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Abstract  

The Homotopy Analysis Method (HAM) is applied to tackle time-fractional Schrödinger equations. 
The proposed technique is fully compatible with the complexity of these problems and obtained results 
are highly encouraging. Numerical results coupled with graphical representations explicitly reveal the 
complete reliability and efficiency of the suggested algorithm. 

Keywords: Homotopy Analysis Method, fractional Schrödinger partial differential equations, nonlinear 
problems 
 
 
Introduction 

Nonlinear partial differential equations [1-
21] are of extreme importance in applied and 
engineering sciences. The thorough study of 
literature reveals that most of the physical 
phenomena are nonlinear in nature and hence there 
is a desire to find their appropriate solutions, see 
[1-21] and the references therein. Recently, 
scientists [16-21] have observed that there are a 
number of real time problems modeled by 
fractional nonlinear differential equations which 
are very hard to tackle. Inspired and motivated by 
ongoing research in this area, we apply a very 
reliable and efficient technique which is called the 
Homotopy Analysis Method (HAM) to find 
approximate solutions of time-fractional 
Schrödinger partial differential equations. It is 
observed that the proposed algorithm is fully 
synchronized with the complexity of these 
equations. The time- fractional Schrödinger partial 
differential equations are of the type:  
 
𝑖𝐷𝑡𝛼𝑢(𝑥, 𝑡) = −1

2
𝑢𝑥𝑥 + 𝑉𝑑(𝑥)𝑢(𝑥, 𝑡) +

𝛽𝑑|𝑢(𝑥, 𝑡)|2𝑢(𝑥, 𝑡),               𝑖2 = −1,                  (1) 
 
 

with initial conditions: 𝑢(𝑥, 0) = 𝑓(𝑥), where 
𝑉𝑑(𝑥) is the trapping potential and 𝛽𝑑 is a real 
constant, 0 ≤ 𝛼 ≤ 1 and arise frequently in 
applied, physical and engineering sciences. 
Numerical results are very encouraging. 
 
Definitions [16-21] 

Definition 1 A real function f(x), x > 0, is said to 
be in the space 𝐶𝜇 ,µ ∈  ℝ if there exists a real 
number 𝑝(> 𝜇), such that 𝑓(𝑥) = 𝑥𝑝𝑓1(𝑥), where 
𝑓1(𝑥) ∈ 𝐶[0,∞)  , and it is said to be in the space 
𝐶𝜇∞ iff 𝑓𝑚 ∈ 𝐶𝜇  𝜇 ≥ 1 𝑚 ∈ 𝑁.  
 
Definition 2 The Riemann-Liouville fractional 
integral operator of order 𝛼 ≥ 0, of a function 𝑓 ∈
𝐶𝜇 ,𝜇 ≥ −1, is defined as, 
 

𝐽𝛼𝑓(𝑥) =
1

Γ(𝛼)�
(𝑥 − 𝑡)𝛼−1𝑓(𝑡)𝑑𝑡
𝑥

0
, 

𝛼 > 0, 𝑥 > 0 , 
𝐽0𝑓(𝑥) = 𝑓(𝑥). 

 
Properties of the operator 𝑗𝛼  can be found in 
(Caputo, 1967), we mention only the following.  
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For 𝑓 ∈  𝐶𝜇 ,𝜇 ≥ −1,𝛼,𝛽 ≥ 0 and 𝛾 > −1: 
 

1. 𝐽𝛼𝐽𝛽𝑓(𝑡) = 𝐽𝛼+𝛽𝑓(𝑡), 
2. 𝐽𝛼𝐽𝛽𝑓(𝑡) = 𝐽𝛽𝐽𝛼𝑓(𝑡),  
3. 𝐽𝛼𝑥𝛾 = Γ(𝛾+1)

Γ(𝛼+𝛾+1)
𝑥𝛼+𝛾.  

