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Abstract 

In this paper, an accurate approximate solutions for 2 problems arising in heat transfer straight fins 
are presented using optimal homotopy analysis method (OHAM). The approximated solutions are 
obtained at different values of parameters for the 2 problems are illustrated, and the fin efficiency is also 
evaluated. Moreover, the 2 problems are of nonlinear convective-radiative conduction and power-law fin-
type. The obtained series solutions of OHAM are compared with the numerical solution (using 
Mathematica solver) and exact solutions. The square residual error is obtained to verify the accuracy of 
the presented method. 

Keywords: Optimal homotopy analysis method, series solutions, fin efficiency, the square residual error, 
convergence-controller parameter. 
 
 
Introduction 

We consider the nonlinear 2 point boundary value problem; 
 

22 2
2 4

2 2 0d u d u duu u u
dxdx dx

γ λ β
  − + + − =     

                                                                                                 (1) 

with boundary conditions; 

( ) ( )' 0 0,   1 1      u u= =                                                                                                                                  (2) 

where , ,γ λ β  are parameters. Eq. (1) contains 2 nonlinear problems arising in heat transfer equations. 
The first problem is called the nonlinear convective-radiative conduction problem is one dimensional heat 
transfer in a straight fin and the fin surface transfers heat through both convection and radiation, we 
consider 1 λ ε= , 2β ε= , Nγ =  and ( ) ( ) u x Xθ= where 1 ε is the so-called thermal conductivity 
parameter, 2ε  is the thermal radiative parameter, N is the thermo-geometric fin parameter and ( ) Xθ is 
the temperature distribution within the fin see [1,2], Eqs. (1) and (2) become; 

( ) ( )
22 2

2 4
1 22 2 0,  ' 0 0 ,    1 1 .d d dN

dXdX dX
θ θ θθ ε θ ε θ θ θ

  − + + − = = =     
                                                 (3) 

The second problem called the power-law fin-type problem is a one-dimensional steady-state heat 
conduction equation for the temperature distribution along a straight fin with the nonlinearity of high 
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order if 0λ γ= =  and β ε= where ε is the convective-conductive parameter of the fin and ( ) ( )u x xθ=  
see [3,4], Eqs. (1) and (2) become; 

 

( ) ( )
2

4
2   0 ,    ' 0 0 ,    1 1.d

dx
θ ε θ θ θ− = = =                                                                                                   (4) 

Fins are very frequently encountered in many engineering applications to enhance heat transfer 
between a solid surface and its convective, radiative, or convective radiative surface, fins are used in air 
conditioning, air-cooled craft engines, refrigeration, cooling of computer processors, cooling of oil 
carrying pipe lines etc. Most engineering problems, especially some heat transfer equations are nonlinear, 
and in most cases it is difficult to solve them, especially analytically, so these equations may be 
approximated using semi-analytical techniques such as the differential transform method (DTM) [1], 
homotopy perturbation method (HPM) [2,3], the Adomian’s decomposition method (ADM) [5,6], and 
variational iteration method (VIM) [7]. However, these methods cannot provide us with a simple way to 
adjust and control the convergence region and rate of giving approximate series. Therefore in this work, 
the problem (1) solved for different values of the parameters ,  γ λ and β using the optimal homotopy 
analysis method (OHAM). The homotopy analysis method (HAM) initially proposed by Liao in his Ph.D. 
thesis [8] was proposed to get analytical approximations of highly nonlinear equations. The HAM can 
guarantee the convergence of the series solutions by auxiliary parameters especially the so-called 
convergence-controller parameter   [9,10]. In recent years, HAM and its modifications have been 
successfully employed to solve many types of nonlinear problems in science and engineering [11-21]. 
 
