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Abstract 

In this article, a numerical study for fractional reaction-subdiffusion equations is introduced using a 

class of finite difference methods. These methods are extensions of the weighted average methods for 

ordinary (non-fractional) reaction-subdiffusion equations. A stability analysis of the proposed methods is 

given by a recently proposed procedure similar to the standard John von Neumann stability analysis. 

Simple and accurate stability criterion valid for different discretization schemes of the fractional 

derivative, arbitrary weight factor, and arbitrary order of the fractional derivative, are given and checked 

numerically. Numerical test examples, figures, and comparisons have been presented for clarity. 

Keywords: Weighted average, finite difference approximations, fractional reaction-subdiffusion quation, 

stability analysis 

  

 

Introduction 

In the last few years, there have been extensive studies of fractional order differential equations 

(FDEs), due to their important applications in many vital areas of research, such as physics, medicine and 

engineering. Moreover, fractional calculus studies can allow  understanding of many fractal phenomena 

which cannot be studied by ordinary means. There are many applications for FDEs; see [1-7]. The studied 

models have received a great deal of attention, such as in the fields of viscoelastic materials [8], control 

theory [9], advection and dispersion of solutes in natural porous or fractured media [1], and anomalous 

diffusion. Due to the difficulties in claiming the exact solutions for FDEs, approximate and numerical 

techniques are extensively used (see for example [10] and the references cited therein). Recently, several 

numerical methods have been adapted to solve fractional differential equations, see [11-17] and the 

references cited therein. 

In this section, the definitions of Riemann-Liouville and the Grünwald-Letnikov fractional 

derivatives which will be used later are given [18,19]. 

 

Definition 1: The Riemann-Liouville derivative of order   of the function )(xy  is defined by; 

10
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where n  is the smallest integer exceeding   and (.) is the Gamma function. If Nm= , then the 

above definition coincides with the classical thm   derivative ).()( xy m
 

Definition 2: The Grünwald-Letnikov definition for the fractional derivatives of order 0> of the 

function )(xy is defined by; 
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The Grünwald-Letnikov definition (2) is simply a generalization of the ordinary discretization 

formula for integer order derivatives. The Riemann-Liouville and the Grünwald-Letnikov approaches 

coincide under relatively weak conditions; if )(xy  is continuous and )(xy  is integrable in the interval 

][0, x , then for every order 1<<0   both the Riemann-Liouville (1) and the Grünwald-Letnikov 

derivatives (2)  exist and coincide for any value inside the interval ][0, x . This fact of fractional calculus 

ensures the consistency of both definitions for most physical applications, where the functions are 

expected to be sufficiently smooth [4,9]. 

 

Fractional reaction-subdiffusion equation 

The standard meanfield model for the evolution of the concentrations ),( txa  and ),( txb  of A and 

B particles is given by the reaction-diffusion equations;  
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where D is the diffusion coefficient assumed in this paper to equal for species and   is the rate constant 

for the bimolecular reaction.  

In order to generalize the reaction-diffusion problem to a reaction-subdiffusion problem, the 

subdiffusive motion of the particles must be dealt with. Seki et al. [20] and Yuste et al. [21] replaced Eqs. 

(3) and (4) with a set of reaction-subdiffusion equations in which both the motion and the reaction terms 

are affected by the subdiffusive character of the process;  
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where k  is the generalized diffusion coefficient and 
1

tD  is the Riemann-Liouville fractional partial 

derivative of order 1 . The fractional reaction-subdiffusion Eqs. (5) and (6) are decoupled, which is 

equivalent to solve the following fractional reaction-subdiffusion equation; 
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where 1<<0   and   is a positive constant. The Dirichlet boundary conditions for this problem are 

assumed as follows; 

 

,<0),(=),(),(=)(0, TtttLuttu                                                                       (8) 

 

with an initial condition; 

 

.0),(=,0)( Lxxxu                                                                                                 (9) 

 

In the last few years, many papers have studied the proposed model (7) - (9) [15,20-27]. The main 

aim of this paper is to adapt the fractional weighted average finite difference method (FDM) to study this 

model. 

The plan of the paper is as follows; in section 3, some approximate formulae of the fractional 

derivatives and numerical finite difference scheme are given. In section 4, a stability analysis and an 

accuracy analysis of the presented method are given. In section 5, numerical studies for fractional 

reaction-subdiffusion model problem are presented. The paper ends with some conclusions in section 6. 

