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ABSTRACT 
 

Many techniques have been proposed to quantize a digital colour 
image in order to reduce the representative number of colours to be 
suitable for presenting on different types of display screens. In 
addition, the techniques have been used to significantly reduce the 
amount of image data required to transfer over a communication 
network. Most of the published techniques are targetted for 
implementing on a general purpose multitasking computer with low 
restriction on time and resource utilizations. The drawback of these 
techniques relies on the fact that they cannot fulfill the requirement of 
some applications for real-time constraint and limited resources. In 
addition, most of the techniques are too complex for hardware 
realization. In this paper, an algorithm which is more suitable for time 
critical applications with an additional feature of simplicity to 
implement on FPGA (Field Programmable Gate Array) platforms is 
proposed and the details of its implementation and experimentation 
are presented. The dominate point of the proposed algorithm relies on 
the fact that it utilizes the weighted sum of the nearest distance along 
the axis under consideration, which is nontrivial to calculate, instead 
of the squared Euclidean distance to find the axis to split during.  
Also, the proposed algorithm has proved that by reducing the number 
of subspaces to be considered during the variance representative value 
calculation from 8 to 2 subspaces, the quality of quantized images are 
comparable to the previously proposed approaches. This makes it 
possible to further speed up the computational time of the 
quantization algorithm. 
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INTRODUCTION 
 

An RGB (red, green and blue) LED display board has been mainly used in 
advertising applications at tradeshows, along highways, and in stadiums and arenas. 
One of the critical problems of this display device is how to generate sufficiently fast 
frame rates to update it. In order to display animation sequences on an LED display, 
video data must be transferred from a computer, or a special-purpose hardware unit, 
over an appropriate communication network to a set of embedded controllers of the 
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LED display. For a moderate resolution LED display board with 640×480 pixels, an 
uncompressed full RGB colour image frame of size 640×480×3 = 1,228,800 bytes 
must be transferred with at least 30 frames per second (fps) of speed (1). These huge 
amounts of data can be reduced significantly by employing an appropriate image 
compression algorithm. To be a benefit for the system in this case and many 
applications similar to this, the uncompression algorithm, on the image receiver site, 
must be easy to implement and, at the same time, must occupy a small amount of 
resources. In addition, the compression algorithm must be effectively executed within 
a time constraint on an image transmitter site. Under the limitation of a multitasking 
operating system such as Windows, the image compression application is not 
guaranteed to be serviced within the required constraint frame rate. This comes from 
the nature of running an application on the multitasking environment, the operating 
system has many tasks, both system and user tasks, to serve. The time resolution, 
which is the minimum time for the operating system to switch from one task to another 
task in a cooperative mode of operation, depends heavily on the operating system and 
is user-uncontrollable. For the Windows operating system, the time resolution is 
limited to only 1 millisecond. This means that a moderate complex application like an 
image compression application with execution time of the order of 10 milliseconds 
running on the Windows operating system will never finish its task within one time 
resolution.  

Many image compression algorithms have been proposed so far (2,3). The 
colour quantization is one of the most dominant lossy compression methods (4,5). The 
prominent benefit of this algorithm from the point of view of the image receiver site is 
the easiness to reconstruct a quantized digital image. Typically, the colour quantization 
attempts to find an acceptable set of palette colour that can be used to represent the 
original colours of a digital image (5). This lossy image compression exploits the 
limited ability of human perception system which is capable of distinguishing less than 
a thousand colours. Applying the colour quantization to RGB colour image frame of 
size 640×480 pixels, the resulting image of 256 colour palettes will be reduced to only 
307,456 bytes which is about one-third of the original image size. This makes the 
colour quantization process fluently exploited in many applications especially in 
computer graphics and image processing.  

With the benefits of the colour quantization process to the problem of image 
compression, the main aim of our research is to employ the process to use for 
speeding-up the transfer rate of image frames from a personal computer running a 
multitasking operating system to an LED display board in a real-time manner. And, if 
possible, we aim at implementing the colour quantization on a special function 
processor responsible for streaming frames of images on a real-time basis. To satisfy 
these requirements, an optimized image quantization algorithm, which occupies the 
CPU for as short a period as possible and is less complex to be hardware implemented, 
must be developed. This means that the expected colour quantization algorithm must 
not spend too much time on producing a compressed version of an image. In addition, 
the proposed algorithm should avoid relying on complex operations; i.e. floating point 
operations, and even an integer division.  

