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Abstract 

We perform a study for the boundary layer flow of viscous fluid about a stagnation point on an 
unsteady stretching sheet in the presence of variable free stream. Both the velocity and thermal slip 
conditions are taken into consideration. The stretching velocity and the surface temperature are time-
dependent. In the solutions we adopt the homotopy analysis method (HAM). The analysis related to 
convergence of the solutions is explicitly discussed. The dependence of velocity and temperature profiles 
on various quantities is discussed by displaying graphs. Comparison of the present solution yields an 
excellent agreement with an exact solution in a limiting sense. 
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Introduction 

The boundary layer flows over a stretching 
surface arise in several engineering processes. The 
specific examples for practical applications of 
flows over continuous surfaces include heat-
treated materials, travelling between feed roll and a 
wind up roll, aerodynamic extrusion of plastic 
sheets, paper production, crystal growing etc. 
Many researchers have looked at the various 
aspects of stretching flow problem since the initial 
study by Sakiadis [1,2]. However much has been 
stated about stretching flow problems in the steady 
situations. There are also few studies which deal 
with such flow problems in the time-dependent 
case. We only refer some recent studies in this 
direction [3-8]. The investigation of stretched flow 
further narrowed down when no-slip condition is 
not adequate. For example, Mukhopadhyay and 
Andersson [9] examined the flow and heat transfer 
over an unsteady stretching surface when both 
velocity and thermal slip effects are present. Hayat 
et al. [10] also discussed the 
magnetohydrodynamic (MHD) flow and heat 
transfer in a fluid bounded by a permeable sheet 

when no-slip condition is no longer valid. Sharma 
and Singh [11] analyzed the flow of viscous fluid 
about a stagnation point on a stretched sheet in the 
presence of a time-dependent free stream. Zhu et 
al. [12] analyzed the MHD stagnation point flow 
over a power law stretching sheet in the presence 
of slip effects. The magnetohydrodynamic flow 
over a stretched surface with slip condition has 
been examined by Fang et al. [13]. 

The purpose of current article is to 
investigate the flow and heat transfer over an 
unsteady stretching surface in the presence of a 
time-dependent free stream. Both velocity and 
thermal slip conditions are considered. The whole 
arrangement is structured into the 5 sections. 
Section two contains the mathematical 
formulation. The series solutions of velocity and 
temperature by homotopy analysis method (HAM) 
[14-20] are derived in section three. Discussion of 
graphs and tables is presented in section four. 
Section five includes main conclusions. 
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Problem formulation 

We consider the Cartesian coordinate system in such a way that the x  axis is chosen along a 
stretching sheet. The stretching sheet occupies the plane 0y  and an incompressible viscous fluid fills 

the half plane .0y  Our interest is to investigate flow in the vicinity of the stagnation point over a 

stretching surface with partial slip effects. The whole analysis has been carried out in the presence of a 
time-dependent free stream. The relevant equations are; 
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In the above expressions u  and v  denote the velocity components in the x  and y  directions, 

T  is the fluid temperature, k  is the thermal conductivity, pC  is the specific heat, )/(    is the 

kinematic viscosity,   is the density of the fluid and   is the dynamic viscosity of the fluid. Further 

note that in Eq. (3), the viscous dissipation effects have been neglected. The boundary conditions for the 
considered problem are given by; 
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here 2/1
0 )1( tNN   is the velocity slip factor, 2/1

0 )1( tKK   is the thermal slip factor and 

for ,0 KN   the no-slip conditions are recovered. We introduce 
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with   as the stream function. The stretching velocity ),( txUw  and the surface temperature are taken 

as; 
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Now Eqs. (2) - (5) yield; 
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where prime denotes the derivative with respect to   and continuity Eq. (1) is identically satisfied, where 

c
b  is the ratio of free stream velocity parameter and stretching parameter, 

 pCPr  the Prandtl 

number, c
   is a parameter,  aNS f 0 and 

a
T KS 0 are the non-dimensional slip 

factor and thermal slip parameter, respectively. 

The skin-friction coefficient fC  and the local Nusselt number xNu are; 
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where the skin-friction w  and heat transfer wq  are; 
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The non-dimensional form of Eq. )13(  is; 
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Solution by homotopy analysis method (HAM) 

The velocity )(f  and temperature )(  with base functions },0,0),exp({  nknk   

Are; 
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where 
k

nma ,  and 
k

nmb ,  are the coefficients. 

The initial guesses are considered as; 
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while the following linear operators satisfying the corresponding properties are; 
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where iC  )51( i  are arbitrary constants. 

 
Zeroth order deformation equations 

Putting the nonlinear operators fN  and N  as; 
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The zeroth order problems can be expressed as; 
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where p  is an embedding parameter and f  and   are the non-zero auxiliary parameters. 

At 0p  and 1p  we have; 
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The convergence of the series is strongly dependent upon f  and .  We select f  and   in 

such a way that the series converge at p = 1 and hence; 
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mth-order deformation equations 

The mth-order deformation equations are obtained by differentiating the Eqs. (23) - (25) m times 
with respect to p and then putting p = 0, we get; 
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m  as the special solutions, we have the following series solutions. 
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Convergence of the derived solutions 

The solutions (30) and (31) consist of the nonzero auxiliary parameters f  and .  These 

parameters adjust and control the convergence of the homotopy solutions. The   curves for 21st-order 

approximations are displayed for the permissible values of f  and  . Such values of f  and   are 

05.05.1  f  and 5.02.1    (see Figure 1). It is further shown that the series 

converges in the whole region of   when 5.0f  and .10.1  

 
 

 
 
Figure 1 ԰-curves for the functions f(η) and θ(η). 