 
Definition 3 The fractional derivative of 𝑓(𝑥) in 
the Caputo sense is defined as 
 
𝐷∗𝛼𝑓(𝑥) = 𝐽𝑚−𝛼𝐷𝛼𝑓(𝑥) = 

1
Γ(𝑚 − 𝛼)�

(𝑥 − 𝑡)𝑚−𝛼−1𝑓(𝑚)(𝑡)𝑑𝑡,
𝛼

0
 

 
for 𝑚 − 1 < 𝛼 ≤ 𝑚,𝑚 ∈ 𝑍, 𝑥 > 0, 𝑓 ∈ 𝐶−1𝑚 .    

Also, we need here two of its basic 
properties. 
 
Lemma 1 if 𝑚 − 1 < 𝛼 ≤ 𝑚,𝑚 ∈ 𝑁 and 𝑓 ∈
𝐶𝜇𝑚, 𝜇 ≥  −1 , then 
 
𝐷∗𝛼𝐽𝛼𝑓(𝑥) = 𝑓(𝑥),  and 
 
𝐽𝛼𝐷∗𝛼𝑓(𝑥) = 

𝑓(𝑥) + �
𝑓(𝑘)(0+) . 𝑥𝑘

𝑘!
 ,   𝑥 > 0 .

𝑚−1

𝑘=0

 

 
Definition 4 For 𝑚 to be the smallest integer that 
exceeds 𝛼, the Caputo time-fractional derivative 
operator of order 𝛼 > 0 is defined as: 

 

𝐷𝑡𝛼𝑢(𝑥, 𝑡) =
𝜕𝛼𝑢(𝑥, 𝑡)

𝜕𝛼
=

⎩
⎨

⎧ 1
Γ(𝑚 − 𝛼)

� (𝑡 − 𝜏)𝑚−𝛼−1 𝜕
𝑚𝑢(𝑥, 𝜏)
𝜕𝑚

𝑑𝜏
𝑡

0
, 𝑓𝑜𝑟 𝑚 − 1 < 𝛼 < 𝑚,

𝜕𝑚𝑢(𝑥, 𝑡)
𝜕𝑚

 ,                                                                 𝑓𝑜𝑟 𝛼 = 𝑚 ∈ 𝑁.

� 

  
For more information on the mathematical 

properties of fractional derivatives and integrals 
one can consult the mentioned references. 
 
Homotopy Analysis Method (HAM) [1-7, 19-21] 

We apply the HAM [1-7,19-21] to the 
fractional Schrödinger Eq. (1). We consider the 
following differential equation 
 
𝐹𝐷[𝑢(𝑥, 𝑡)] = 0,           (3) 
 
where 𝐹𝐷 is a nonlinear operator for this problem, 
x and t denote independent variables, 𝑢(𝑥, 𝑡) is an 
unknown function. 

In the frame of HAM [1-7,19-21], we can 
construct the following zeroth-order deformation: 

 
(1 − 𝑞)𝐿�𝑈(𝑥, 𝑡; 𝑞) − 𝑢0(𝑥, 𝑡)� =
𝑞ħ𝐻(𝑥, 𝑡)𝐹𝐷�𝑈(𝑥, 𝑡; 𝑞)�,            (4) 
 
where 𝑞 ∈ [0,1] is the embedding parameter, 
ℎ ≠ 0 is an auxiliary parameter, 𝐻(𝑥, 𝑡) ≠ 0 is an 
auxiliary function, L is an auxiliary linear operator, 
𝑢0(𝑥, 𝑡) is an initial guess of 𝑢(𝑥, 𝑡) and 𝑈(𝑥, 𝑡; 𝑞)  
is an unknown function on the independent 
variables 𝑥, 𝑡 and q. 
Obviously, when, 𝑞 ≠ 0 and 𝑞 = 1, it holds: 
 

𝑈(𝑥, 𝑡; 0) = 𝑢0(𝑥, 𝑡),𝑈(𝑥, 𝑡; 1) = 𝑢(𝑥, 𝑡),         (5)   
 
respectively. Using the parameter 𝑞, we expand 
𝑈(𝑥, 𝑡; 𝑞) in Taylor series as follows: 
 