Typically, a colour quantization algorithm contains two main parts, the first 
part is colour palette generation and the second part is pixel mapping (6,7). In the 
colour palette generation stage, the palette colours are extracted from the original 
image. Then, each pixel in the original image is mapped to its nearest palette colour in 
the pixel-mapping stage to generate the quantized version of image. Over the past 

W  KURDTHONGMEE 



 

 

151

decades, there are a number of approaches proposed for highest quality quantized 
images. While some approaches exploited  excellent algorithms or theoretical issues 
(fuzzy logic, neural network and genetic algorithms) to their quantizers: in this paper, 
the proposed approach is aimed at compromizing between the acceptable image quality 
and video frame rate, minimization of computational cost and resource utilization of 
the hardware employed for realization. 

The existing techniques for colour quantization can be classified into 2 groups 
(2). First, there is the class of splitting algorithms that divide the colour space into 
disjointed subspaces by consecutive splitting up of the space. From each subspace, a 
colour is chosen to represent the region in the colour palette. Two algorithms of this 
class which are regularly applied are the median-cut algorithm (8) and the variance-
based algorithm (5,7). Other splitting algorithms, which incorporate techniques to take 
into account the human perception, were also introduced by many researchers. In 
general, splitting algorithms are fast. The disadvantage is that generally no global 
optima are obtained, because a decision made for splitting at one level cannot be 
further recovered. 

Another class of quantization techniques performs clustering of the colour 
space, and cluster representatives are chosen as palette colours (2). A frequently used 
clustering algorithm is the C-means clustering algorithm. In this algorithm, an updating 
of the cluster representatives and an assignment of colour pixels to clusters are 
iteratively performed until all the required number of colour palettes have been 
attained. Other clustering algorithms have also been proposed. Fuzzy C-mean 
clustering, learning vector quantization, and a self-organizing map were also applied to 
colour quantization. 

In this paper, the proposed image quantization process is modified from 
Kanjanawanishkul and Uyyanonvara>s approach (5). The approach, which is in fact 
adapted from Wu>s popular dynamic programming quantizer (7) to be suitable for 
time-constrained applications, is in the class of splitting algorithms, so it is, from now 
on, called KSA (Kanjanawanishkul et al>s Splitting Algorithm) for short. According to 
Wu>s and KSA quantizers, the dynamic programming was exploited to construct a 
bottom-up cumulative distribution. This was carried out to avoid excessive re-
computation of the centroid and the variance when finding the position of the cutting 
plane. The cumulative distribution construction process is applied after a 3D-colour 
histogram is obtained. The obvious difference between Wu>s and the KSA method 
relies on the fact that the KSA method cumulates only the 0th and 1st order moment 
distribution. The 2nd order moment which is very computationaly intensive process and 
produces one additional data structure is not required by the algorithm. 

The cutting plane which is used to subdivide a colour subspace of KSA>s 
quantizer is put through the centroid of subspace under consideration S. The plane is 
perpendicular to the axis whose sum of the squared Euclidean distances between the 
centroid of both of S>s subspaces and the centroid of the subspace S is the greatest. The 
criteria which is used to select the subspace to subdivide, in each level, bases on 
variance comparison. That is to say the subspace to be subdivided is the one with the 
highest value of variance. This subspace, in theory, contains highly scattered data. This 
makes it reasonable to subdivide further to reduce its scatterness. It is mentioned in (5) 
that a direct approach for variance calculation of a group of data within a given 
subspace, which is used in Wu>s quantizer, is very computationaly intensive task. This 
comes from the fact that every data within the subspace must be visited and operated 
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upon. The @variance representative valueA (VRV) is proposed as a simpler indicator of 
data scatterness. Suppose S , whose centroid is x , is subdivided at its centroid and its  
subpaces are iS  where SS
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S . By definition, the VRV of subspace S  is 

defined by the following equation: 
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where .  stands for the Euclidean distance norm and ix  is the centroid of each 
subspace iS .   

It is obvious from Eq. (1) that instead of finding the actual variance using all 
data points in the subspace, the VRV requires only 8 points representing the centroid of 
each subspace to calculate. This, certainly, highly reduces the overall computational 
time of the quantizer. 

