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Abstract 

The aim of this paper is to study the convergence of the Homotopy analysis method (HAM) for 
solving Fredholm integral equations. A sufficient condition for convergence of the method is illustrated. 
The validity of the presented condition for convergence of the HAM is studied for two examples. The 
comparison of the obtained results by the method with an exact solution shows that the method is reliable 
and capable of providing analytic treatment for solving such equations. 
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Introduction 

The Homotopy analysis method (HAM) [1] 
has been proved to be one of the most useful 
techniques to solve numerous linear and non-linear 
functional equations. As mentioned in [2,3], unlike 
all previous analytic techniques [4-10], the HAM 
provides great freedom to express solutions of a 
given non-linear problem by means of different 
base functions. Furthermore, this method provides 
us with a way to adjust and control the 
convergence region and rate of convergence of 
solution series by introducing the auxiliary 
parameter,  . Finally, the HAM is independent of 
any small or large parameters. So, the method can 
be applied no matter if governing equations and 
boundary or initial conditions of a given non-linear 
problem depend on small or large quantities or not. 
By properly choosing the base functions, initial 
approximations, auxiliary linear operators, 
auxiliary functions, and auxiliary parameter,  , 
HAM gives rapidly convergent successive 
approximations of the exact solution.  

We aim in this work to study convergence of 
the HAM, for solving integral equations of the 
Fredholm type, of the form; 

 ( ) ( ) ( , ) ( ) , , ,
b p

a
u x f x k x t u t dt a x b p N     (1)

 
subject to the initial condition; 
 

(0) ,u   (2)
 
where   is a real number, the kernel ( , )k x t  is a 

continuous function over    , ,a b a b , and ( )f x is 

a given continuous function defined over  ,a b . 

Since the integral equations appear 
frequently in modeling of physical phenomena, 
they have a major role in the fields of science and 
engineering and a considerable amount of research 
work has been investigated [11-15]. 

In Section 2, we illustrate the main idea of 
the Homotopy perturbation method. In Section 3, 
the convergence analysis of the method is 
discussed. Then 2 numerical examples are 
presented in Section 4. Finally, conclusions are 
stated in the last section. 
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Basic ideas of HAM 

Let us consider a non-linear equation in the following form; 
 

[ ( )] 0,N u x   (3) 
 
where N  is a non-linear operator, ( )u x  is an unknown function of the independent variable x . 
Let 0 ( )u x  denote an initial guess of the solution ( ),u x 0  is an auxiliary parameter, (0) 0H   is an 

auxiliary function, and L  is an auxiliary linear operator with the property; 
 

[ ( )] 0L f x   when ( ) 0.f x   (4) 
 
Then, using  0,1q  as an embedding parameter, the following homotopy can be constructed. 

 
0 0[ ( ; ); ( ), ( ), , ] (1 ){ [ ( ; ) ( )]} ( ) [ ( ; )].x q u x H x q q L x q u x q H x N x q          (5) 

 
It should be emphasized that we have great freedom to choose the initial guess 0 ( )u x , auxiliary linear 

operator ,L  non-zero auxiliary parameter  , and auxiliary function ( )H x . 
Enforcing the homotopy (5) to be zero, i.e.; 
 

0[ ( ; ); ( ), ( ), ; ] 0.x q u x H x q     

 
We have the so-called zero-order deformation equation. 
 

0(1 ){ [ ( ; ) ( , )]} ( ) [ ( ; )],q L x q u r t q H x N x q      (6) 

 
where ( ; )x q  is the solution which depends upon not only on the initial guess 0( )u x , auxiliary linear 

operator L , auxiliary function ( , )H r t  and auxiliary parameter  , but also the embedding parameter q . 
When 0q  , the zero-order deformation Eq. (6), turns into; 
 

0[ ( ;0) ( )] 0.L x u x    (7) 

 
Property (4), leads to; 
 

0( ;0) ( ).x u x    

 
When 1q  , since 0 and ( ) 0H x  , the zero-order deformation Eq. (6) is equivalent to 
 

[ ( ;1)] 0,N x    
 
which is exactly the same as the original Eq. (3), provided [2]; 
 

( ;1) ( ).x u x   (8) 
 

Thus, according to (7) and (8), as the embedding parameter q  increases from 0 to 1, ( ; )x q  varies 
continuously from the initial approximation 0( )u x  to the exact solution ( )u x  of the original Eq. (3). 