 

Weighted average scheme for the fractional reaction-subdiffusion equation 

In this section, the weighted average finite difference method is used to obtain the discretization 

finite difference formula of the reaction-subdiffusion Eq. (7). For some positive constant numbers M and 

N, following notations t  and x  are used at time-step length and space-step length, respectively. The 

coordinates of the mesh points are xjx j =  )0,1,...,=( Nj , and tmtm = , )0,1,...,=( Mm  

and the values of the solution ),( txu  on these grid points are ,),( m

j

m

jmj Uutxu   where 
N

L
x = , 

and 
M

T
t = . For more details on the discretization in fractional calculus, see [28,29]. 

In the first step, the ordinary differential operators are discretized as follows [17]; 
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In the second step, the Riemann-Liouville operator is discretized as follows; 

 

),)((=|),( 1
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1 pm
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xt tOutxuD                                                                   (12) 

 

where p is the order of the approximation which depends on the choice of 
)(1 

kw , and; 
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where ][
t

tm


 means the integer part of 

t

tm


. There are many choices of the weights 

)(
kw  [9,28], so the 

above formula is not unique. Denoting the generating function of the weights 
)(

kw  by ),( zw , i.e.;   
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If 

   

,)(1=),(  zzw                                                                                                                   (14) 

 

then (12) gives the backward difference formula of the first order, which is called the Grünwald-Letnikov 

formula. The coefficients 
)(

kw can be evaluated by the following formula; 
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For 1=  the operator 
1

tD  becomes the identity operator, so that the consistency of Eqs. (12) and (13) 

requires 1=(0)

0w , and 0=(0)

kw  (from (15)) for 1k , which in turn means that 1=,0)(zw .  

Now, the finite difference scheme of the fractional reaction-subdiffusion Eq. (7) is obtained. In this study, 

we take 1== k .  

To achieve this aim, Eq. (7) is evaluated at the points of the grid ),( mj tx ; 
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Then, in the above Eq.(16), the first order time-derivative is replaced by the forward difference formula 

(10) and the second order space-derivative by the three-point centered formula (11) with respect to the 

weighed average formula (12) at the times mt  and 1mt ; 
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with [0,1]  being the weight factor. 
m

jT  is the resulting truncation error. The standard difference 

formula is given by; 
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Now, by substituting from the difference operators given by (10), (11) and (13)  in Eq.(18), the following 

scheme can be obtained. 
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Eq. (19) is the fractional weighted average finite difference scheme considered in this paper. Fortunately, 

Eq. (19) is a tridiagonal system that can be solved using the Thomas algorithm [29]. In the case of 1=  

and 
2

1
=  the backward Euler fractional quadrature method and the Crank-Nicholson fractional 

quadrature methods are available, respectively, which have been studied, e.g., in ([30], [31]), but at 

0=  the scheme is called fully implicit. 

Now, to study the solvability of the proposed finite difference method, let; 
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respectively. Therefore, the explicit difference approximation scheme (19)-(21) can be written in matrix 

form: 
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Theorem 1 The difference Eq. (22) is uniquely solvable.  

 

Proof  Because 0> , then the coefficient matrix of the difference equation (22) is a strictly diagonally 

dominant matrix. Therefore A  is a nonsingular matrix; this proves Theorem 1. 

 

Lemma 1 The coefficients 
1

kw , ( 0,1,...=k ) satisfy; 
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Proof  See [2].  
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Proof  See [2].  

 

Stability analysis 

In this section, the John von Neumann method is used to study the stability analysis of the weighted 

average scheme (19). In this study the source term (i.e., 0=),( txf ) is neglected. 
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Proof  By using (21), Eq. (19) can be written in the following form 
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In the fractional John von Neumann stability procedure, the stability of the fractional WAM is 

decided by putting 
xqj

m

m

j eU i=  . Inserting this expression into the weighted average difference 

scheme (24), the following is obtained. 
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substituting by S)(1=    and dividing (25) by 
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Using the known Euler’s formula  sinicos=i e in Eq.(26) we obtain; 
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Under some simplifications, the above equation (27) can be written in the required form (23). This 

completes the proof of the proposition. 