Up to this point, it can be concluded that almost all of the proposed algorithms 
were targetted for software implementation on a computer and aimed at quantizing still 
images. The experimental results were evaluated without taking into account the nature 
of the multitasking operating system. That is to say, the processor time was used for 
evaluating and comparing the performance of algorithms. In practice, the results only 
make sense when neither system nor user task is run by the operating system. This can 
be simply summarised that even the best algorithm with the least processor time 
consumption, like the KSA, can not be guaranteed to generate a real-time frame rate 
for processing video data on a computer with a multitasking operating system. This is 
the reason why a further optimized quantization algorithm or its hardware 
implementation counterpart must be specially designed for an application with real-
time requirements. In the next section, the proposed adaptations to the KSA, to make 
the resulting algorithm more suitable both for implementing on a personal computer 
and special hardware, are detailed. 
 
 

MATERIALS AND METHODS 
 
In this section, the details of the colour image quantization algorithm, focused 

on the KSA which is the predecessor to our proposed algorithm, are given. The details 
of the efficiency improvement to the critical parts of the algorithm are then described. 
It is noted that the improvement approaches proposed in this paper are aimed at 
maintaining the image quality which is indirectly measured by utilising the @Mean 
Square Error (MSE)A factor and, in addition, avoiding complex operations which are 
unsuitable for hardware realization. 
 
The Algorithm for Initialising Data Structures  

 
According to the KSA quantizer, the preprocessing stage of the algorithm is 

responsible for retrieving pixel data from a storage. The following four of three 
dimensional arrays which consist of 32×32×32 locations are initialised in this stage: 
histogram, sumOfColourR, sumOfColourG, and sumOfColourB. The purpose of the 
histogram array is to keep count of pixels whose colour after resolution reduction from 
24-bit to 15-bit are similar. The sumOfColourR, sumOfColourG, and sumOfColourB 
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arrays with similar dimensions to the histogram array are used to maintain the sum of 
colour values; red, green, and blue, respectively, of a pixel at any location. These three 
data structures would have been of no use, if the colour space was not reduced to 
32×32×32 subspaces, or voxel for short. This is true, because the multiplication 
between the frequency and the colour value can simply be calculated by use of the 
product between the histogram>s indices and its frequency. However, this cannot be 
performed in the subspace reduction version of the data structures. This comes from 
the fact that each voxel is normally occupied by all pixels for whom the last three bits 
are dissimilar and the rest of the bits are alike. For example, all pixels with the 
following (R, G, B) colour value are stored within the same location of the voxel 
which is at index (23,7,9): (10111XXX, 00111XXX, 01001XXX), where XXX are don>t 
care bits. It is noted for clarity that the last three bits of this pixel>s colour components 
are removed as a result of a 3-bit right shifting operation. Both algorithms proposed by 
Kanjanawanishkul and Uyyanonvara and Wu (5,7) follow similar computational steps 
to initialise all the arrays mentioned above.  

After all pixels have already been retrieved and the related data structures are 
initialised, the next stage of the algorithm is to find the cumulative moment of all these 
data structures.  

 
The Algorithm for Performing Dynamic Distribution Calculation 

 
As mentioned earlier the dynamic programming scheme has been applied to 

the problem of colour quantization. The application of this scheme helps the quantizer 
to avoid excessive re-computation of the centroid and the variance when finding the 
position of the cutting plane during the colour space subdivision process. In practice, 
the dynamic programming is accomplished by constructing the bottom-up cumulative 
distribution of all related arrays which in this case consist of the histogram, 
sumOfColourR, sumOfColourG, and sumOfColourB. This is performed after the 
completion of the three dimensional colour histogram initialisation stage which was 
previously detailed in section 3.1.  

 
The KSA.s Colour Space Subdivision Algorithm  

 
After all the necessary data structures have been initialised and their 

cumulative distribution calculations have been performed, the KSA quantizer is now 
ready for the major tasks of subdividing the colour space and generating a set of 
predefined numbers of colour palettes. Following is the algorithm responsible for these 
tasks which is proposed by Kanjanawanishkul and Uyyanonvara (5) and modified here 
to ease understanding. 
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1: Algorithm spacePartitioning 

2: Begin 
3:  No = 0 
4:  // Iterate until the required number of colours are obtained 

5:  While (No < MaxColour) 

6: // Find the subspace S to subdivide in order to reduce its 
scatterness 

7: SubspaceNumber = SubspaceAs number with the largest 
V R V  a m o n g  S u b s p a c e [ N o - 1 ] . 