Under the assumption that the Taylor series of ( ; )x q  with respect to q ; 
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0
1

( ; ) ( ) ( ) ,m
m

m

x q x x q 




    
(9) 

 
be convergent at 1q  , the solution series will be presented as; 
 

0
1

( ) ( ;1) ( ) ( ).m
m

u x x x x 




     
(10) 

 
This expression provides us with a relationship between the exact solution ( )u x and the initial 

approximation 0( )u x by means of the terms ( )m x that are determined as follows. 

Differentiating the zero-order deformation Eq. (6) ( 1)m m   times with respective to the embedding 

parameter q  and then dividing it by !m  and finally setting 0q  , we have the so-called m th-order 
deformation equation. 
 

11[ ( ) ( )] ( ) ( , ),mm m m mL x x H x R x     


  (11) 

 
subject to the initial condition; 
 

(0) 0,m   (12) 

 
where m  is defined by; 

 
0, 1

1, .m

m

Otherwise



 


 
(13) 

 
Also; 
 

0 1 2{ ( ), ( ), ( ), , ( )}.m mx x x x    


  (14) 

and 
1

1 01

1 [ ( ; )]
( , ) .

( 1)!

m

mm qm

N x q
R x

m q




 

 


 


 

(15) 

 
Substituting (10) into (15), gives; 
 

1

1 01
0

1
( , ) ( ) .

( 1)!

m
n

mm n qm
n

R x N x q
m q

 
 

 


   
       




 
(16) 

 
According to Eq. (1), we consider the non-linear operator. 
 

[ ] ( ) ( ) ( , )( ( )) .
b p

a
N x f x k x t x dt      (17) 

 
Also, we can choose the initial guess 0( )u x , in such a way that it satisfies the initial condition (2), i.e.; 

 
0 (0) (0) .u u   (18) 

 
 



On the Convergence of the Homotopy Analysis Method      Behzad GHANBARI
http://wjst.wu.ac.th 

Walailak J Sci & Tech 2013; 10(4)
 

398

Using Eqs. (16) and (17), we have; 
 

3 21 2

1 1 2 2 3 3 2 2 1 1

1 2 3 2 1

1 1

1

1
0 0 0 0 0

( ) ( ) (1 ) ( )

( , ) ( ) ( ) ( ) ( ) ( ) ( ) .
p p

p p p p p

p p

mm m m

r rr rmb

m r r r r r r r r r ra
r r r r r

R x x f x

k x t x x x x x x dt

  

      
 

    

 

 



     
    

     
 

  
  
    



  

(19) 

 
From (15), it should be noted that the right-hand side of Eq. (11) is only dependent upon 1m 


. Thus, 

we recursively gain 0 1 2( , ), ( , ), ( , ),r t r t r t    by means of solving the linear high-order deformation Eq. (11) 

subject to (12). The m th-order approximation of ( )u x is given by; 
 

0

( ) ( ).
m

m k
k

u x x



 

 
Convergence analysis 

In this section, some conditions of convergence of the Homotopy analysis method are stated and 
addressed briefly. 
Theorem 1. The following series; 
 

0
1

( ) ( )m
m

x x 




  
 

 
where ( )m x ’s result from Eqs. (11), (12) and (19), is an exact solution of the Eq. (1) and (2). 