 

Proposition 2 Assuming in proposition 1 that mm  =1 , then the scheme will be stable as long as:   
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Proof  The stability of the scheme (23) is determined by the behavior of m . In the John von Neumann 

method, the stability analysis is carried out using the amplification factor   defined by 
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dividing Eq. (30) by m  to obtain the following formula of  ; 
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The scheme will be stable as long as | | 1   using Eq. (31), which completes the proof of 

proposition 2 and (28). 
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Proposition 3 Assuming in proposition 2 that )
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then the scheme will be stable when 

   

.mL                                                                                                                                        (33) 

  

Proof.  By considering the time-independent limit value 1=   and since; 

 

0>)
2

(sin)4(11 2 xq
S


  , then from Eq. (28) we have; 

(1 ) (1 )2 2

1

=0

(1 )

=0

1 4(1 ) ( ) 1 4 ( ) ( 1) [ (1 ) ]sin sin
2 2

                                          ( 1) .
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r r
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m
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q x q x
S S w w
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

    



 

 
       

 




                   (34)                                                                                                                                                                 

 

From the above inequality (34),  

   

(1 ) (1 )2 2

=0 =0

(1 )

1

2 4(1 ) ( ) ( 1) 4 ( ) [sin sin
2 2

                                     (1 ) ]( 1) 0.

m m
r

r r

r r

r

r

q x q x
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 



 



  

 



 
     

   

 
                           (35)                                                                                                                                               

 

Using the assumption that )
2

(sin= 2 xq
S


 , from (35) it is found that; 

(1 ) (1 ) (1 )

1

=0 =0

2 4(1 ) ( 1) 4 [ (1 ) ]( 1) 0.
m m

r r

r r r

r r

S w w w          

                    (36) 

 

We can write Eq. (36) in the following form; 

 

0.])(11)(1)()2[(141)()4(12 )(1

1

)(11

1=

)(1

0=

 



    m

m

r

r
m

r

r

r

m

r

wwwS     (37) 

 

Using the assumption from Eqs. (32) - (33) in (37), one finds that the mode is stable when .mL  This 

ends the proof of the proposition.  

 

Theorem 2 The fractional weighted average finite difference scheme derived in (19) is stable at 

2

1
0    under the following stability criterion; 
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.
21

1)24(21












SS
                                                                                                            (38) 

 

Proof   Since mL  depends on m , mL  tends towards its limit value; 

   

.lim= m
m

LL


                                                                                                             (39) 

 

In this limit  (39), the stability condition is; 

   

,

})(11)(lim]1)(1)[14{(2

1)(2

)(1

1

)(11

1=

)(1

0=





























m

m

m
r

r

r

r

r

r

ww

wS

                                (40) 

 

but from Eq. (14) with 1= z  one sees that 
 

 1)(1

0=
2=1)( r

r

r
w , so that; 
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and by replacing )
2

(sin
2 xq

 by its highest value, so S  as 1)
2

(sin
2 

xq
 and 

0=)(11)(lim
)(1

1

 

  m

m
m w , then from (40)-(41), it is found that the sufficient condition for the 

presented method is stable, and this completes the proof of Eq.(38) and theorem 2. 

  

Remark For 1<
2

1
  the stability condition (19) can be satisfied under specific values of 

2)(

)(
=

x

t
S



 

. 

 

Numerical results 

In this section, the proposed method is tested by considering the following numerical examples.  

 

Example 1 Consider the initial-boundary value problem of fractional reaction-subdiffusion equation type 

with a non-homogeneous term; 

  

,01,<<0,)(1)],(),([=),(
2

2
1 Ttxtetxutxu

x
Dtxu

t

x

t 






                 (42) 
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with the following boundary conditions Ttettuttu  0,=)(1,,=)(0, 11 
, and the initial 

condition 100,=,0)(  xxu . 

The exact solution of this problem is 
1=),( tetxu x

.  

The behavior of the analytical solution and the numerical solution of the proposed fractional 

reaction-subdiffusion Eq. (42) by means of the weighted average FDM with different values of  ,  , 

t , x and final time T are presented in Figures 1 - 5. 