8:   // Calculate the centroid of S  
9:   (r, g, b)  = Centroid of Subspace[subSpaceNumber] 
10: // Calculate the squared Euclidean distance of each main 

colour of a current subspace wrt. to the  
11:   // (r, g, b)  
12:   SED_R = Squared Euclidean Distance of Red wrt. (r, g, b) 
13:   SED_G = Squared Euclidean Distance of Green wrt. (r, g, b)  
14:   SED_B = Squared Euclidean Distance of Blue wrt. (r, g, b) 

15:   If Max(SED_R, SED_G, SED_B) = SED_Red Then  
16:    CuttingPoint = r   
17:    Axis = RED  

18:   ElseIf Max(SED_R, SED_G, SED_B) = SED_Green Then  
19:    CuttingPoint = g  
20:    Axis = GREEN  

21:   Else   

22:    CuttingPoint = b  
23:    Axis = BLUE  

24:   EndIf    
25: Split Subspace[SubspaceNumber] at Cuttingpoint to be 

perpendicular to Axis   
26:   Update the VRV of both splitted box   
27:   No = No + 1   

28:  End While  

29: End Algorithm  
 

From the above algorithm, it can clearly be seen that the algorithm iterates 
until the original subspace has already been subdivided into MaxColour number of 
non-intersecting subspaces. During each iteration, at line 7 it first searches for the 
subspace whose data is highly scattered among the rest of the subspaces available so 
far. This subspace, Subspace[SubspaceNumber], is then subdivided further with the 
aim to reduce its scatterness. The centroid of the Subspace[SubspaceNumber] are then 
calculated at line 9 by using the following equations (5): 

)0,0,1()0,1,0(

)1,0,0()0,0,0(

)0,1,1()1,0,1(

)1,1,0()1,1,1()1,1,1()0,0,0(

bgrrXSumOfColoubgrrXSumOfColou

bgrrXSumOfColoubgrrXSumOfColou

bgrrXSumOfColoubgrrXSumOfColou
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 (2.1)

  

W  KURDTHONGMEE 



 

 

155

)0,0,1()0,1,0(
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Freq
SumOfX

XAxisSubspaceInCentroidOf =     (2.3) 
 
It is noted that the term SumOfX is used in Eq. (2) to represent the SumOfR, 

SumOfG, and SumOfB values. By utilizing the dynamic programming, it is obvious 
that each colour component of the centroid can be quickly calculated. That is to say, 
the algorithm only retrieves the precalculated values of the SumOfColourXs from the 
appropriate data structures and uses those values to substitute into Eq. (2.1) to solve for 
the SumOfX values. In addition, the cumulative frequency of pixels within subspaces 
between (r

0
, g

0
, b

0
) and (r

1
, g

1
, b

1
) can also be retrieved directly from the Histogram 

array and used to produce the CentroidOfSubspaceInXAxis result in Eq. (2.3).  
It is mentioned by Kanjanawanishkul and Uyyanonvara in (5) that the key 

difference between the KSA quantizer and the previously published algorithms in the 
class is how to position the cutting plane which gives rise to the optimal result. While 
Heckbert>s median-cut algorithm (8) simply places the cutting plane at the location 
which separates S  into 2 subspaces S′  and S ′′  whose number of pixels are equal. In 
constrast, to improve image quality and reduce the algorithmic computation time, the 
KSA quantizer utilises the cutting plane normal to the colour axis with the highest 
value of an appropriate indicator and passing through the centroid of S . The squared 
Euclidean distance (SED) is proposed to be used as such an indicator.  

With respect to the KSA>s spacePartitioning algorithm at line 12-14, the 
SED_X of all colour components with respect to the centroid of 
Subspace[SubspaceNumber] are calculated by following this equation: 

 
( ) ( ) ( )[ ] ( ) ( ) ( )[ ]222222

_ bbggrr
ff

f
bbggrr

ff

f
XSED −′′+−′′+−′′

′′+′

′′
+−′+−′+−′

′′+′

′
=  (3) 

 
where ( )bgr ′′′ ,,  and ( )bgr ′′′′′′ ,,  are the centroids of two subspaces, S′  and S ′′ , 
belonging to the Subspace[SubspaceNumber], S , subdivided at the centroid of S  
which is at ( ).,, bgr  f ′ and f ′′ are the numbers of pixels within those two subspaces.  