 
Proof. The series is convergent, i.e.; 
 

0

( ) ( ).m
m

s x x




   
 

 
So, by necessary condition for the convergence of the Series, it holds; 
 
lim ( ) 0.m
m

x


  (20) 

 
Using (11) and (20), we have; 
 

 

 

 

1 1
1 1

1
1

( ) ( ) lim ( ) ( )

lim ( ) ( )

lim ( )

0.

m

n

m m m m
n

m m

n

m m mn
m

nn

H x R x L x x

L x x

L x

   

  








 






    

 
  

 





 






 

 

 
Since 0  and ( ) 0H x  , we have; 
 

1
1

( ) 0.
mm

m

R x






   


 
(21) 
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On the other hand, we have; 
 

3 21 2

1 1 2 2 3 3 2 2 1 1

1 2 3 2 1

1
1

1

1 1
1 0 0 0 0 0

0

( )

( ) (1 ) ( ) ( , ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) (

p p

p p p p p

p p

mm
m

r rr rn mb

m m m r r r r r r r r r ra
m r r r r r

m
m

R x

x f x k x t x x x x x x dt

x f x k x



       

 

 

    

 








      
     





  

  
     

    

  



     







3 21 2

1 1 2 2 3 3 2 2 1 1

1 2 3 2 1

1 2 1

1 2 1

1

1
1 0 0 0 0 0

0 0

, ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( , ) ( ) ( )

p p

p p p p p

p p

p p p

p p p

r rr rmb

m r r r r r r r r r ra
m r r r r r

m r r r
m r r r

t x x x x x x dt

x f x k x t x x

     

   

 

    

 

  

  

 

     
     

 


  

   
  
    

  

     

 



3 2 2 3 1 2 1

3 2 2 3 1 2 1

1 2 3 2 1

1 2 3 2 10 0 0 0 0 0 0

( ) ( ) ( ) ( )

( ) ( ) ( , ) ( ) ( ) ( ) ( ) ( ) ( )

p p

p p

p p p

p p p

b

r r r r r r m ra
r r r r r r m r

m i i i i i i
m i i i i i i

x x x x dt

x f x k x t x x x x x x d

   

       

 

 

 

 

    

   
   

      

      

 
 
  
 

    
  

    

      





 ( ) ( ) ( , ) ( ) .

b

a

b p

a

t

s x f x k x t s t dt  




 
So, from Eq. (21), we obtain; 
 

 ( ) ( ) ( , ) ( ) 0.
b p

a
s x f x k x t s t dt    (22) 

 
From the initial conditions (12) and (18), the following holds; 
 

0 0
0

(0) (0) (0) (0) ,i
i

s u  




     
(23) 

 
Since, ( )s x  satisfies Eqs. (22) and (23), so it is an exact solution of Eq. (1) with the initial condition (2). 
This ends the proof. 
 
Theorem 2. Suppose that Ա ⊂ ܴ be a Banach space with a suitable norm, say .


, over which the sequence 

( )m x of (9) is defined for a prescribed value of  . Assume also that the initial approximation 0 ( )x  

remains inside the ball of the solution ( )u x . Taking r R  as a constant, the following statements hold. 

(i) If there exists some  0,1r , such that for all ݇ ∈ ܴ we have 1( ) ( )k kx r x   , then the series solution 

0

( ) ( ) k
k

k

u x x q




  , converges absolutely to (10), at 1q  , over the domain of definition of x , 

(ii) If there exists some 1r  , such that for all ݇ ∈ ܴ we have 1( ) ( )k kx r x   , then the series solution 

0

( ) ( ) k
k

k

u x x q




   diverges, at 1q  , over the domain of definition of x . 

 
Proof. Indeed, this is a special case of the Banach fixed-point theorem, which can be found in standard 
texts on real analysis such as in [16]. 

Theorems 1 and 2 state that the homotopy series solution 
0

( )k
k

x



 , of the non-linear problem (1), 

converges to an exact solution ( )u x , under the condition that ,0 1     such that 
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0 1, ( ) ( )k kk k x x     , for some ݇ ∈ ܴ. In other words, if for every 0i k , we consider the parameters

i ’s, as defined in [17]. 

 

1

1

; 0,

0; 0.

i
i

ii

i














 
 

 

(24) 

 

For ∈ ܴ	⋃ሼ0ሽ, then the series solution 
0

( )k
k

x



  of problem (1) converges to an exact solution ( )u x , when 

0 ,0 1ii k     . 
 
