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Abstract

In this paper, we use a collocation method to solve the Burgers-Huxley equation. To achieve this
aim, we use mesh free technique based on sinc functions. The stability analysis is discussed. Some
numerical examples are provided to illustrate the accuracy and fluency of the method.
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Introduction

Nonlinear phenomena play a crucia role in applied mathematics and physics. The Burgers-Huxley
equations arise from mathematical modeling of many scientific phenomena. The generalized Burger’s-
Huxley equation shows a prototype model for describing the interaction between reaction mechanisms,
convection effects and diffusion transports.

Let o be anon-negative real number, 3, x and & be positive numberswith § >1, and y be areal
number in (0,1) . Suppose that | is a (bounded or unbounded) interval in the set of real numbers. Also,

U will be a function that depends on the spatial variable X €1 and the tempora variable t > 0, which
satisfies the advection-diffusion equation with nonlinear reaction term;

ou sou  ou
Mo & = Auf (), 1
o M o T o puf () @

forevery X el andevery t >0, where;

fu)=@1-u”)u’-7). 2

In the present work, this model is called the generalized Burgers-Huxley equation, and it is a
quantitative paradigm which describes the interaction between reaction mechanisms, convection effects
and diffusion transport. The constant x isimmediately identified as the coefficient of diffusivity, while
o isthe advection coefficient and g is the coefficient of reaction. When o =0,06 =1,k =1, Eq. (1) is
reduced to the Huxley equation that describes nerve pulse propagation in nerve fibers and wall motion in
liquid crystals [1,2]. When3=0,0 =1,x=1, Eq. (1) is reduced to the Burger's equation which
describes the far field of wave propagation in nonlinear dissipative systems [2]. When
a=0,4=106=1«=1,itisthe Fitzhugh-Nagoma equations [3,4]. At § =1and a,x, S #0, Eq. (1) is
turned into the Burgers-Huxley equation.
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The importance of the study of Burgers equation is evident from the fact that it has severa
applications in engineering and environmental sciences. So far, there exists no general method for finding
solutions of nonlinear diffusion equations. The Burgers-Huxley equation has been studied by a number of
authors from various viewpoints [5-17]. For instance, Ismail, Raslan, and Rabboh [5] used the Adomian
decomposition method, Javidi [6] used the spectral collocation method, and Deng [7] employed the first
integral method to solve the generalized Burgers-Huxley equation.

The present paper is divided into several sections. The following section outlines some of the main
properties of the sinc functions and the sinc method that are necessary for the formulation of the discrete
Burgers-Huxley equation. The next section is concerned with the sinc-collocation discretization for the
Burgers-Huxley equation and then the stability analysis of the method is discussed. Finally, numerical
results are reported which demonstrate the efficiency and accuracy of the proposed numerical scheme.

Materials and methods

In this section, we present the notations and definitions of the sinc function which are discussed
thoroughly in [8]. These properties will be used in the next Section to solve Burgers-Huxley Eq. (1).
The sinc function is defined on the whole real line, —00 < X < o0, by;

sin(zx) X =0
sne(x)=4 ax . _0’ ©)
1 =0.

For any h > O, the translated sinc functions with evenly spaced nodes are given as;

X —jh
h

S(j,h)(x)=sinc( ), ] =0,21,£2,... (4

which are called the j th sinc functions. If f is defined on thereal line, then for h > O the series;

z-jh
h

C(f.h)(x)= Zw: f(jh) sinc( )(X), (5)

j =—00

is called the Whittaker cardinal expansion of f , and whenever this series converges, f is approximated

by using the finite number of terms in Eq. (5). For a confined class of functions known as the Paley-
Weiner class, which are entire functions, the sinc interpolation and quadrature formulas are stated by
Paley et al. [9]. A less confining class of functions, which is analyzed only on an infinite strip containing
the real line and permit specific growth restrictions, has exponentially decaying absolute errors in the sinc
approximation.