The next step of the algorithm in line 15-24 is to determine which axis the 
subspace S  actually needs to be subdivided. Under the criteria given by 
Kanjanawanishkul and Uyyanonvara (5) the axis, Axis, to be split is the axis whose 
SED is the largest among the three colour axes. Having obtained this information, S is 
subdivided along the Axis at the CuttingPoint. This produces two subspaces whose 
VRVs, described by Eq. (1), are further updated. Finally, the subspace S  is removed 
from the Subspace-list and both newly created subspaces are, in turn, inserted into the 
list which results in 1 additional subspace to the list (at line 27). 
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The Proposed Adaptations to the Critical Parts of the KSA.s Colour Space 
Subdivision 

 
In this section, the detail of the adaptations to the critical parts of the KSA 

quantizer, in order to improve its efficiency and make it suitable for hardware 
implementation, are presented. First of all, consider Eq. (3) closely, it can be 
summarised that the KSA quantizer actually utilises the weighted sum of SED between 
the centroids of S′  and S ′′ to S  as a factor to determine the colour axis to subdivide at 
each level. Figure 1(a) illustrates the geometric interpretation of Eq. (3) when a red 
colour axis is being considered. Although, the equation gives rise to the correct 
indicator at the cost of reducing computational cost comparing to the previously 
published techniques, it still requires a fairly high computational cost to perform in 
software. Additionally, from the hardware implementation>s point of view, this 
computational stage produces a fairly high complex hardware unit. In our proposed 
algorithm, the computational cost is further reduced while the image quality is 
maintained as clearly indicated in the experimental results (given in Section 4). 
Consider Figure 1(b), it can be seen that the weighted sum of the SEDs within the red-
green colour plane can be replaced by the weighted sum of the one dimensional 
distances between S′  to S  and S to S ′′  along the red colour axis. The weighted sum 
of these two distances, which are represented by dotted lines within the Figure, can be 
simply calculated by use of the first equation within the following group: 

 

 
      (a)      (b) 
 
 
 

Figure 1. (a)  The geometric interpretation of the SED when a red colour axis is being 
considered and (b) the geometric definition of weighted sum of the nearest distances 
from both centroids S′  and S ′′  to the Line which passes through the centroid of S  
and is perpendicular to the i colour axis. 
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−′′′′+−′′=

_

_

_

              (4) 

where XWSND _  is the weighted sum of the nearest (normal) distances from both 
centroids S′  and S ′′  to the line which passes through the centroid of S  and is 
perpendicular to the i colour axis. ( )bgr ,, ,  ( )bgr ′′′ ,, ,  and ( )bgr ′′′′′′ ,,  are the 
centroids of S , S′  and S ′′ , respectively. Further, f ′  and f ′′  are the frequency of 
pixels whose values are within S′  and S ′′ , respectively. It is noted that to be correct 
both f ′  and f ′′  must be divided by .ff ′′′ +   However, in practice it is needless to do 
so because fff =+ ′′′ , the overall frequency of pixels within S , which is constant in 
every colour axis when subspace S  is being considered.  

Making use of the XWSND _  to represent the SED_X  has some minor 
limitations as illustrated in Figure 2. While Figure 2(a) confirms that as long as the 
magnitude of the SED_R is changed, so does its RWSND _ . In constrast, when the 
magnitude of the SED_R is constant but its direction is changed, the RWSND _  
reflects an incorrect result as clearly shown in Figure 2(b). It is, however, needed to 
experimentally confirm that with respect to our domain such a case does not occur 
frequently to cause the severe final result to a quantized image. Experiments were, 
therefore, carried out to evaluate the error resulting from this kind of deficiency. In the 
experiments, the frequency of a conflict decision to split subcubes between using 
SED_X and XWSND _  are recorded. The inputs to the experiments consisted of 100 
randomly generated images of size 512×512 with 256 required final subcubes (which 
is equivalent to 256 palette colours). We have found that, on average, only 1.7 percent 
of 256 subcubes have conflict decision. The minimum and maximum percentages of 
inconsistency are 0.4 and 4.0, respectively. Obviously, this confirms that, without 
taking the perceived images and the MSE factor into account, more than 95 percent of 
subcubes are split correctly, with respect to the SED_X, even by utilising a simple 
calculation XWSND _ -factor.  