Numerical examples 

In this section, 2 examples are presented to illustrate the convergence study. 
 
Example 1. Consider the following linear Fredholm integral equation [15];  
 

1

1
( ) 2sin( ) sin( ) ( ) ,

(0) 1.

x tu x e x e x u t dt

u





   

 

  

 
with the exact solution ( ) .xu x e  
According to HAM, the following homotopy is constructed. 
 

   1

0 1
(1 ) ( ) ( ) ( ) ( ) 2sin( ) sin( ) ( ) .x tq L x x q H x x e x e x t dt 


           

 
By taking 1,H L   , and substituting (9) into the above homotopy, the following deformation 

equations are obtained. 
 

 
 

1

1 0 0 11

1

1 11

( ) 2sin( ) sin( ) ( ) ,

( ) sin( ) ( ) , 1

x t

t
k k k k k

x e x e x t dt C

x e x t dt C k

  

   






 

    

    









 

 
(25) 

 

 
where the constants , 1,kC k   are determined from the condition (12). Starting with 0 1   in (25), we 

recursively obtain the approximations. In this example; 
 

 

 

1
1

2 2 1 1
2

( ) sin( ) 1 ,

1
( ) ( 2 2)( 1) sin( ) sin(1) cos(1) 2 3 .

2

x

x

x e e x

x e x e e e e







   

   

         



    
 

 

 
Table 1 shows some values of i ’s, defined as in (24), for the truncated series solution

7

7
0

( ) ( )i
i

u x x


  , which was obtained from the iterative scheme (25) by using different values of  . From 

Table 1, since 1i   for 1.1  , 1   and 0.9  , we can conclude that the HAM approach 
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converges to the exact solution of problem for 1.1  , 1   and 0.9  . Also, we observe that i ’s 

are not less than one for 1 . So, the HAM approach may be divergent when 1 .  
 
 
Table 1 Numerical values of i ’s for different values of  in Example 1. 
 

 1.1   1   0.9   1  

1  0.1064777183 0.0273588205 1.9470005312 2.005888808 

2  0.1225203824 0.1394710424   0.07293168915 2.004620076 

3  0.1665256283 0.1772552582 0.1048370531 2.003192583 

4  0.1887994255 0.0728215595 0.2171489807 2.001605553 

5  0.2262985828 0.1434132848 0.2128619930 1.999857309 

6  0.1143905693 0.1543150838 0.1933299028 1.997944868 

 
 

In Table 2, relative errors n  of the n  terms approximation of HAM, defined as; 

 
( ) ( )

( ) ,
( )

j n j
n j

j

u x u x
x

u x



  

(26) 

 
for different values of  at different ix ’s are presented. It is evident that the auxiliary parameter   can 

also be effectively implemented to adjust and control the rate of convergence of series solutions by HAM. 
 
 
Table 2 Comparison of relative errors n for Example 1. 
 

 1.1   1   0.9   1  

1 0.1x   9.41E-7 1.65E-7 3.55E-7 2.597236983 

2 0.2x   2.60E-6 7.28E-7 7.02E-7 9.554876418 

3 0.3x   7.65E-7 1.67E-7 4.49E-7 33.19152096 

4 0.4x   6.15E-5 9.03E-7 2.67E-6 68.22084816 

5 0.5x   6.12E-7 4.21E-6 7.00E-8 114.6188038 

6 0.6x   7.16E-6 9.72E-7 1.74E-7 172.3762215 

7 0.7x   3.44E-7 6.14E-6 2.20E-6 241.4889172 

8 0.8x   1.12E-6 4.17E-6 1.84E-6 321.9545818 

9 0.9x   2.52E-6 7.27E-7 1.31E-6 413.7719315 

10 1.0x  9.14E-6 9.91E-6 4.83E-6 516.9401309 

 
 
Example 2. In this example, we consider the following non-linear Fredholm integral equation with the 
exact solution ln(1 )x x [14]. 
 