𝑈(𝑥, 𝑡; 𝑞) = 𝑢0(𝑥, 𝑡) + ∑ 𝑢𝑚(𝑥, 𝑡)𝑞𝑚∞

𝑚=1 ,         (6)    
 
where: 𝑢𝑚 = 1

𝑚!
𝜕𝑚𝑈(𝑡;𝑞)
𝜕𝑚𝑞

|𝑞=0.            (7) 
 
Assume that the auxiliary linear operator, the 
initial guess, the auxiliary parameter ℎ and the 
auxiliary function 𝐻(𝑥, 𝑡) are selected such that 
the series (Eq. 6) is convergent at 𝑞 = 1, then due 
to Eq. (5) we have: 
 
𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + ∑ 𝑢𝑚(𝑥, 𝑡)∞

𝑚=1 .             (8) 
 
Let us define the vector: 
 
𝑢�⃗ 𝑛(𝑥, 𝑡) = {𝑢0(𝑥, 𝑡),𝑢1(𝑥, 𝑡), … ,𝑢𝑛(𝑥, 𝑡)}.        (9) 
 
Differentiating Eq. (7) m times with respect to the 
embedding parameter q, then setting 𝑞 = 0 and 
finally dividing them by 𝑚!, we have the so-called 
mth-order deformation equation: 
 
𝐿[𝑢𝑚(𝑥, 𝑡) − 𝜒𝑚𝑢𝑚−1(𝑥, 𝑡)] =
ħ𝐻(𝑥, 𝑡)𝑅𝑚(𝑢�⃗ 𝑚−1),           (10) 
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where: 
𝑅𝑚(𝑢�⃗ 𝑚−1) = 1

(𝑚−1)!
𝜕𝑚−1𝐹𝐷(𝑈(𝑡;𝑞))

𝜕𝑚−1𝑞
|𝑞=0 ,           (11) 

 
and  

𝜒𝑚 = �0, 𝑚 ≤ 1,
1, 𝑚 > 1.

� 
 
Finally, for the purpose of computation, we will 
approximate the HAM solution (8) by the 
following truncated series: 
 
∅𝑚(𝑡) = ∑ 𝑢𝑘(𝑡).𝑚−1

𝑘=0         (12) 
 
Numerical examples  

In this section, we apply the Homotopy 
Analysis Method (HAM) to solve time-fractional 
Schrödinger equations. Numerical results are very 
encouraging. 
Example 1 Consider the following one-
dimensional nonlinear time-fractional Schrödinger 
equation: 
 

 𝑖𝐷𝑡𝛼𝑢 = −1
2
𝑢𝑥𝑥 − |𝑢|2𝑢, where 0 < 𝛼 ≤ 1,  (13) 

 
with initial conditions: 
 
𝑢(𝑥, 0) = 𝑒𝜄𝑥. 
 
According to Eq. (4), the zeroth-order deformation 
can be given by: 
(1 − 𝑞)𝐿�𝑈(𝑥, 𝑡; 𝑞) − 𝑢0(𝑥, 𝑡)� =

𝑞ħ𝐻(𝑥, 𝑡) �𝐷𝑡𝛼𝑈(𝑥, 𝑡; 𝑞) − 𝑖
2
𝜕2𝑈(𝑥,𝑡;𝑞)

𝜕𝑥2
− 𝑖𝑈2𝑈��.   

 
We can start with an initial approximation 
𝑢0(𝑥, 0) = 𝑒𝜄𝑥 and we choose the auxiliary linear 
operator: 
 
𝐿�𝑈(𝑥, 𝑡; 𝑞)� = 𝐷𝑡𝛼𝑈(𝑥, 𝑡; 𝑞),  
 
with the property 𝐿(𝑐) = 0, where c is an integral 
constant. We also choose the auxiliary function to 
be: 
 
𝐻(𝑥, 𝑡) = 1.  
 