Materials and methods 

Analysis of method 

Consider the nonlinear 2 boundary value problems in finite domain; 
 

( ) ( ) ( )'' , ' ,u x f u u g x+ =                                            (5) 
 
with boundary conditions; 
 

'(0)   ,   (1)  , u A u B= =  (6)            
 
( ), 'f u u  is the nonlinear function, and ( )g x  is the non-homogeneous term, the Eq. (5) becomes; 

 
( ) ( ) 0.N u x g x− =                                                                                                                                     (7) 

 
where N is a nonlinear operator, x  denote independent variable, and ( )u x  is an unknown function. The 
first step in this method adds the new condition (0)  u α=  or ( )1'u α= where α  is unknown and will 
determine later, then the boundary conditions (6) become; 
 

'(0)   ,   (0) .u A u α= =                                                                                                                                   (8) 
or 
( )   ,   '(11 ) .u B u α= =                                                                                                                                   (9) 
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The other boundary conditions ( )1u B=  in Eq. (8) or '(0)u A=  in Eq. (9) use to obtain as a function of 
convergence-controller parameter  , we construct the general zero-order deformation equation as 
follows; 
 
( ) ( ) ( ) ( ) ( ) ( )01 , , ( , , )  .p L x p u x p H x N x p g xφ α φ α− − = −                                                               (10) 
 
Where denote the so-called embedding parameter. 0≠  is an auxiliary parameter, L  is an auxiliary 
linear operator. The HAM is based on a kind of continuous mapping ( ) ( ) ( ), , , ; , ,u x x p x pα φ α φ α→ is 

an unknown function, ( )0 ,u x α is an initial guess of ( ),u x α and ( )H x denotes a non-zero auxiliary 
function. It is obvious that when the embedding parameter 0p = and 1p = , Eq. (10) becomes; 
 
( ) ( ) ( ) ( )0, ,0 ,   ,   , ,1 , .x u x x u xφ α α φ α α= =                                                                                             (11) 

 
respectively. Thus as p increases from 0 to 1, the solution ( ), ,x pφ α varies from the initial guess ( )0 ,u x α  

to the solution ( ),u x α . Expanding ( ), ,x pφ α in the Taylor series with respect to p , one has; 
 

( ) ( )0
1

, , , ( , )  ,m
m

m
x p u x u x pφ α α α

+∞

=

= +∑
                                                                                                  

(12) 

where 

( ) ( )
0

, ,1, ,
!

m

m m
p

x p
u x

m p
φ α

α
=

∂
=

∂
                                                                                                              

(13) 

 
The initial guess ( )0 ,u x α of the solution ( ),u x α  can be determined by the rule of solution expression as 

follows. From Eq. (5), with the new boundary condition Eq. (8) or Eq. (9), the solution ( ),u x α expressed 
by a set of base functions; 
 

{ }( ) 0,1, 2,3 .    ,   0  1  .nx c n c or− = … =
                                                                                                       

(14) 

 
In the form; 
 

( ) ( )( )
0

., n
n

n

u x f x cα α
+∞

=

= −∑
                                                                                                                      

(15) 

 
The initial guess ( )0 ,u x α can be chosen from Eq. (15) so that it achieves the boundary condition Eq. (8) 
or Eq. (9). 
The second goal is to determine the higher order terms ( ), ( ,1, 2, .)mu x mα … . Define the vector; 
 
( ) { }0 1( ), ( ), , ( ) .i iu x u x u x u x= …

                                                                                                               (16) 
 
Differentiating Eq. (10) m times with respect to the embedding parameter p and then setting 0p = and 
finally dividing them by !m . We have the so-called mth -order deformation equation; 



An Analytic Solutions to a Parameterized Problems Hany Nasr HASSAN and Mourad Samir SEMARY 
http://wjst.wu.ac.th 

Walailak J Sci & Tech 2014; 11(8) 
 
662 

[ ] ( ) ( )1 1( , ) ( , )  ,m m m mL u x u x p H x R uα χ α− −− = 
                                                                                       (17) 

 
and its boundary condition Eq. (18) or Eq. (19)  for the new boundary conditions Eq. (8) and Eq. (9) 
respectively; 
 

( ) ( )' 0    ,  0 0 0    , m mu u= =
                                                                                                                     

(18) 
(1) 0    ,     ' (1) 0  ,    1.m mu u m= = ≥

                                                                                                            
(19) 

 
where 

( )
( ) ( )1

1 1

0

( , , )1 ,
1!

m

m m

p

N x p g x
R u

m p
φ α−

− −

=

∂ −  =
− ∂



                                                                                   

(20) 

and 
0       1
1         m

when m
otherwise

χ
≤

= 
                                                                                                                                

(21) 