   
1 2

0

53 1 8 241 1
( ) ln( 1) ln 2 2 ln 2 ( ) ( ) , 0,1 ,

108 3 3 576 2

(0) 0.

u x x x x x x t u x dt x

u

              
 

  
(27) 
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To obtain the approximate solution of (27), by taking 1,H L    in (6), we have; 
 

   
1 2

0 0

53 1 8 241 1
(1 ) ( ) ( ) ( ) ( ) ln( 1) ln 2 2 ln 2 ( ) ( ) .

108 3 3 576 2
q L x x q H x x x x x x x t x dt                   

  


(28)

Substituting (9) into (28) and starting with the initial guess 2
0

55 8 1
( ) ln( 1) ln 2 (ln 2) ,

108 9 3
x x x x x        

 
the following deformation equations are obtained. 
 

 
1 2

1 0 0 10

1

1 10
0

53 1 8 241 1
( ) ln( ) ln 2 ln 2 ( ) ( ) ,

108 3 3 576 2

1
( ) ( ) ( ) ( ) , 1

2

m

k k k i m i k
i

x x x x x x t x dt C

x x t x x dt C k

  

      


             
  

  
       

  









 

 

 

where the constants , 1,kC k   can be determined by the initial condition (12). 

Table 3 shows the values of i ’s for different values of  . Moreover, Table 4 shows the relative 

error (26), of the truncated series 7u , for different values of  . Clearly, one can observe that the 

approximate solution for 1.25  , is more accurate than the approximate solutions obtained when
1.1  , 1   and 0.9  . So, one can claim that the auxiliary parameter   plays an important role in 

adjusting and controlling the convergence of the series solution. It seems that the more accurate 
approximations will be obtained for smaller values of i . 
 
 
Table 3 Numerical values of i ’s for different values of   in Example 2. 
 

 1.25   1.1   1   0.9   

1  0.41799351 0.08321659 0.16656051 0.249904473 

2  0.31550415 0.18968116 0.21052058 0.27363689 

3  0.11432698 0.17663097 0.23611584 0.27363689 

4  0.25497653 0.20555668 0.25311880 0.30883061 

5  0.16748886 0.20770612 0.26565744 0.32097967 

6  0.18793950 0.22965814 0.27066721 0.33114110 
 
 

Table 4 Comparison of relative errors n for Example 2. 
 

 1.25   1.1   1.0   0.9   

1 0.1x   2.09E-8 9.59E-7 4.71E-6 1.94E-5 

2 0.2x   1.39E-7 1.75E-7 6.74E-6 3.28E-5 

3 0.3x   1.60E-7 3.46E-6 9.49E-6 4.62E-5 

4 0.4x   7.20E-8 3.13E-6 1.22E-5 5.96E-5 

5 0.5x   2.99E-7 3.86E-6 1.49E-5 7.29E-5 

6 0.6x   4.86E-7 4.61E-6 1.77E-5 8.63E-5 

7 0.7x   1.96E-8 5.37E-6 2.04E-5 9.96E-5 

8 0.8x   1.37E-7 6.07E-6 2.32E-5 1.12E-4 

9 0.9x   1.23E-7 6.92E-6 2.58E-5 1.26E-4 

10 1.0x  2.67E-7 7.50E-6 2.86E-5 1.39E-4 
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Conclusions 

In this study, the problem of convergence of 
the Homotopy analysis method, when it used for 
solving a special form of the Fredholm integral 
equation has been studied. The sufficient condition 
for convergence of the method has been illustrated, 
and verified for 2 examples. The obtained 
approximations of the solutions confirm the power 
and ability of the HAM as a reliable device for 
computing the solutions to the Fredholm integral 
equation. This is mainly due to the fact that the 
method provides a way to ensure the convergence 
of series solutions. The study of convergence 
conditions in applying HAM for other equations 
and systems of differential equations, integral 
equations and integro-differential equations, are 
also under investigation by our research team. 
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