Hence, the 𝑚th-order deformation can be given 
by: 
 
𝐿[𝑢𝑚(𝑥, 𝑡) − 𝜒𝑚𝑢𝑚−1(𝑥, 𝑡)] =
ħ𝐻(𝑥, 𝑡)𝑅𝑚(𝑢�⃗ 𝑚−1),  
 
where: 
 
𝑅𝑚(𝑢�⃗ 𝑚−1) = 𝐷𝑡𝛼(𝑢𝑚−1) − 𝑖

2
𝜕2(𝑢𝑚−1)

𝜕𝑥2
−

(𝑢𝑚−1
2 )(𝑢�𝑚−1).               (14) 

 
Now the solution of the 𝑚th-order deformation Eq. 
(14) for 𝑚 ≥ 1 becomes: 
 
𝑢𝑚(𝑥, 𝑡) = 
𝜒𝑚𝑢𝑚−1(𝑥, 𝑡) + ħ𝐿−1[𝑅𝑚(𝑢�⃗ 𝑚−1)].      (15) 
 
Consequently, the first few terms of the HAM 
series solution are as follows: 
 
𝑢0(𝑥, 𝑡) = 𝑒𝜄𝑥,  
𝑢1(𝑥, 𝑡) = −ħ 1

2
i 𝑒𝜄𝑥  𝑡𝛼

Γ(𝛼+1)
  ,  

𝑢2(𝑥, 𝑡) = −ħ
𝑖
2
𝑒𝑖𝑥

 𝑡𝛼

Γ(𝛼 + 1) − ħ2
𝑖
2
𝑒𝑖𝑥

 𝑡𝛼

Γ(𝛼 + 1) 

                    −ħ2 1
4
𝑒𝑖𝑥  𝑡2𝛼

Γ(2𝛼+1)
,  

⋮.  
 
Hence, the HAM series solution (for ħ = −1) is: 
 
𝑢(𝑥, 𝑡) = 
𝑒𝑖𝑥[1 + i

2
 𝑡𝛼

Γ(𝛼+1)
− 1

4
 𝑡2𝛼

Γ(2𝛼+1)
  +  … ].      (16)  

 
For the special case 𝛼 = 1, we obtain from (16):  
 

𝑢(𝑥, 𝑡) = 𝑒𝑖(𝑥+
1
2𝑡) .       (17) 

 
which is the exact solution of the Schrödinger 
equation. The results for the exact solution Eq. 
(17) and the approximate solution Eq. (16) are 
obtained using the Homotopy Analysis Method. 
For 𝛼 = 0.25, 0.50, 0.75 𝑎𝑛𝑑 1, these are shown 
in Figure 1. 
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                      (a)                          (b) 

 

 
                      (c)                          (d) 

 

         
            (e) 

 
Figure 1 The surface shows solution 𝑢(𝑥, 𝑡) for the Eq. (16) when (a) 𝛼 = 0.25, (b) 𝛼 = 0.50, (c) 
𝛼 = 0.75, (d) 𝛼 = 1, (e) exact solution Eq. (17). 
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Example 2: Consider the following one-
dimensional nonlinear time-fractional Schrödinger 
equation: 
 
𝑖𝐷𝑡𝛼𝑢 = −1

2
𝑢𝑥𝑥 + 𝑢𝑐𝑜𝑠2𝑥 − |𝑢|2𝑢,      𝑡 ≥ 0,  

where 0 < 𝛼 ≤ 1 ,         (18) 
 
with initial conditions: 
 
𝑢(𝑥, 0) = 𝑠𝑖𝑛𝑥. 
 
According to Eq. (4), the zeroth-order deformation 
can be given by: 
 
(1 − 𝑞)𝐿�𝑈(𝑥, 𝑡; 𝑞) − 𝑢0(𝑥, 𝑡)� 

= 𝑞ħ𝐻(𝑥, 𝑡)�𝐷𝑡
𝛼𝑈(𝑥, 𝑡;𝑞) −

𝑖
2
𝜕2𝑈(𝑥, 𝑡; 𝑞)

𝜕𝑥2
+𝑖𝑈𝑐𝑜𝑠2𝑥 − 𝑖𝑈2𝑈�

�. 