Definition1 Let D denote the infinite strip domain of width 2d,d >0, given by;

D,={zeC:z=x+iy |y kd}, (6)

B (D) istheclassof functions f that are analyticin D such that;

fdlf(t+iy)|dy 50, t —> +oo, -
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and satisfy;

N (F.D)=[ F(@)dz <o, ®)

where oD, represents the boundary of D .

According to [8], the derivatives of sinc functions evaluated at the nodes as follows;

. 1 k=j,;
© _ _
S =[S(j,hog(X)] |y, = {O, K+, ©)
q 0, K=1];
G — = [S( —J(_1\kD)
5 hd¢[S(J,h)0¢(X)] |, ((kl) j; k=i, (10)
and
_;[ : k=j;
d? (1)) .
o =h?>—1S(j,h —2— k#].
jk ¢ [ ( J )0¢( X)] Ix ><k (k— ] )2 J (11)

where the symbol “0” denotes function composition. Higher-order coefficients can be computed by
formulae which exploit recurrence rules. The following result is proposed.

ﬂ_Zr (_l)r j_l
r h 2r+1’ T
520 _ d 9 sl = . 1;,*,) L 12
1)+ Ap: N2
h2r(J I)ZrZ( 1)'7[ (I_J) ’ J¢|,
for even coefficients, where r =1,2,..., and
S = d =[SO =
0 j=1;
(e 1)<J DG, @) s (13)
h2r+1(J 2r+1 g( ) (2| 1)| ( J) 1 J;t|,
for odd ones.
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Construction of the method
Consider the generalized nonlinear Burgers- Huxley equation as;

ou s Ou a
— 4o’ ——Kk—— 1-u’)(u’ - xel, t2>0, 14
p o =pul-u’)u’-y), x e (14)

with the boundary conditions;

u(at)=g,(t), ub,t)=g,(t), t >0, (15)
and theinitia condition;

u(x,0)=f (x), xel, (16)

where @ is a non-negative real number. 5,0,k are positive numbers with 6 > 0,and ¥ is a red
number in (0, 1).

Let f (X),0,() and g, (t) beknown functions. The time derivative is discretized in the usual finite
difference way and the Crank-Nicolson scheme is applied to Eq. (14), to get;

un+1 (U u )n+l+(u u )
[ A ]+a[ > ]
o ()™ + (uxx)”] Al (U(L-u” YU =y D™ +(u(L-u" ) (W’ —y))" ] -
2 2
=0,

where U" =u(X,t"),t" =t" + At and At is the time step. To linearize the nonlinear terms in Eq.
(17) the following formulais used, which is acquired by applying the Taylor expansions;

n+1

U)™ = U)" +AL(U),)" = U)" +AAtUTT)" (—)+0(At ), (18)

and

Uu )™ = Uu, )" +At(U2)"ul +U®)"ul) +0(At?),
=U)"uMt+SuH"ulu"t —sU’)"ul +O(At?). (19)

Rearranging the terms and simplifying;
u” +A—(a((u UMt +sun)’ulu™) —xult - B((r + DS +DU")u

_(25+1)(un)25un+1_7/un+1) :un +7t(a(5_1)(un)é‘u:
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+rty +A((r +D[2U")" = (S +DU")’u"] H2u")* 7 - (25 +DU")*u"] - u")). (20)

For the rest of this work, let M and N be positive integers, let @ and b be real numbers such that
a<b, and let T be a positive real number. In order to approximate the solutions of the partial

differential Eq. (14) in the special interval | =[a,b] over the time period T , uniform partitions are
fixed of a=X; <...<X; =a+(i —-Dh<...<x =band 0=t,<t, <...<t,, =T of [a,b]
and [0, T ] respectively, each of them havinganormequal to h=(b—a) /(N —1)and At =T /M.
The solution of Eq. (14) isinterpolated and approximated by means of the sinc functions as follows;

N
u(x,t")=u"(x)~>.u’'s; (x), (1)
i1

where

(22)

S, (x)= sinc(x —( ;1)h—a)’