 
 

Table 1 Convergence of the homotopy solution for different order of approximations when ,2.0  

,1.0  7.0Pr  , ,0.1fS  5.0TS  and 5.0f  and .10.1  

 

Order of approximation -f′′(0) -θ′(0) 

1 0.39125 0.43220 
5 0.38494 0.26946 
10 0.38507 0.24167 
15 0.38508 0.23767 
20 0.38508 0.23706 
25 0.38508 0.23697 
30 0.38508 0.23697 
35 0.38508 0.23697 
 
 

Graphical results and discussion 

This section examines the effects of the slip 

parameter ,fS  ratio of free stream and stretching 

velocity ,  unsteadiness parameter ,  Prandtl 

number Pr and thermal slip parameter TS  on the 

velocity and temperature fields (Figures 2 – 9). 

The velocity profiles for different values of fS  are 

plotted in Figure 2. It is seen that the boundary 
layer thickness decreases with increasing values of 

.fS  Figure 3 shows the effects of   on .f   

Clearly f   is an increasing function of .  Figure 
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4 describes the effects of   on .f   Here f   

increases when   increases. The variation of Pr 

on   is illustrated in Figure 5. The thermal 
boundary layer thickness decreases in view of an 
increase in Pr. Figure 6 shows that the temperature 
field   decreases for large values of .  The 

behaviors of   and fS  on temperature profiles 

are shown in the Figures 7 and 8. Both   and 

fS  increase the temperature profile. 

Tables 2 - 4 are prepared for the numerical 
values of skin-friction coefficient and the local 

Nusselt number for different values of involved 
parameters of interest. From Table 2 it is noticed 
that the magnitude of the skin-friction coefficient 

decreases for large values of fS . This Table also 

indicates that for ,0   the present 

solution has a good agreement with the exact 
analytical solution [21]. Table 3 indicates that the 

effects of   and fS  on skin-friction coefficient 

are similar. The local Nusselt number increases 
when the Prandtl number is increased while it 

decreases by increasing TS  (Table 4). 

 
 

 
                Figure 2 Influence of Sf on f′(η).                                       Figure 3 Influence of λ on f′(η). 
 
 

 
Figure 4 Influence of α* on f′(η).                                  Figure 5 Influence of Pr on θ(η). 
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Figure 6 Influence of λ on θ (η).                                  Figure 7 Influence of α* on θ(η). 

 
 

 
Figure 8 Influence of Sf on θ (η).                                  Figure 9 Influence of ST on θ(η). 

 
 
 

Table 2 Comparison of )0(f   and )0(f  for various values of fS at hf = 0.5 with Andersson [21]. 
 

Sf 
f′(0) -f′′(0) 

Andersson [21] Present Andersson [21] Present 
    0 1 1 1 1 

0.1 0.9128 0.9127 0.8721 0.87208 
0.2 0.8447 0.8447 0.7764 0.77637 
0.5 0.7044 0.70440 0.5912 0.59119 
1.0 0.5698 0.56984 0.4302 0.43016 
2.0 0.4320 0.43204 0.2840 0.28398 
5.0 0.2758 0.27799 0.1448 0.14484 

10.0 0.1876 0.18756 0.0812 0.08124 
20.0 0.1242 0.12421 0.0438 0.04378 
50.0 0.0702 0.70223 0.0186 0.01858 

100.0 0.0450 0.04524 0.0095 0.00955 
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Table 3 Values of the skin-friction coefficient 
2/1

2
1 Re xfC for different values of ,   and .fS  

 

  Sf λ -(1/2)CfRex
1/2 

0.0 1.0 0.2 0.3919 
0.3   0.3705 
0.5   0.3549 
0.8   0.3296 
0.1 0.0  0.8940 

 0.5  0.5301 
 1.5  0.3046 
 2.0  0.2529 
  0.0 0.4178 
  0.3 0.3539 
  0.5 0.2725 
  0.8 0.1177 

 
 

Table 4 Values of local Nusselt number 2/1Re/ xNu  for parameters ,TS fS  and Pr  when 2.0  

and .1.0  
 

 ST Sf Pr -Nu/Rex
1/2 

0.0 1.0 0.7 0.2690 
0.5   0.2370 
1.0   0.2121 
2.0   0.1751 
0.5 0.0  0.3189 

 0.5  0.2659 
 1.0  0.2370 
 2.0  0.2039 
  0.5 0.2237 
  1.0 0.2936 
  1.5 0.3682 
  2.0 0.4275 
    
    

Concluding remarks 

The slip effects on the flow of a viscous fluid 
with variable free stream velocity are considered. 
The reduced systems of coupled nonlinear ordinary 
differential equations are solved by the homotopy 
analysis method. The following main observations 
have been extracted from the presented analysis. 

Firstly, the effects of fS  on velocity and 

temperature fields are opposite. The velocity 

decreases by increasing fS  while temperature 

increases by increasing .fS  Secondly, the 

temperature field   decreases by increasing the 
Prandtl number Pr. Thirdly, the velocity f   and 

temperature   increases by increasing .  

Finally, the thermal slip parameter TS  decreases 

the temperature .  
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