardiovascular disease has been one of the most severe diseases, causing a large 
number of deaths worldwide each year, especially in developed countries. Most of these cases are 
associated with some form of abnormal flow of blood in stenotic arteries. In the presence of a stenosis, 
normal blood flow through the artery is disturbed, resulting in blood recirculation and wall shear stress 
oscillation near the stenosis. The heart has to increase blood pressure to impel the blood to pass through 
the narrowing region so as to enforce blood circulation. If the heart works too hard and the blood cannot 
flow well, heart attack may occur. In order to understand blood flow behavior in arteries so as to provide 
sufficient information for clinical purposes, intensive research has been carried out worldwide for both 
normal and stenotic arteries. Mekheimer et al. [24-26] studied the unsteady pulsatile flow through a 
vertical constricted annulus with heat transfer and investigated magnetic field and Hall current influences 
on blood flow through a stenotic artery. They also studied induced magnetic field influences on blood 
flow through an anisotropically tapered elastic artery with overlapping stenosis in an annulus. The effects 
of MHD and hematocrits on blood flow in an artery with multiple mild stenosis have been investigated by 
Verma and Parihar [27]. Nagarani and Sarojamma [28] investigated the effect of body acceleration on 
pulsatile flow of Casson fluid through a mild stenosed artery. Mishra and Verma [29] studied the effect of 
porous parameter and stenosis on wall shear stress for the flow of blood in human body. Sinha et al. [30] 
studied the mathematical modeling of blood flow in a porous vessel with double stenosis in the presence 
of an external magnetic field. 

The main objective of the present paper is to study the combined effect of magnetic field and 
permeable wall slip velocity on the unsteady pulsatile flow of blood through a porous medium in a time 
dependent constricted porous channel subjected to time dependent suction/injection at the walls of the 
channel, considering blood as an incompressible electrically conducting fluid. The governing continuity 
and Navier-Stokes equations are solved by perturbation technique. In the following sections, the problem 
is formulated, analyzed and discussed. 

 
Mathematical model 

The simulation model of the stenosed porous channel is depicted in Figure 1. The channel walls are 
located at a distance 2H apart with reference to a Cartesian coordinate system (x, y). Let the x-axis be 
taken along the axis of the channel, while the y-axis is the transverse coordinate normal to the x axis. Let 
us consider the pulsatile flow of blood as an electrically conducting, unsteady, viscous, incompressible 
and Newtonian fluid in the presence of a constant magnetic field of strength Bo acting perpendicular to the 
channel. We assume that the magnetic Reynolds number of the flow is taken to be small enough that the 
induced magnetic and electric field can be neglected. We consider that the wall of the channel is 
permeable, so that finite fluid exchange can take place across the wall. The channel is filled with a 
homogeneous porous media. 
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Figure 1 Schematic representation of the model geometry. 
 
 

Under the above assumptions, in two dimensions, the governing equations of continuity and 
momentum (in x and y-direction) are given in dimensional form as; 

 

0,u v
x y
∂ ∂

+ =
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                                                                                                                                           (1) 
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                                          (2) 
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                                                             (3) 

 
where u  denotes the velocity component along the x-axis, v the velocity component along the y-axis, t 
time, υ  the kinetic viscosity, p the blood pressure, ρ the density of the blood, σ  the electrical 
conductivity, and k the permeability of porous medium. 

The absorption of fluid at the walls is accounted by prescribing the flow flux as Makinde and 
Chinyoka [5]; 
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where U is the initial characteristic flow velocity (i.e. at 0x = ) and ( )/ 2f x H is the flux function 
that describes the rate of fluid absorption through the permeable wall. We assume that the fluid is injected 
or sucked off through the channel walls with a time dependent velocity V given by; 
 

( )1 ,i t
OV V e ωε= +                                                                                                                                 (5) 

 
where OV   is the uniform transpiration velocity (for injection 0OV >  and for suction 0OV < ), ε  is 

the small amplitude of oscillation and the value of ε is necessarily less than unity 1ε < . Since the fluid 
medium is filled with homogeneous porous material and the normal component of velocity v V= is 

independent of x and y, Eq. (1) reduces to 0u
x
∂

=
∂

. Therefore, the axial velocity u  is function of y and t 

only ( ),u u y t=  and Eq. (3) simply reduces to ( ) ( )1i t i to
o

Vp V i e e
y k

ω ωµρ ωε ε∂
− = + +
∂

. 

  
Under the above assumptions, the axial momentum equation reduces to; 

 

( )
22

2

11 .i t O
O
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ω συε υ
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                                                  (6) 

 
Since the flow of blood is pulsatile heart pumping, the unsteady pressure gradient can be 

approximated as [8,13]; 
 

( )cos ,S O
p P P t
x

ε ω∂
− = +
∂

                                                                                                                 (7) 

 
where  SP  is the steady part of the pressure gradient and OP  is the pulsatile amplitude. 