 
Now the solution of the mth -order deformation Eq. (17) for 1 m ≥  when ( ) 1H x =  becomes; 
 

( ) ( ) ( )( )1
1 1, , .m m m mu x u x L p R uα χ α −
− −= + 



                                                                                             
(22) 

then 

( ) ( ) ( )
0

,   , , , , .
M

M m
m

u x U x u xα α α
=

≅ = ∑                                                                                                      (23)
 
 

 
The third goal is to determine the optimal value of convergence-controller parameter  , from Eq. (23) and 
unused boundary conditions from Eq. (6) in new boundary condition Eq. (8) and Eq. (9), it ( )  1  u B= or 

'(0)u A= , we can  find the relation between the convergence-control parameter  and α ; 
 

( )1, ,  ,MU Bα =

                                                                                                                                      
(24) 

or 
( )' 0, ,  .MU Aα =

                                                                                                                                     
(25) 

 
By plotting the Eq. (24) or Eq. (25) given the set R  for the convergence-control parameter that where the 
value of constantα . And using any   belongs to R  one can get a convergent series solution. However, 
the convergence rate is also dependent upon   but the so-called  -curve approach cannot give the 
‘‘optimal” value of  in R . One can define the exact square residual error   M∆ . 
 

( ) ( )( )
0

2
1

( , ,    ,      M MN U x g x dxα= −∆ ∫ 

                                                                                               
(26) 

 
However, more and more CPU time is needed to calculate the exact square residual error M∆ , especially 
for large M , because   M∆ containing two unknown parametersα and  therefore we can use the so-called 
averaged residual error [24] defined by; 
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( ) ( )( )2

0

.1 ( , ,
k

M M
s

E N U s x g s x
k

α
=

= ∆ − ∆∑ 
                                                                                              

(27) 

 
The minimum averaged residual error is given by a nonlinear algebraic equation; 
 

0   ,  ME∂
=

∂                                                                                                                                              
 (28) 

 
The new approach get the optimal value of convergence-controller parameter   by solving Eq. (24) or 
Eq. (25) and Eq. (28). We will use this new approach to solve the nonlinear problem Eq. (1) at large 
different values of the parameters ,  γ λ  and β . 
 
Method implementation 

We can consider the problem Eq. (1) with the new boundary condition according to Eq. (8) as 
follows; 
 

( ) ( )
22 2

2 4
2 2 0 ,  0   ,   ' 0 0.     d u d u duu u u u u

dxdx dx
γ λ β α

  − + + − = = =                                                            
(29) 

 
We choose the auxiliary linear operator; 
 

( ) ( )2

2

, ,
, ,    ,

x p
L x p

x
φ α

φ α
∂

=   ∂                                                                                                               
(30) 

 
with the property; 
 
[ ]0 1 0  , L c c x+ =                                                                                                                                        (31) 

 

( )
22 2

2 4
2 2 ,, ,  N x p

xx x
φ φ φφ α γ φ λ φ βφ

 ∂ ∂ ∂ = − + + −       ∂∂ ∂                                                                              
(32) 

 
and  
 

( )
2 1 1

21
1 1 1 1 12

0 0 0 0

'' ' '  , 
jm m i

m
m m m i m i i m i m i i j j k k

i i j k

d u
R u u u u u u u u u u

dx
γ λ β

− −
−

− − − − − − − − − −
= = = =

 
= − + + − 

 
∑ ∑∑∑

                         
(33) 

 
The solution of the mth -order deformation Eq. (22) for 1m ≥ ; 
 

( )1 1 0 1( , ) ( , ) .m m m m mu x u x R u dxdx c c xα χ α− −= + + +∫∫



                                                                            

(34) 
 
where the integration constants 0c  and 1c are determined by the boundary conditions according to Eq. 
(18); 
 

( ) ( )0 0 ,    ' 0 0.m mu u= =                                                                                                                            (35) 
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We choose only initial guess ( )0 ,  u x α  imposed according to the initial condition Eq. (29) and Eq. (15). 
 