 
We can start with an initial approximation 
𝑢0(𝑥, 0) = 𝑠𝑖𝑛𝑥 and we choose the auxiliary linear 
operator: 
 
𝐿�𝑈(𝑥, 𝑡; 𝑞)� = 𝐷𝑡𝛼𝑈(𝑥, 𝑡; 𝑞),  
 
with the property 𝐿(𝑐) = 0, where c is an integral 
constant. We also choose the auxiliary function to 
be: 
 
𝐻(𝑥, 𝑡) = 1.  
 
Hence, the 𝑚th-order deformation can be given 
by: 
 
𝐿[𝑢𝑚(𝑥, 𝑡) − 𝜒𝑚𝑢𝑚−1(𝑥, 𝑡)] =
ħ𝐻(𝑥, 𝑡)𝑅𝑚(𝑢�⃗ 𝑚−1),  
 
 

where: 
𝑅𝑚(𝑢�⃗ 𝑚−1) = 𝐷𝑡𝛼(𝑢𝑚−1) – 𝑖

2
𝜕2(𝑢𝑚−1)

𝜕𝑥2
+ 

𝑖(𝑢𝑚−1)𝑐𝑜𝑠2𝑥 − 𝑖(𝑢𝑚−1
2 )(𝑢�𝑚−1).       (19) 

 
Now the solution of the 𝑚th-order deformation Eq. 
(19) for 𝑚 ≥ 1 becomes: 
 
𝑢𝑚(𝑥, 𝑡) = 
𝜒𝑚𝑢𝑚−1(𝑥, 𝑡) + ħ𝐿−1[𝑅𝑚(𝑢�⃗ 𝑚−1)].      (20) 
 
Consequently, the first few terms of the HAM 
series solution are as follows: 
 
𝑢0(𝑥, 𝑡) = 𝑠𝑖𝑛𝑥,  
𝑢1(𝑥, 𝑡) = ħ 3

2
i 𝑠𝑖𝑛𝑥  𝑡𝛼

Γ(𝛼+1)
  ,  

𝑢2(𝑥, 𝑡) = ħ 3
2
𝑖𝑠𝑖𝑛𝑥  𝑡𝛼

Γ(𝛼+1)
+ ħ2 3

2
𝑖𝑠𝑖𝑛𝑥  𝑡𝛼

Γ(𝛼+1)
−

ħ2 9
4
𝑠𝑖𝑛𝑥  𝑡𝛼

Γ(𝛼+1)
,  

⋮.  
 
Hence, the HAM series solution (for ħ = −1) is: 
 
𝑢(𝑥, 𝑡) = 
𝑠𝑖𝑛𝑥[1−3

2
i  𝑡𝛼

Γ(𝛼+1)
  +9

4
 𝑡2𝛼

Γ(2𝛼+1)
  +  … ].       (21)  

 
For the special case 𝛼 = 1, we obtain from Eq. 
(21):  
 
𝑢(𝑥, 𝑡) = 𝑠𝑖𝑛𝑥𝑒−

3
2𝑖𝑡 .        (22) 

 
which is the exact solution of the Schrödinger 
equation. The results for the exact solution Eq. 
(22) and the approximate solution Eq. (21) are 
obtained using the Homotopy Analysis Method. 
For = 0.25, 0.50, 0.75 𝑎𝑛𝑑 1 , these are shown in 
Figure 2. 
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            (a)              (b) 
 

 
            (c)        (d) 
 

       
         (e) 

 
Figure 2 The surface shows solution 𝑢(𝑥, 𝑡) for the Eq. (21) when (a) 𝛼 = 0.25, (b) 𝛼 = 0.50, (c) 
𝛼 = 0.75, (d) 𝛼 = 1, (e) exact solution Eq. (22). 
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Example 3: Consider the following two-
dimensional nonlinear time-fractional Schrödinger 
equation: 
 