The geometry of the stenosis, which is assumed to be symmetric, is given by [30-32]; 
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−

   ′ = − + − − − − ≤ ≤ +   
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= − −

           (8) 

 

where δ  is the maximum projection (height of the throat) of the stenosis located at 
2
olx d= + , ol  is 

the stenosis length, and d indicates its location. Also, ( )h x′ is the variable height of the channel at the 
stenosed portion, and ε  is the amplitude of oscillation. 

Assuming that the flow of the blood is symmetric about the centerline of the channel (y=0), we 
focus our attention to the flow in the region 0 ( )y h x≤ ≤ only. 
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For small permeability, the boundary condition proposed by Beavers and Joseph [9] was simplified 

by Saffman [33] as 
1

du u
dy k

η
= where η

 
is a constant depending only upon the properties of the 

porous material and not on its structure, and 1k  is the permeability of porous material of the wall. We can 

replace the value of 
1k

η
by β . This condition holds well in the case of unsteady flows, and even if we 

take MHD effects into account [34]. Although the slip condition looks simple, analytically it is much 
more difficult than the no-slip condition, and the boundary conditions on the wall of the porous channel 
are prescribed as follows; 
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Let us introduce the following dimensionless quantities; 
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Using these dimensionless quantities in Eqs. (6), (9) and (10) then drop the stars we obtain; 
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The geometry of the stenosis in dimensionless form is given by; 
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where the magnetic parameter M , the Womersley parameter α , the Reynolds number Re, the 
permeability parameter of porous medium (Darcian linear drag parameter) λ and the Knudsen number 
Kn  are defined respectively by; 

 
2

, , Re ,o o o

o

B H H V k VM H and Kn
V H H

σ ρω βα λ
ρ µ υ υ

= = = = =       (16) 

 
Solution of the problem 

We seek the solution of the governing equations on the form; 
 

2
1( , ) ( ) ( ) ,i t

ou y t u y u y e πε= +                                                                      (17) 
 
where ε is the small amplitude of oscillation, and hence we can assume square and higher order terms of 
ε to be of negligibly small magnitude. Also, ou and 1u  are the velocity of steady state and transient state 
respectively. Substituting (17) into (12), (13) and (14), and comparing the coefficients of zero and first 
order terms of ε on both sides, we obtain; 
 
(i) Steady state (zero order) 
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Subject to boundary conditions; 
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By solving (13) we can get the general solution on the form; 
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2
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10.5 Re Re 4Re .m M
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Substituting by the boundary conditions (19) and (20), we obtain the constants; 
 

( )1 2 2 1

2

1 ( ) ( ) ( ) ( )
1 2 1 2

1Re
,

S

m h x m h x m h x m h x

Pm
M

C
m m Kn e e m e m e

λ

 
 
 

  +    =
− + −

         (22) 

 

( )1 2 2 1

1

2 ( ) ( ) ( ) ( )
1 2 1 2

1Re
,.

S

m h x m h x m h x m h x

Pm
M

C
m m Kn e e m e m e

λ

 
 
 −

  +    =
− + −

         (23) 

 
(ii) Transient state (first order) 
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Subject to boundary conditions; 
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By solving (24) we can get the general solution of the form; 
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Substituting by the boundary conditions (19) and (20), we obtain the constants 3C ,….., 7C  as follows; 
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Substituting the expressions of ou  and 1u  from the Eqs. (21) and (27) in Eq. (17), we obtain the 

expression for the velocity ( , )u y t as; 
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Rate of flow 
The volumetric flow rate Q is defined by; 
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Substituting from Eq. (34) in Eq. (35) and calculating the integration yields; 
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Shear stress at the wall 
The non-dimensional wall shear stress is given by the relation; 

 

( )

.w
y h x

u
y

τ
=
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                                                                                                              (37) 

 
Substituting from Eq. (34) in Eq. (37), the wall shear stress can be written as; 
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2

2
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.

i t
w

h x h xh x h x h x

h x

m mm m m

m
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(38) 
 
Numerical results and discussion 

In the present paper, we are concerned with studying the combined effect of magnetic field and 
permeable wall slip velocity on the unsteady pulsatile flow of blood through porous medium in a time 
dependent constricted porous channel subjected to time dependent suction/injection at the walls of the 
channel, considering blood as an incompressible electrically conducting fluid. The analytical expressions 
of axial velocity, volumetric flow rate, and wall shear stress derived in the preceding section have been 
computed numerically and plotted for different values of Knudsen number Kn , the maximum projection 
(height of the throat) of the stenosis δ , magnetic parameter M , Darcian linear drag parameterλ and 
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Reynolds number Re. We have run our code for the parameters ( 0.5,α = 7.0,oP = 10.0,ol =
 

1.0,t =
 

10.0sP = , and 0.01ε = ) related to a realistic physical problem similar to the ones used by other authors 
[3,5,31]. The profiles of axial velocity versus dimensionless transverse y-coordinate at the throat of the 
stenosis for various physical parameters are shown in Figures 2 - 5. 