( )0 , .u x α α=                                                                                                                                             (36) 
 
Eqs. (34) and (35) can be easily solved using computational software such as Mathematica. For example 
the solution of Eq. (34) at m = 1 is; 
 

( )
2 4

2
1 , , , , , ( ),

2 2
u x x γ α βαα γ λ β = − + 

                                                                                                   
(37) 

 
( )( ), , 2,3, 4, . . .mu x mα = can be calculated similarly. Hence the series solution is; 

 
( ) 0 1 2 3

4 2 2 3 2

2 3 2 2

2 3 2 2

2 3 2 3 2

2 3 2 3 2 4 2

32 2 ( )(1 )
2

( )(1 )(1 )
1 ( )(1 )(1 )
2

1 ( )(4 )
8

1 ( )(4 ( 2 ) (1 2 ) 11 5
12

u x u u u u

x

h

α β αγ α α β γ αλ

α α α β γ αλ αλ

α α β γ αλ αλ

α α β γ α β γ

α α β γ α β β γ α βλ αγ

= + + + +…

 − − − + + 
 

= + − + + + + 
 
 − + + + + +… 
 

+ +

+ + + + + + +
+

  

  

  



    4

2 3 2 2 3 2 2

4 2 2 5 2 2 2 2 2

)

1 ( )(4(1 4 3 ) (1 4 3 )
24
11 (2 3 ) 5 (2 3 ) 2

..

1 1

.

2 )

x
λ

α α β γ α β γ

α βλ αγ λ α βλ α γ λ

+ + + + + + +

+ + +

 
 
 
 
  +
 
 
 
 + + + + …

    

                                       (38) 
 
The approximation solution ( ), , , , ,MU x α γ λ β  to the strong nonlinear problem Eq. (29); 
 

( ) ( )
M

m
m 0

, , , , , u , , , , , .MU x xα γ λ β α γ λ β
=

= ∑ 
                                                                                           

(39) 

 
The relation between the convergence-control parameter   andα , using the boundary condition 

( )1 1u =  in Eq. (39), it becomes; 
 
( ) ( )1 1, , , , , 1.Mu U α γ λ β≅ =                                                                                                             (40) 

 
Finding the value of (0)uα =  and the optimal value of the convergence-control parameter  , by solving 
Eq. (40) and Eq. (28). 
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Results and discussion 

Case (1)  
If 1λ ε= , 2 ,   Nβ ε γ= =  and ( ) ( )u x Xθ=  then problem Eq. (1) becomes Eq. (41) known as the 
nonlinear convective-radiative conduction equation; 
 

( ) ( )
22 2

2 4 '
1 22 2 0  ,  0 0 ,   1 1  . d d dN

dXdX dX
θ θ θθ ε θ ε θ θ θ

  − + + − = = =                                                          
(41) 

 
The approximation solution ( )Xθ  to Eq. (41) from Eq. (39) becomes; 
  

( ) ( ) ( )
M

1 2 m 1 2
m 0

, , , , , u , , , , , .MX U X N X Nθ α ε ε α ε ε
=

= = ∑ 
                                                                      

(42) 

 
And from Eq. (40) the relation between ( )0α θ=  and the convergence-control parameter   becomes; 
 
( ) ( )1 21 1, , , , , 1.MU Nθ α ε ε≅ =                                                                                                                (43) 

 
Recently, many authors have taken into consideration different values of 1 2, ,    Nε ε  in Eq. (41) and solved 
using different methods such as DTM [1], HPM [2], Galerkin Method (GM) [23], and traditional 
homotopy analysis method [24], but in this study we successfully solved the nonlinear problem Eq. (41) 
by the OHAM at larger values of parameters 1 2,ε ε and N  compared with the numerical solution 
(Mathematica solver) and evaluate the fin efficiency η  prescribed in [1]; 
 

( )
1

0

.X dXη θ= ∫
                                                                                                                                          

(44) 

 
Figure 1 is  α −  curve of Eq. (43) for small values of the parameters 1 2  ,ε ε  at 1 2  0.2, 1Nε ε= = =  

for different Mth -orders of approximation, it is easy to discover the valid region of  (  R ) that 
corresponds to the line segment nearly parallel to the horizontal axis (constantα value) but not get the 
optimal value from Figure 1, we can find this value by solving the Eq. (43) and Eq. (28). Table 1 shows 
a solution for Eqs. (43) and (28) for 5th, 8th and 10th order of approximation, one can see the difference 
between the value of (0)α θ=  obtaining the used method and numerical value decreasing as the number 
of the order of approximation M  increasing and the value ofα at 10th order best of Galerkin method 
(GM) [23] and DTM [1], one can see in Table 1 the square residual error   M∆ decreases with increase 
order of approximation M and also approaching to zero, this means increasing order of approximation M , 
the solution convergence to the numerical solution. This indicates the accuracy of the used method. The 
obtained efficiency value for fin η  (44) in this case 0.775077. 