The unknown parameters U j in Eqg. (21) are to be determined by the collocation method. Therefore for

each collocation point X; , Eq. (21) can be written as;
N -

u"(x;)=>.ufS;(x;), i =L...N. (23)
j=1

By substituting Eg. (23) into Egs. (20) and (15) and using the collocation points X, ,i =1,...,N, the
following equations are obtained;

57,00+ {al (s, 00) (S 0)

(307, 000) 2 (s ) (s, 06 0)] =307 1)
—Al(r+D(5 +D) x (gupsj (x, ))S(Ji;uj"*lsj (x,)) —(25+1)(%uj"sj (x,))?
(%u?“sj x) —ygu;‘“s,- )]}

= i}‘? S (x, )+%t{a(5 —J)(ji_:,uj”sj % ))é(guj”s; x)) +K§;‘u?sj"(xi )

+A[ 2 +1)(Zu;"sj (x,))°" —(}/+1)(5+1)(iu 'S, (x, ))J(iu 'S, (x,))
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N N N N
23 urs, )2+ 25 +1(Durs, )= (Luf's, ) -7 2urs, ()]}
i=t j=1 j=1 =1
i =2,...,N -1, (24)

and

N

zu?ﬂsj (Xl) — ga(t n+1),

j=1

JN

duMS, (xy ) =g, t"). (25)
j=1

To obtain a matrix representation of the above equations, the N x N matrices | () = [§}k], 0<i <2

defined by Egs. (9) - (11) are used. Note that the matrix | ¥ is a symmetric matrix, the matrix 1 @ isa
skew symmetric matrix, and the matrix | © s an identity matrix, that is

57 =60, 6 ==6{, 57 =5{". Thus, the following system of N linear equations in N

unknown parameters U Jf”l is obtained, which can be expressed in a matrix form as follows;

Mu™ =P, (26)
where

M =[A, +A, +05At{a(E +D)- xC - B(F -G —yA,)}],

P =[A, +0.5At{a (s -1)E +xC +L2(y +)@U")’ -F -2u")*
+G —yA U + H "

A, =[17:1=2..,N-1j=1...,N andO elsewhere],,,,

A, =[I17:i=LN,j=1...,N and O elsewhere],.,

B=[-1;:i=2..,N-1j=1...,N and O elsewhere].,,

C=[l:i=2..,N-1j=1.,N ad O elsewhere],,

ul =Bu", D=5@U")"" *u] *A,,

E=U")’*B, F=(y+D(5+DUu")’ *A,,

G :(25+1)(u”)25*Ad

H™ =[g,(t"")0,...,0,9," )",

where the symbol * means the componentwise multiplication. This system can be solved by the Gaussian
elimination method.

692 Walailak J Sci & Tech 2014; 11(8)



Numerical Solution of Generalized Burgers-Huxley Mohammad ZAREBNIA and Nastaran ALINIYA

http://wjst.wu.ac.th

Stability analysis

Following Mokhtari and Mohammadi [10], this section presents the stability of the approximation
Eqg. (26) using the matrix method. The Eg. (14) can be linearized; assuming that the quantity u®in
nonlinear termsis locally constant. The error €" at then th time level is given by;

n n n
€ = uexact —u app ! @)
where ug ., is the exact solution and u;p is the numerical solution at the N th time level. The error

equation for the linearized Burgers-Huxley equation can be written as;

[A +0.5At R]e"* =[A, — 0.5At R]e", (28)

where R =[aE +xC — frA,].
Therefore, the Eq. (26) can be written as;

e =Ge", (29)
where G =[A +0.5At R][A, —0.5At RY].