𝑖𝐷𝑡𝛼𝑢 =
−1

2
�𝑢𝑥𝑥 + 𝑢𝑦𝑦� + 𝑣𝑢 + |𝑢|2𝑢,      (𝑥,𝑦) ∈

[0,2𝜋] × [0,2𝜋],    where  0 < 𝛼 ≤ 1 ,     (23) 
 

with initial conditions: 
 
𝑢(𝑥,𝑦, 0) = 𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑦. 
 
where 𝑉(𝑥,𝑦) = 1 − 𝑠𝑖𝑛2𝑥𝑠𝑖𝑛2𝑦. 
 
According to Eq. (4), the zeroth-order deformation 
can be given by: 

 
(1 − 𝑞)𝐿�𝑈(𝑥,𝑦, 𝑡; 𝑞) − 𝑢0(𝑥,𝑦, 𝑡)� = 

𝑞ħ𝐻(𝑥,𝑦, 𝑡)�
𝐷𝑡𝛼𝑈(𝑥,𝑦, 𝑡;𝑞) − 𝑖

2
�𝜕

2𝑈(𝑥,𝑦,𝑡;𝑞)
𝜕𝑥2

+ 𝜕2𝑈(𝑥,𝑦,𝑡;𝑞)
𝜕𝑦2

�
+

𝑖𝑉𝑈(𝑥,𝑦, 𝑡; 𝑞) + 𝑖𝑈2(𝑥,𝑦, 𝑡;𝑞)𝑈�(𝑥,𝑦, 𝑡; 𝑞)
�.  

 
We can start with an initial approximation 𝑢0(𝑥,𝑦, 0) = 𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑦 and we choose the auxiliary linear 
operator: 
 
𝐿�𝑈(𝑥,𝑦, 𝑡; 𝑞)� = 𝐷𝑡𝛼𝑈(𝑥,𝑦, 𝑡; 𝑞),  
 
with the property 𝐿(𝑐) = 0, where c is an integral constant. We also choose the auxiliary function to be: 
 
𝐻(𝑥,𝑦, 𝑡) = 1.  
 
Hence, the 𝑚th-order deformation can be given by: 
 
𝐿[𝑢𝑚(𝑥,𝑦, 𝑡) − 𝜒𝑚𝑢𝑚−1(𝑥,𝑦, 𝑡)] = ħ𝐻(𝑥,𝑦, 𝑡)𝑅𝑚(𝑢�⃗ 𝑚−1),  
 
where: 
𝑅𝑚(𝑢�⃗ 𝑚−1) = 𝐷𝑡𝛼(𝑢𝑚−1) − 𝑖

2
�𝜕

2(𝑢𝑚−1)
𝜕𝑥2

+ 𝜕2(𝑢𝑚−1)
𝜕𝑦2

� + 𝑖𝑉(𝑢𝑚−1) + 𝑖(𝑢𝑚−1
2 )(𝑢�𝑚−1).                (24) 

 
Now the solution of the 𝑚th-order deformation Eq. (24) for 𝑚 ≥ 1 becomes: 
 
𝑢𝑚(𝑥,𝑦, 𝑡) = 𝜒𝑚𝑢𝑚−1(𝑥,𝑦, 𝑡) + ℎ𝐿−1[𝑅𝑚(𝑢�⃗ 𝑚−1)].                                                               (25) 
 
Consequently, the first few terms of the HAM series solution are as follows: 
 
𝑢0(𝑥,𝑦, 𝑡) = 𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑦,  
𝑢1(𝑥,𝑦, 𝑡) = ħ2i 𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑦  𝑡𝛼

Γ(𝛼+1)
  ,  

𝑢2(𝑥,𝑦, 𝑡) = ħ2i 𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑦
 𝑡𝛼

Γ(𝛼 + 1)
+ ħ22i 𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑦

 𝑡𝛼

Γ(𝛼 + 1)
− ħ24 𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑦

 𝑡2𝛼

Γ(2𝛼 + 1)
  , 

⋮. 
 