Figures 2 - 6 are α −   curves of Eq. (43) for different values of the parameters 1 2  ,ε ε and N  at the 
15th order of approximation, we find the value (0)α θ=  and the optimal value of   summarized in 
Tables 2 - 6, one can see these tables find the square residual error 0M∆ ≅  and Figures 7 - 11 

temperature distribution ( )Xθ  when the used method is compared with numerical solutions. This 
indicates the high efficiency of the used method. The fin efficiency η  is summarized in Tables 2 - 6 for 
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different values of parameters 1 2  ,ε ε and N , the fin efficiency decreases when the thermal radiative 
parameter 2ε  increases see Tables 2 - 4, but the fin efficiency increases when the thermal conductivity 
parameter 1ε increases see Tables 5 and 6. Also by comparing Tables 2 - 4 and Tables 5 and 6 with each 
other we see that the fin efficiency η  decreases when the thermo-geometric fin parameter N  increases. 
 
 
Table 1 Solving Eq. (43) and Eq. (44) for different Mth  - order approximation and compared by 
different methods. 
 

10K =  , 1 21,   0.2N ε ε= = =  

M∆ (26) (0)α θ=    order of approximation( M ) 
1.007 × 10 -7 0.6669748 -0.9401 5 
1.834 × 10 -13 0.66701341 -0.8705 8 

4.7393 × 10 -14 0.667013361 -0.8810 10 

 
0.667013363 Numerical solution 
0.667013379 DTM solution [1] 

0.6670130 GM solution [25] 
 
 
Table 2 The fin efficiency and the square residual error at 0.5N = , 1 0.5ε = and different values of 2ε . 
 

115, 10, 0.5,  0.5M K N ε= = = =  

 (0)α θ=  

2ε  Numerical Used method 
(OHAM)   M∆ (26) η (44) 

0.5 0.83212549 0.832155 -0.6958 4.750 × 10 -19 0.886712 
2 0.70546201 0.7054620 -0.6057 4.021 × 10 -14 0.796767 
4 0.62306445 0.6230645 -0.6403 1.854 × 10 -14 0.735078 
10 0.50882308 0.5088231 -0.8954 4.5480 × 10 -13 0.643575 
15 0.45967979 0.4596798 -0.9905 1.506 × 10 -12 0.6014069 
30 0.3810879 0.3810875 -1.2561 1.212 × 10 -8 0.529360 
80 0.285558 0.2855652 -1.4580 0.0000317 0.431816 

 
 
Table 3 The fin efficiency and the square residual error at 2N = , 1 0.5ε = and different values of 2ε . 
 

115, 10, 2,  0.5M K N ε= = = =  

 (0)α θ=   

2ε  Numerical Used method 
(OHAM)   M∆ (26) η  (44) 

0.5 0.33423 0.3342288 -0.7300 6.902 × 10 -8 0.544332 
2 0.322051 0.3220484 -0.8506 6.430 × 10 -8 0.531863 

10 0.2800092 0.2800065 -0.6938 2.680 × 10 -7 0.486521 
50 0.20568 0.2057039 -1.0249 0.00204 0.395974 
80 0.18256 0.1824 -1.2082 0.011 0.363973 

 
 



An Analytic Solutions to a Parameterized Problems Hany Nasr HASSAN and Mourad Samir SEMARY 
http://wjst.wu.ac.th 

Walailak J Sci & Tech 2014; 11(8) 
 

667 

Table 4 The fin efficiency and the square residual error at 3N = , 1 0.5ε = and different values of 2ε . 
 