 
 

 

 
 

Figure 2 Axial velocity profiles versus y at the throat of the stenosis for different values of Knudsen 
number Kn when Re 1.0,= 2.0,M =  0.25,δ = and 0.30λ = . 
 
 

Figure 2 depicts that the parabolic axial velocity of blood has a maximum value at the centerline of 
the channel and a minimum value at the walls. Also, it is clear from this figure that the axial velocity of 
blood decreases with increasing Knudsen number Kn, meaning that the flowing fluid is slowed down in 
the axial direction. 
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Figure 3 Axial velocity profiles versus y at different depths of the stenosis δ  when Re 1.0,=
2.0,M = 0.1,Kn = and 0.30λ = . 

 
 

Figure 3 represents the pulsating axial velocity profiles at different locations of the channel 
constriction, as well as different depths. It is clear that from this figure that the axial velocity strongly 
decreases near the walls of the channel, as well as in the centerline of the channel with the increasing 
effects of constriction height. Figure 4 demonstrates the effect of magnetic field on the pulsating axial 
velocity in the stenosed region of the vessel. The axial velocity of the blood decreases with the increase of 
magnetic field, which is in good agreement with studies carried out by Shit and Roy [32] in Figure 2. It is 
observed that the axial velocity decreases with increasing magnetic parameter M. It indicates that the 
blood velocity can be reduced by applying suitable magnetic field strength. Thus, the reduction in blood 
velocity can be used with surgical patients during surgery. Figure 5 shows that the pulsating axial 
velocity of the blood increases with increasing values of the Darcian linear drag parameter λ, where 
increasing the values of λ corresponds to a rise in permeability, and so has less resistance to flow. 
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Figure 4 Axial velocity profiles versus y at the throat of the stenosis for different values of magnetic 
parameter M  when Re 1.0,= 0.1,Kn =  0.25,δ = and 0.30λ = . 
 
 

It is very important to note that an increase in the positive value of flow Reynolds number (Re) 
represents an increase in the fluid injection, while an increase in the negative value of flow Reynolds 
number represents an increase in the fluid suction. From Figure 6, it is observed that the pulsating axial 
velocity decreases with increasing Reynolds number. It means that, at strong injection, it is observed that 
the axial velocity profiles are concave in an upwards direction with decreasing curvature as Re increases. 
Moreover, for very high values of Re, the graph is almost rectilinear. 

The variations of volumetric flow rate of the blood along the dimensionless axial x-coordinate of the 
channel for various physical parameters are shown in Figures 7 - 11. It is observed from Figure 7 that the 
flow rate has a maximum value at the ends of the stenosis, while it has a minimum value at the throat of 
the stenosis. Moreover, the flow rate decreases with increasing slip parameter (Knudsen number Kn). 
From Figures 8, 9, 11, it is seen that the volumetric flow rate decreases with increasing height of the 
stenosis δ, the magnetic parameter M, and the Reynolds number Re, while the volumetric flow rate 
increases with increasing Darcian linear drag parameter λ, as shown in Figure 10. 
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Figure 5 Axial velocity profiles versus y at the throat of the stenosis for different values of Darcian linear 
drag parameterλ  when Re 1.0,= 0.1,Kn = 0.25,δ = and 0.30λ = . 
 
 

 
 
Figure 6 Axial velocity profiles versus y at the throat of the stenosis for different values of Reynolds 
number Re  when 2.0,M = 0.1,Kn =  0.25,δ = and 0.30λ = . 
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Figure 7 Variation of volumetric flow rate for different values of Knudsen number Kn when Re 1.0,=
2.0,M = 0.25,δ = and 0.30λ = . 

 
 

 
 
Figure 8 Variation of volumetric flow rate for different depths of the stenosis when Re 1.0,=

2.0,M = 0.25,δ = and 0.30λ = . 
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Figure 9 Variation of volumetric flow rate for different values of magnetic parameter M when 
Re 1.0,= 0.01Kn = 0.25,δ = and 0.30λ = . 
 
 

 
Figure 10 Variation of volumetric flow rate for different values of Darcian linear drag parameterλ  when 
Re 1.0,= 0.01Kn =  0.25,δ = and 2.0M = . 
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Figure 11 Variation of volumetric flow rate for different values of Reynolds number Re when 2.0M =

0.01Kn =  0.25,δ = and 0.30λ = . 
 