Hence, the HAM series solution (for ħ = −1) is: 
 
𝑢(𝑥,𝑦, 𝑡) =

𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑦[1−2i
 𝑡𝛼

Γ(𝛼+1)
−

 
4  𝑡2𝛼

Γ(2𝛼+1)
  +  … ].   (26) 

 
For the special case 𝛼 = 1, we obtain from Eq.  
(26):  
 

𝑢(𝑥,𝑦, 𝑡) = 𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑦𝑒−
3
2𝜄𝑡 ,           (27) 

 
which is the exact solution of the Schrödinger 
equation. The results for the exact solution Eq. 
(25) and the approximate solution Eq. (27) are 
obtained using the Homotopy Analysis Method. 
For 𝛼 = 0.25, 0.50, 0.75 𝑎𝑛𝑑 1, these are shown in 
Figure 3. 
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 (a)                           (b) 

 

  
(c)                           (d) 

 

            
 (e)      
                 

Figure 3 The surface shows solution 𝑢(𝑥,𝑦, 𝑡) for the Eq. (25) when (a) 𝛼 = 0.25, (b) 𝛼 = 0.50, (c) 
𝛼 = 0.75, (d) 𝛼 = 1, and 𝑥 = 𝑦 (e) exact solution Eq. (27). 
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Example 4: Consider the following three-dimensional nonlinear time-fractional Schrödinger equation: 
 
𝑖𝐷𝑡𝛼𝑢 = −1

2
�𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑦𝑦� + 𝑉𝑢 + |𝑢|2𝑢,      (𝑥,𝑦, 𝑧) ∈ [0,2𝜋] × [0,2𝜋] × [0,2𝜋],                       (28) 

 
where 0 < 𝛼 ≤ 1 , 
 
with initial conditions 
 
𝑢(𝑥,𝑦, 𝑧, 0) = 𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑦𝑠𝑖𝑛𝑧, 
 
where 𝑉(𝑥,𝑦, 𝑧) = 1 − 𝑠𝑖𝑛2𝑥𝑠𝑖𝑛2𝑦𝑠𝑖𝑛2𝑧 . 
 
According to Eq. (4), the zeroth-order deformation can be given by: 
(1 − 𝑞)𝐿�𝑈(𝑥,𝑦, 𝑧, 𝑡;𝑞) − 𝑢0(𝑥,𝑦, 𝑧, 𝑡)� = 

𝑞ħ𝐻(𝑥,𝑦, 𝑧, 𝑡) �𝐷𝑡𝛼𝑈(𝑥,𝑦, 𝑧, 𝑡;𝑞) − 𝑖
2
�𝜕

2𝑈(𝑥,𝑦,𝑡;𝑞)
𝜕𝑥2

+ 𝜕2𝑈(𝑥,𝑦,𝑧,𝑡;𝑞)
𝜕𝑦2

+ 𝜕2𝑈(𝑥,𝑦,𝑧,𝑡;𝑞)
𝜕𝑧2

� + 𝑖𝑉𝑈(𝑥,𝑦, 𝑧, 𝑡; 𝑞) +

𝑖𝑈2(𝑥,𝑦, 𝑧, 𝑡; 𝑞)𝑈�(𝑥,𝑦, 𝑧, 𝑡; 𝑞)�.  

 
We can start with an initial approximation 𝑢0(𝑥,𝑦, 𝑧, 0) = 𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑦𝑠𝑖𝑛𝑧 and we choose the auxiliary 
linear operator: 
 
𝐿�𝑈(𝑥,𝑦, 𝑧, 𝑡;𝑞)� = 𝐷𝑡𝛼𝑈(𝑥,𝑦, 𝑧, 𝑡; 𝑞),  
 
with the property 𝐿(𝑐) = 0, where c is an integral constant. We also choose the auxiliary function to be: 
𝐻(𝑥, 𝑡) = 1.  
 