The numerical scheme is stable if ||G ||,<1, which is equivalent to p(G) <1, where p(G)
denotes the spectral radius of the matrix G. From Eq. (28), it can be seen that the stability is assured if all
the eigenvalues of the matrix [A +0.5At R]'[A, — At R] satisfy the following condition;

An —0.5At
|A“—}bR 1. (30)
A, +0.5At A,
where 1, , 4z and A, are eigenvalues of the matrices Ay,Rand A respectively. In the case of
complex eigenvalues 4, =a, +ib,, 4, =a, +ib, , Az =a; +ib; where a,,8, ,a; b, b,
and bR are any real numbers, the inequality (30) takes the following form;

a,, —0.5Ata; +i (b, —0.5Athy) 1

; <1 (31)
a, —0.5Ata, +i (b, —0.5Athy)
Theinequality (31) is satisfied if;
At[ag (a, +a, ) +bg (b, +b, )] +(b2 —b7 ) > 0. 32)

For real eigenvalues, the inequality (30) holds true if;
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0< A, +44 S24, + Al 4. (33)
This shows that the scheme (26) is unconditionally stableif;

At[aR(aA+aAd)+bR(bA+bAd ) +(b§—b§d)20, (34)
for complex eigenvalues and if;

0< Ay, + 44 S22, + At Ay, (35)

for real eigenvalues.

Results and discussion

In order to show the numerical results of solving the Burger-Huxley equation based on the sinc-
collocation method (SCM) and discuss the accuracy of the method, the absolute errors of this method are
tabulated, compared in tables, and considered. The error function is given by

Error qu(x;)-u"(x;)|, j=-N,...,N, where Uand u" represent the exact and approximate

solutions, respectively.
For K =1, the exact solution of Eq. (14) can be found in [5-7,11];

u(x,t) = [g +% tanh{ oy (x —{l7+ “5 _dx 52{173(5;; O, (36)

whereo = 5(p—a) ! 41+ ) and p =+Ja® +4B(1+5). The examples are solved for | =(0,1) and
different valuesof 7,9, #,At,x and k. We select the following examples from [6,11-12].

Example 1 The present method is applied to Eq. (14) for k =1,a=1,=1, y=0.001,t =0.01

and the absolute errors are given in Table 1 for different values of M =N —1. When the exact results
are compared with the current ones, the results are very accurate as indicated in the table.

Table 1 Numerical solution of Burger's problem for different values of N.

X Exact SCM: m=5 scM: m=10 SCM: m=20
0.0 0.0005000 0.0005000 0.0005000 0.0005000
0.2 0.0005000 0.0005263 0.0005085 0.0005014
0.4 0.0005001 0.0004978 0.0004980 0.0004997
0.6 0.0005001 0.0004978 0.0004980 0.0004998
0.8 0.0005001 0.0005264 0.0005086 0.0005015
1.0 0.0005001 0.0005001 0.0005001 0.0005001
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Example 2 In this example, solutions of Eg. (14) a different values of t for

k=la=10=1p=1y= 103 and h=0.1 have been obtained and results are shown in Table 2.
As can be seen from this table, the error decreases when the At is decreased.

Table 2 Maximum absolute errorswhen k=1, =1,6=1,4=1,y=10°and h =0.1.

t At =0.01 At =0.001 At =0.0001
0.2 8.68557E-5 8.68497E-5 8.68496E-5
0.3 8.90784E-5 8.90750E-5 8.90749E-5
0.6 9.02495E-5 9.02492E-5 9.02492E-5
09 9.03011E-5 9.0308E-5 9.03080E-5
1 9.03119E-5 9.03119E-5 9.03119E-5
2 9.03353E-5 9.03353E-5 9.03353E-5
3 9.03578E-5 9.03578E-5 9.03578E-5

Example 3 Eq. (14) with 0 =1 is reduced to Burger’ s-Huxley equation. Table 3 shows absolute errors
for N =26,At =0.0001 and different values of o and X with x =1, =0.1, f=0.001and

7 =0.0001.

Table 3 The absolute errors for different valuesof ¢ and X with & = 0.1, #=0.001 and y = 0.0001.

X o=1 0=2 o=4

0.12 3.47078E-6 4.90843E-4 5.83414E-3
0.24 6.7432E-7 9.53632E-5 1.13407E-3
0.36 1.17147E-7 1.65671E-5 1.97018E-4
0.48 4.89704E-9 6.92546E-7 8.23580E-6
0.60 2.33626E-8 3.30397E-6 3.92910E-5
0.72 4.47594E-7 6.32993E-5 7.52760E-4
0.84 1.96073E-7 2.77289E-4 3.29754E-3
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Example 4 Table 4, presents the numerical solution of Burger’s-Huxley equation (BHE) at t = 0.01
This table shows absolute errors for various values of yand X aa x =10 =1, At =0.0001,

N =26 and o =5. Very accurate results can be seen in the table when the exact and the current
results are compared.