 

 
Figure 12 Variation of wall shear stress for different values of Knudsen number Kn when 2.0M =
Re 1.0=  0.25,δ = and 0.30λ = . 
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It is a widely accepted fact that wall shear stress plays an important role in the development of 
arterial diseases. Hence, it is important to study the effects of the physical parameters on wall shear stress. 
Figure 12 gives the variation of wall shear stress for different values of the slip parameter (Knudsen 
number Kn). It may be observed that the wall shear stress increases with increasing slip parameter. 
Alternatively, the wall shear stress decreases with increasing height of the stenosis δ , as shown in Figure 
13. 

Figure 14 gives the variation of the wall shear stress for different values of the magnetic parameter 
M. It may be observed that the wall shear stress decreases with increasing magnetic parameter. 
Conversely, as shown in Figure 15, the wall shear stress increases with increasing values of Darcian 
linear drag parameterλ . Figure 16 depicts the variation of the wall shear stress for different values of 
Reynolds number Re. It is worthwhile to note that the wall shear stress decreases as the Reynolds number 
Re increases. It also noted that, at strong injection, the wall shear stress seems to be rectilinear. 

Figure 17 indicates the variation of the pressure gradient ( /p y−∂ ∂ ) versus time at different 
values of Darcian linear drag parameterλ . It is observed that the pressure gradient and its effect 
decreases with increased Darcian linear drag parameterλ . 

 
  

 
Figure 13 Variation of wall shear stress for different values of depths of the stenosis δ  when 2.0M =
Re 1.0=  0.01Kn = and 0.30λ = . 
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Figure 14 Variation of wall shear stress for different values of magnetic parameter M when 0.25δ =
Re 1.0=  0.01Kn = and 0.30λ = . 
 

 

 
Figure 15 Variation of wall shear stress for different values of Darcian linear drag parameterλ  when 

2.0M = Re 1.0=  0.01Kn = and 0.25δ = . 
 

     M=0.0 
     M=3.0 

  M=6.0 

Sh
ea

r s
tre

ss
  

x 

Sh
ea

r s
tre

ss
  

x 

 = 0.1λ  

 = 0.4λ  

 = 0.8λ  



Unsteady MHD Pulsatile Blood Flow through Porous Medium Islam Mohammad Ibrahim ELDESOKY 
http://wjst.wu.ac.th 

Walailak J Sci & Tech 2014; 11(11) 
 

920 

 
Figure 16 Variation of wall shear stress for different values of Reynolds number Re  when 2.0M =

0.25δ =  0.01Kn = and 0.30λ = . 
 

 

  
Figure 17 Variation of pressure gradient /p y−∂ ∂ for different values of Darcian linear drag parameter

λ when 0.3ε = . 
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Conclusions 

The present study deals with a theoretical investigation of unsteady pulsatile blood flow through 
porous medium in a constricted porous channel subjected to time dependent suction/injection at the walls 
of the channel, considering blood as an incompressible electrically conducting fluid. Also, the study 
investigates the combined effect of magnetic field and permeable wall slip velocity. The prime concern in 
our present study has been to assess the role of velocity slip in blood flow through arteries, and to 
determine those regions where the velocity is low and also the regions where the wall shear stress is low. 
Thus, the study bears the potential for further exploration of the causes and development of arterial 
diseases like atherosclerosis and atheroma. 

Consideration of slip velocity at the permeable wall has been of prime concern in the study. From 
the computational results, it may be concluded that; 

1) The pulsatile axial velocity u of the blood at the throat of the stenosis decreases with increasing 
slip parameter Kn, depth of the stenosis δ, magnetic parameter M, and Reynolds number Re (effect of 
injection or suction) while it increases with increasing Darcian linear drag parameter λ. 

2) The volumetric flow rate Q of the blood along the longitudinal x-axis decreases with increasing 
slip parameter Kn, depth of the stenosis δ, magnetic parameter M, and Reynolds number Re (effect of 
injection or suction) while it increases with increasing Darcian linear drag parameter λ. 

3) It is a widely accepted fact that wall shear stress plays an important role in the development of 
arterial diseases. The shear stress wτ at the permeable wall increases with increasing slip parameter Kn 
and Darcian linear drag parameter λ, while it decreases with increasing depth of the stenosis δ, magnetic 
parameter M, and Reynolds number Re (effect of injection or suction). 

4) The pressure gradient decreases with increasing Darcian linear drag parameter λ. Also, the 
pressure gradient in the y-direction is affected only by time and Darcian linear drag parameter λ. 

5) The present model gives a most general form of velocity expression, volumetric flow rate and 
wall shear stress, from which the other mathematical models can easily be obtained by proper 
substitutions, such as the results of Shit and Roy [32] which have been recovered by taking the Knudsen 
number Kn = 0. 
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