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Abstract 

Second-harmonic generation in non-linear media is investigated. A normal mode analysis is 

proposed based on the Westervelt equation under the second-order approximation in nonlinear acoustics. 

This model takes into consideration attenuation, diffraction and nonlinear effects, together with 

dispersion. The fundamental and second harmonic is examined. The derived method is evaluated by 2-D 

analytical formulas which apply to tissue medium. 
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Introduction 

The mechanism of nonlinear generation has been widely investigated and numerous model 

equations have been proposed under different conditions [1-4]. When ultrasound propagates in fluid 

medium due to nonlinearity in the equations of motion and state, the waveform distorts progressively and 

new frequency components are generated. Kopfner and Lemons [5] were the first to demonstrate second 

harmonic imaging in water using a specially tuned microscope at a fundamental frequency of 400 MHz. 

They noted improvements in both the resolution and the contrast of the second harmonic image compared 

to the fundamental. Rugar [6] found the spatial frequency response of images formed at nonlinear drive 

levels to be a factor of 1.4 better than those formed during conventional linear imaging. Also, the second-

harmonic generation of the nth-order Bessel beam in the nonlinear medium has been investigated by [7]. 

The numerical model for calculating the acoustic field was based on KZK (Khokhlov-Zablotskaya-

Kuznetsov) [8] equations, which is a parabolic approximation to the nonlinear wave equation for the 

system, and it provides both amplitude and phase information along the acoustic axis of the transducer. At 

long propagation distances, KZK solutions based on finite difference [9] or finite element method [10] 

distort signals unacceptably, as they use lower order space and time derivative approximations. Nonlinear 

wave equations in an attenuating tissue medium have been solved by pseudo-spectral methods [11]. 

In this paper, the wave equation can be written as a superposition of a homogeneous Helmholtz 

equation [12] according to fundamental components and an inhomogeneous Helmholtz equation 

according to the second harmonic. These 2 equations can be solved separately by using normal mode 

analysis. The normal mode method [13] provides high spatial accuracy, as it solves the nonlinear wave 

equation at every point in the 2-D spatial domain. Normal mode analysis can be employed to solve 

nonlinear acoustic wave equations analytically. The technique focuses on the description of a nonlinear 

model and discusses the conditions used under this technique. A simulation method for the forward 

propagation of an acoustic pressure wave in a medium with two-dimensional spatially-variable acoustic 

properties is presented. 

The nonlinear propagation of ultrasound waves in an absorbing medium can be described by the 

following equation [3]; 
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where ,p  ,,, 00 c  represent acoustic diffusivity medium density, sound speed, sound diffusivity, 

and coefficient of nonlinearity, respectively. The right hand side of Eq. (1) accounts for the harmonic 

generation and is considered to be a small correction to the linear wave equation. Assuming that

1 2p p p  ,
 1p is the sound pressure at the fundamental frequency f and 2p  is the pressure for the 

second harmonic at frequency 2 .f  The higher harmonics are neglected due to their much smaller 

amplitudes and higher attenuations. The pressure 1p  and 2p  can be described by Helmholtz equations 

as follows. 
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and k = c/ . Eqs. (2) and (3) are solved by the normal mode method. 

 

Normal mode analysis 

The solution of the considered physical variables can be decomposed in terms of normal modes as 

the following form; 

 

 1 2 1 2, ( , , ) , ( )exp( ),p p x y t p p x t iby                                           (6) 

 

where the angular frequency is ω, 1,i b  is the wave number in the
 y - direction. Eq. (2) becomes; 
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The solution of Eq. (8) has the form; 
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ir  are the roots of the characteristic equation; 
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From Eqs. (6) and (8); 
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is obtained. The solution of the non-homogeneous Eq. (3) using the normal mode analysis can be 

described as; 
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The total pressure for the fundamental and first harmonic can be written as; 

 

1 2( , , ) ( , , ) ( , , ).p x y t p x y t p x y t                                                                     (13) 

 

The solution of 1( , , )P x y t and  2 ( , , )P x y t must be bounded as x .                  

 

Boundary condition 
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Computational results 

To study the second harmonic phenomenon in the test medium, the theoretical acoustics wave Eqs. 

(11) and (12) can be applied. Using tissue as the medium, the parameters are given as follows,
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3/1000 mKg , 1500c   m/s, 1f   MHz, 4.4  and the diffusivity ( ) can be expressed as a 

function of the absorption coefficient α with the equation           (where w is the angular 

frequency)[14]. Let the wave peak amplitude be *
0 1p   KPa at the source (x = 0); the wave peak 

amplitude, in Eqs. (11) and (12), is simulated, versus the distance from the source. The result is shown in 

Figure 1. It is clear from this figure that the wave peak amplitude becomes smaller as it moves further 

from the source. It can also be noticed that in the pressure for the second harmonic, more attenuation can 

be observed at any given location. The results obtained by the proposed method are in good agreement 

with previously published data [14-16]. The total pressure for the fundamental and second harmonic is 

shown in Figure 2. A 2-D simulation can be considered in which the pressure varies in the x and y 

directions. Figures 3 and 4 show the 2-D pressure computational for the second harmonic and 

fundamental respectively as a function in the x-y plane. Figure 5 shows the 2-D total pressure on the x-y 

plane. From these figures, it can be seen that the pressure amplitude becomes smaller when moving in the 

x-y plane further from the source. Results show that difference in values obtained by linear and nonlinear 

propagation model grows with applied input acoustic pressure amplitude. After the initial increase of 

distortion, a stronger decrease of the higher frequencies occurs with the distance from the source, giving a 

more and more sinusoidal signal. The dominance of the non-linear attenuation becomes clear. 

 

 

 
Figure 1 Pressure amplitude of fundamental and second harmonic as function of the distance from the 

origin. 
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Figure 2 Total pressure amplitude as function of the distance from the origin. 

 

 

 
Figure 3 Pressure amplitude of second harmonic as function of plane x-y direction.  
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Figure 4 Pressure amplitude of fundamental as function of plane x-y direction. 

 

 

 
Figure 5 Total pressure amplitude as function of plane x-y direction. 
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Conclusions 

In this paper the second harmonic generation arising from the nonlinear propagation of an ultrasonic 

wave in tissue medium was investigated. The analysis was based on a normal mode analysis which solved 

the nonlinear wave equation. The homogeneous and inhomogeneous Helmholtz equations were solved 

separately by using a normal mode analysis in the x-y plane. Loss effects were taken into account without 

approximations about the attenuation parameter value. The algorithm optimized the computing costs, and 

large propagation distances were considered. The second harmonic generation in inhomogeneity medium 

was analyzed. This technique has a number of attractive features, foremost of which is the speed and 

simplicity with which it can be designed and implemented. 
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