Table 4 Errors for the cases &, 5,0 =1and variousvaluesof y and X.

X y =107 y=107 y=10" y=10"°
0.04 7.43865E-4 7.42953E-5 7.42862E-6 7.42853E-7
0.12 3.48403E-4 3.47207E-5 3.47087E-6 3.47075E-7
0.24 6.83877E-5 6.75229E-6 6.74366E-7 6.74280E-8
0.36 1.25194E-5 1.17905E-6 1.17178E-7 1.17105E-8
0.48 1.19727E-6 5.55794E-8 4.91813E-9 4.85416E-10
0.60 3.07135E-6 2.40508E-7 2.33864E-8 2.33200E-9
0.72 4.53298E-5 4.48118E-6 4.47602E-7 4.47550E-8
0.84 1.96411E-4 1.96103E-5 1.96072E-6 1.96069E-7
0.96 7.4306E-4 7.42873E-5 7.42854E-6 7.42852E-7

Example 5 Table 5 shows absolute errors for various valuesof f,X with k =1, a =1 At =0.0001
and y =107,

Table5 N =26, =1y =10° and t =1.

X p=1 p =10 p =50 S =100

0.04 7.42886E-5 7.42915E-5 7.43070E-5 7.43272E-5
0.12 3.47138E-5 3.47179E-5 3.47317E-5 3.47473E-5
0.24 6.74932E-6 6.75343E-6 6.76260E-6 6.77099E-6
0.36 1.17734E-6 1.18108E-6 1.18843E-6 1.19451E-6
0.48 5.47310E-8 5.86979E-8 6.63072E-8 7.24926E-8
0.60 2.39412E-7 2.43305E-7 2.50887E-7 2.57184E-7
0.72 4.48216E-6 4.49008E-6 4.50539E-6 4.51826E-6
0.84 1.96166E-5 1.96365E-5 1.96772E-5 1.97116E-5
0.96 7.43053E-5 7.43674E-5 7.44920E-5 7.45945E-5
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Example 6 Consider Eq. (14) with initial and boundary conditions defined as;

u(x,0)=snzx, 0<x <1,
u(0,t) =0, 0<t <],
u(Lt) =0, 0<t <1,

The exact solution is not known in this case. In Figures 1 and 2, the sinc-collocation method has
been plotted over different grids of nodal size 10,20 and 30 for the parametric values
a=1,=1y=000LAt =0.001,5 =1 for the singular perturbation parameter x = 27" at time
level t =0.1. The solution plots turn out to be the same over all the different grids of size greater than
20 mesh points. All of the further computations have been carried out on the grid with 25 mesh points.

For different values of the parameter ¢ and x the sinc-collocation is presented. In Figure 3 and
Figure 4, the sinc-collocation is plotted for ¢ =1, =1,y = 0.001,t = 0.1,6 =1,2 and
different values of the singular perturbation parameter k. In each plot, for different values of kK, one can
notice the development of the boundary layers. As the singular perturbation parameter x — O, the
boundary layer becomes sharper.

In Figures 5 and 6, the sinc-collocation is plotted for « = 1, #= 1, y = 0.001, At = 0.001, x = 27,
6=1, 2 at different time levels.

10}
08f
061

n=10 % W o
04}

=30 — —
w2k n=40 e e e

02 0.4 06 08 10

Figurel § =La =1,4=1y=0.00Lt =0.1, x = 2 "and different n .
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Conclusions

The present study set out to solve the nonlinear Burgers-Huxley equation. To achieve this aim, the
sinc-collocation method was applied. The numerical examples were presented and the results obtained
were compared with the exact solution. The findings indicate that that the sinc-collocation method can be
considered as a beneficial numerical method for solving generalized Burgers-Huxley equation.
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