115, 10, 3,  0.5M K N ε= = = =  
 (0)α θ=   

2ε  Numerical Used method 
(OHAM)   M∆  (26) η  (44) 

0.5 0.132143 0.1321785 -0.7469 0.0000396 0.381078 
10 0.122076 0.1221183 -0.7265 0.000109 0.361655 
80 0.091136 0.0908703 -1.0883 0.072 0.295483 

 
 
Table 5 The fin efficiency and the square residual error at 0.5N = , 2 0.5ε =  and different values of 1ε . 

 

215, 10, 0.5,  0.5M K N ε= = = =  

 (0)α θ=   

1ε  Numerical Used method 
(OHAM)   M∆  (26) η  (44) 

2 0.8995948701 0.89959487 -0.3684 3.282 × 10 -16 0.932819 
4 0.934650779 0.93465078 -0.2150 3.712 × 10 -18 0.956372 
10 0.968067559 0.96806756 -0.08714 3.880 × 10 -20 0.978705 
15 0.977605679 0.97760568 -0.0478 1.49 × 10 -17 0.985068 

 
 
Table 6 The fin efficiency and the square residual error at 2N = , 2 0.5ε = and different values of 1ε . 
 

215, 10, 2,  0.5M K N ε= = = =  

 (0)α θ=   

1ε  Numerical Used method 
(OHAM)   M∆  (26) η (44) 

2 0.51134 0.5114584 -0.2910 0.000056 0.677030 
4 0.652804 0.6528261 -0.1168 0.000133 0.771608 

10 0.8185743 0.8185747 -0.0962 6.643 × 10 -9 0.880155 
15 0.87060389 0.8706039 -0.0717 1.090 × 10 -11 0.914329 

 
 

Figures 7 - 9 show temperature distribution ( )Xθ  obtained from the used method and numerical 
solutions for different values of 2  ,  Nε . Figure 7 depicts the effect of the thermal radiative parameter 2ε
on temperature at 10.5,   0.5N ε= = . The tip end temperature and mean temperature decrease when the 
thermal radiative parameter 2ε  increases. Also by comparing Figures 7 - 9 we see that the tip end 
temperature decreases and the mean temperature when the thermo-geometric fin parameter N  increases. 
Figures 10 and 11 shows temperature distribution ( )Xθ  obtained from the used method and numerical 
solutions for different values of 1  ,  Nε . Figure 10 depicts the effect of the thermal conductivity 
parameter 1ε  on temperature at 20.5,   0.5N ε= = . The tip end temperature and mean temperature 
increases when the thermal conductivity parameter 1ε  increases. Also by comparing Figures 10 and 11 
we see the tip end temperature and mean temperature decrease when the thermo-geometric fin parameter 
N  increases. 
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Figure 1 α −   curves of Eq. (43) at 1 2  0.2,  1Nε ε= = = for different Mth -order of approximation. 
 
 

 

Figure 2 α −   curves of Eq. (43) at 1  0.5,  0.5Nε = =  and 15M =  for different values of 2ε . 
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Figure 3 α −  curves of Eq. (43) at 1  0.5,  2Nε = = and 15M =  for different values of 2ε . 
 
 

 

Figure 4 α −  curves of Eq. (43) at 1  0.5,  3Nε = = and 15M = for different values of 2ε . 
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Figure 5 α −  curves of Eq. (43) at 2  0.5,  0.5 Nε = = and 15M =  for different values of 1ε . 
 
 

 

Figure 6 α −  curves of Eq. (43) at 2  0.5,  2Nε = = and 15M =  for different values of 1ε  . 
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Figure 7 Comparison between the solutions from the used method and numerical solutions for ( )Xθ  at 

10.5,   0.5N ε= = , 15 M =  and different values of 2 ε . 
 

 
 

Figure 8 Comparison between the solutions from the used method and numerical solutions for ( )Xθ  at 

12,   0.5N ε= = , 15M =  and different values of 2 ε . 
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Figure 9 Comparison between the solutions from the used method and numerical solutions for ( )Xθ  at 

13,   0.5,  15N Mε= = =  and different values of 2 ε . 
 