Hence, the 𝑚th-order deformation can be given by: 
 
𝐿[𝑢𝑚(𝑥,𝑦, 𝑧, 𝑡) − 𝜒𝑚𝑢𝑚−1(𝑥,𝑦, 𝑧, 𝑡)] = ħ𝐻(𝑥,𝑦, 𝑧, 𝑡)𝑅𝑚(𝑢�⃗ 𝑚−1),  
 
where: 
𝑅𝑚(𝑢�⃗ 𝑚−1) =
𝐷𝑡𝛼(𝑢𝑚−1) − 𝑖

2
�𝜕

2(𝑢𝑚−1)
𝜕𝑥2

+ 𝜕2(𝑢𝑚−1)
𝜕𝑦2

+ 𝜕2(𝑢𝑚−1)
𝜕𝑧2

� + 𝑖𝑉(𝑢𝑚−1) + 𝑖(𝑢𝑚−1
2 )(𝑢�𝑚−1).                                     (29)  

 
Now the solution of the 𝑚th-order deformation Eq. (24) for 𝑚 ≥ 1 becomes: 
 
𝑢𝑚(𝑥,𝑦, 𝑧, 𝑡) = 𝜒𝑚𝑢𝑚−1(𝑥,𝑦, 𝑧, 𝑡) + ħ𝐿−1[𝑅𝑚(𝑢�⃗ 𝑚−1)].  
 
Consequently, the first few terms of the HAM series solution are as follows: 
 
𝑢0(𝑥,𝑦, 𝑧, 𝑡) = 𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑦𝑠𝑖𝑛𝑧,  
𝑢1(𝑥,𝑦, 𝑧, 𝑡) = ħ 5

2
i 𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑦𝑠𝑖𝑛𝑧  𝑡𝛼

Γ(𝛼+1)
  ,  

𝑢2(𝑥,𝑦, 𝑧, 𝑡) = ħ
5
2

i 𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑦𝑠𝑖𝑛𝑧
 𝑡𝛼

Γ(𝛼 + 1)

+ ħ2
5
2

i 𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑦𝑠𝑖𝑛𝑧
 𝑡𝛼

Γ(𝛼 + 1)
− ħ2

25
4

i 𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑦𝑠𝑖𝑛𝑧
 𝑡2𝛼

Γ(2𝛼 + 1)
 ,   

⋮.  
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Hence, the HAM series solution (for ħ = −1) is: 
 

𝑢(𝑥,𝑦, 𝑧, 𝑡) = 𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑦𝑠𝑖𝑛𝑧[1−
5
2

i
 𝑡𝛼

Γ(𝛼 + 1)
   

                       +25
4

 𝑡2𝛼

Γ(2𝛼+1)
  +  … ].      (30)  

 
For the special case 𝛼 = 1, we obtain from Eq. 
(30): 

𝑢(𝑥,𝑦, 𝑧, 𝑡) = 𝑠𝑖𝑛𝑥 𝑠𝑖𝑛𝑦 𝑠𝑖𝑛𝑧𝑒−
5
2𝜄𝑡 ,     (31) 

 
which is the exact solution of the Schrödinger 
equation. The results for the exact solution Eq. 
(30) and the approximate solution Eq. (31) are 
obtained using the Homotopy Analysis Method. 
For 𝛼 = 0.25, 0.50, 0.75 𝑎𝑛𝑑 1, these are shown in 
Figure 4. 

 
    (a)                                (b) 

 
  (c)                               (d) 

                   
                  (e) 

Figure 4 The surface shows solution 𝑢(𝑥,𝑦, 𝑧, 𝑡)for the Eq. (30) when (a) 𝛼 = 0.25, (b) 𝛼 = 0.50, (c) 
𝛼 = 0.75, (d) 𝛼 = 1, and 𝑥 = 𝑦 = 𝑧. (e) exact solution Eq. (31). 
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Conclusions  

The Homotopy Analysis Method (HAM) has 
been implemented to find appropriate solutions of 
time-fractional nonlinear Schrödinger equations. 
Numerical results coupled with graphical 
representations explicitly reveal the complete 
reliability and efficiency of the proposed 
algorithm. 
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