 

 

 
 

Figure 1 The behavior of the exact solution and the numerical solution of (42) by means of the proposed 

method at 0=  for 0.8= , 
40

1
=x , 

20

1
=t , and 0.5=T . 
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 Figure 2 The behavior of the exact solution and the numerical solution of (42) by means of the proposed 

method at 0.5=  for 0.3= , 
60

1
=x , 

70

1
=t , and 1=T .  

 

 

 
 

Figure 3 The behavior of the exact solution and the numerical solution of (42) by means of the proposed        

method at 1=  for 0.5= , 
60

1
=x , 

20

1
=t , and 2=T . 
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Figure 4 The behavior of the numerical solution of (42) by means of the proposed method at 0.5= , 

20

1
=x , 

20

1
=t , and 0.5=T , with different values of  . 

 

 

 

Figure 5 The behavior of the numerical solution of (42) by means of the proposed method at 0.5= , 

40

1
=x , 

40

1
=t , 0.7= , with different values of T . 
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Example 2 Consider the following initial-boundary problem of the fractional reaction-subdiffusion 

equation: 

   

),,()],(),([=),( 1 txftxutxuDtxu xxtt 
                                                                    (43) 

 

on a finite domain 1<<0 x , with Tt 0 , 1<<0   and the following source term; 

  

)(sin
)(2

1)())(2(
2=),(

12

x
tt

txf 


 












 

 

 

under the boundary conditions 0=)(1,=)(0, tutu , and the initial condition 0=,0)(xu . 

The exact solution of Eq. (43) in this case is )(sin=),( 2 xttxu  .  

The behavior of the exact solution and the numerical solution of the proposed fractional reaction-

subdiffusion Eq. (43) by means of the fractional weighted average FDM with different values of  ,  , 

t , x , and final time T  are presented in Figures 6 - 9. 

 

 

   
 

Figure 6 The behavior of the exact solution and the numerical solution of (43) by means of the proposed 

method at 0=  for 0.5= , 
70

1
=x , 

60

1
=t , and 2=T . 
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Figure 7 The behavior of the exact solution and the numerical solution of (43) by means of the proposed 

method at 0.5=  for 0.2= , 
60

1
=x , 

20

1
=t , and 0.2=T .  

 

 

 

 
Figure 8 The behavior of the exact solution and the numerical solution of (43) by means of the proposed 

method at 1=  for 0.9= , 
50

1
=x , 

150

1
=t , and 0.01=T . 
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Figure 9 The behavior of the numerical solution of the proposed problem (43) by means of the proposed 

method for 1= , 0.4= , 
40

1
=x , 

100

1
=t , and 1=T .  

 

 

From the previous figure, it can be seen that the numerical solution is unstable, since the stability 

condition (38) is not satisfied. 

Tables 1 and 2 show the magnitude of the maximum error between the numerical solution and the 

exact solution obtained by using the fractional weighted average FDM discussed above at 0=  and 

0.5=  respectively, with different values of x , t  and the final time .T  

 

 

Table 1 The maximum error with different values of x , t  at 0= , 0.5=  and 0.2=T . 

 

x  t  Maximum error 

10

1
 

20

1
 

0.00687 

20

1
 

40

1
 

0.00411 

50

1
 

40

1
 

0.00404 

50

1
 

70

1
 

0.00385 

100

1
 

70

1
 

0.00384 
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Table 2 The maximum error with different values of x , t  at 5.0= , 0.3=  and 0.1=T . 

 

x  t  Maximum error 

20

1
 

10

1
 

0.02385 

20

1
 

30

1
 

0.00808 

40

1
 

30

1
 

0.00805 

50

1
 

70

1
 

0.00071 

80

1
 

60

1
 

0.00021 

 

 

Conclusions 

This paper presents a class of numerical methods for solving fractional reaction-subdiffusion 

equations. This class of method is very close to the weighted average finite difference method. Special 

attention is given to study the stability of the fractional weighted average FDM. To execute this aim John 

von Neumann stability analysis is used. From the theoretical study it can be concluded that this procedure 

is suitable for the fractional finite weighted average FDM, and leads to very good predictions for the 

stability bounds. The stability of the fractional finite weighted average FDM presented depends strongly 

on the value of the weighting parameter . Numerical solutions and exact solutions of the proposed 

problem are compared, and the derived stability condition is checked numerically. From this comparison, 

it can be concluded that the numerical solutions are in excellent agreement with the exact solutions. All 

computations in this paper are run using Matlab programming.  
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