 

 
 
Figure 10 Comparison between the solutions from the used method and numerical solutions for ( )Xθ  at 

20.5,   0.5, 15N Mε= = =  and different values of 1ε . 
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Figure 11 Comparison between the solutions from the used method and numerical solutions for ( )Xθ  at 

22,   0.5, 15N Mε= = =  and different values of 1ε . 
 
 
Case (2) 

The temperature distribution equation in a thick rectangular fin radiation to free space with the 
nonlinearity of high order if   0,λ γ β ε= = =  and ( )  ( )u x xθ=  then the problem Eq. (1) becomes; 
 

( ) ( )
2

4 '
2   0 ,   0 0  ,  1 1 .d

dx
θ ε θ θ θ− = = =

                                                                                                      
(45) 

 
The approximation solution ( )xθ  to Eq. (45) form Eq. (39) becomes; 
 

( ) ( ) ( )
M

m
m 0

, , ,   u , , , ,Mx U x xθ α ε α ε
=

= = ∑ 
                                                                                               

(46) 

 
From Eq. (40) the relationship between ( )0α θ=  and the convergence-control parameter  becomes; 
 
( ) ( )1 1, , , 1 ,MUθ α ε≅ =                                                                                                                          (47) 

 
The problem Eq. (45) has been successfully solved by the homotopy analysis method (HAM) in [4, 

25] for the values of 0.7,1 ε =  and 5 , but in this study, we have successfully solved for large values of ε  
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and compared the obtained series solution with the exact solution [26]. To find the optimal value of the 
convergence-control parameter   by minimizing the square residual error M∆ . 

Figures 12 and 13 areα −  curves of Eq. (47) at the orders of approximations 5M =  for small 
values of ε  and 15M =  for large values of ε , it is easy to discover the valid region of   (  R ) that 
corresponds to the line segment nearly parallel to the horizontal axis (constant α value) but not get the 
optimal value from the α −   figures, the value of   can be found by solving Eq. (47) and Eq.(28), the 
summary of the optimal values of   for different value of ε  in Tables 7 - 8 and are compared with the 
value of ( )0  θ α=  from the exact solution [28], from these tables, it is observed that the square residual 
error, 0M∆ ≅ . Figure 14 shows the comparison of between the used method and exact solutions for the 

value of ( )0θ α=  at different values of ε . This indicates the high accuracy of the used method. 
 
 
Table 7 Comparison between exact solutions and used method solutions for value of (0)θ at 5M = for 
different values of ε . 
 

5,  100M K= =  
ε  Exact (0)θ [28] (0)α θ=    M∆ (26) 

0.7 0.8186424 0.8186411 -1.1545 2.398 x 10 -10 
1 0.7791451 0.7791403 -1.1980 4.183 x 10 -9 
2 0.69431 0.69427 -1.3059 6.861 x 10 -7 
5 0.57559 0.57532 -1.4824 0.0002689 

 
 
Table 8 Comparison between exact solutions and used method solutions for value of (0)θ  at 15M =  for 
different values of ε . 
 

15,  100M K= =  
ε  Exact (0)θ  [26] (0)α θ=    M∆  (26) 
10 0.48838571 0.488385702 -1.4719 1.4983 x 10 -10 
20 0.4079422 0.4079419 -1.6059 2.292 x 10 -7 
40 0.336474 0.336471 -1.7471 0.000099574138 
60 0.299197 0.299186 -1.8299 0.00208519 
80 0.274788 0.274768 -1.8873 0.01466 

100 0.2570 0.2569 -1.9303 0.059545 
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Figure 12 α −   curves of Eq. (47) for different values of ε  at 5M = . 
 
 

 
 
Figure 13 α −  curves of Eq. (47) for different values of ε  at 15M = . 
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Figure 14 Compression between the used method and exact solutions for the value of ( )0θ α=  at 
different values of ε . 
 
 
Conclusions 

The used method (OHAM) has been successfully solved practical nonlinear two point boundary 
value problems with strong nonlinear terms and large values of parameters. The figures and tables clearly 
show the high accuracy of the used method to solve heat transfer problems at different values of 
important parameters. In addition, the fin efficiency is also accurately evaluated. The optimal value of the 
convergence controller parameter   can be obtained successfully using the used approach which give the 
fastest convergence series. 
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