Due to the lower complexity of Eq. (4) and the positive confirmation from the 
experiment described earlier, the XWSND _  are used instead of the SED_X in the 
algorithm proposed in this paper. It is noted that the rules for deciding the colour axis 
to be split are still preserved with the newly proposed factor. 

Another part of the KSA quantizer which consumes much of the 
computational time is at line 25. The algorithm spends time on updating the VRV, Eq. 
(1), of the two subspaces resulting from the subdivision stage described earlier. The 
computational steps for each subspace *S >s VRV calculation consist of finding the 
centroid of *S  and using this centroid to produce 8 non-intersecting subspaces 
belonging to *S . The centroids of the 8 subspaces are then calculated and its values 
are substituted into Eq. (1) to produce the required VRV. The first approach to improve 
the efficiency of the quantizer is to use the square of the Euclidean distance norm 
instead of the Euclidean distance norm. This reduces the computational time and, at the 
same time, makes it possible to realize the algorithm by means of hardware 
implementation since there is no need to perform a complex square root calculation 
within Eq. (1).  
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Splitting *S  at its centroid to produce 8 non-intersecting subspaces in order to 
find the VRV of *S  seems to make sense as mentioned and experimentally confirmed 
by Kanjanawanishkul et al in (5). From our experimental results, we have found that 
even splitting *S  into only 2 or 4 non-intersecting subspaces also results in an output 
image with comparable error and acceptable image quality at the cost of further 
reducing computational time of the overall algorithm. With the reduction in the 
number of subspaces into 2 and 4, the Eq. (1) can now be rewritten: 
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2
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2

2

∑ −=

∑ −=

=

=
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i
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            (5) 

 
for 2 and 4 subspaces, respectively. It is noted that the square of Euclidean distance 
norm in Eq. (5) means that the squared root of each term, within the summation, is not 
required to be taken.  
 
 

 
      (a)      (b) 
 
Figure 2. The relationships between the SED of S ′ -subspace and its WSND when (a) 
only magnitude of SED is changed and (b) only the angle between SED-vector and the 
red colour axis is changed. 
 
 

At this point, we have already given the details of the adaptations to the KSA 
quantizer in order to reduce its computation time while preserving the image quality 
(to be illustrated in section 4). In addition, the proposed algorithm is more suitable for 
hardware implementation because it removes all hardware unrealizable parts from the 
algorithm.  

 

W  KURDTHONGMEE 



 

 

159

The Pixel Mapping Stage   
 
In this stage of an image quantization algorithm, the nearest neighbour in 

three-dimensional discrete colour space of a pixel P from the original image is 
searched and its colour value is used to represent P in the quantized version of the 
image. This process is iterated for all Ps belonging to the original image. Both the 
KSA and our proposed quantizers utilise a similar algorithm as proposed by Wu (7). 
The algorithm is the @centroid mapping algorithmA which is very fast. During 
operation, it maps every pixel within a voxel under consideration to the voxel>s 
centroid. The algorithm can effectively be used when the number of colours in the 
original image is smaller than the number of pixels in the image. As the proposed 
algorithm quantizes the original 24-bit colour into 15-bit, the overall number of colours 
are under 32,768. This makes it possible to employ the algorithm in this context. 

In the next section, the implementation details of the proposed algorithm are 
given. This is, then, followed by the comparison of the experimental results obtained 
from different versions of quantizers in the same class in terms of both the image 
quality and the execution time. Finally, discussions are given. 
 

 
RESULTS AND DISCUSSION 

 
The proposed amendments to the critical parts of the KSA quantizer described 

in this paper were implemented on a Pentium® Centrino notebook with the following 
specifications: processor speed 1.4 GHz, memory 496 MB, and Windows XP 
operating system. The C programming language was selected for coding the previously 
proposed algorithms, Wu>s and KSA, and the algorithm proposed in this paper. 
Microsoft Visual C++ version 6.0 was the tool of choice for performing software 
development during the course of our research. Following are five different versions of 
quantizers which were developed and used for comparing the efficiency improvement: 

• Wu>s quantizer (WU),  
• KSA>s quantizer (KSA),  
• Our proposed quantizer which utilises the WSND as an indicator for 

selecting the axis to subdivide colour spaces, does not take square root of 
the squared Euclidean norm within Eq. (1), and calculates the VRV by use 
of: 
o 8 subspaces within *S  (WCQ8P), 
o 4 subspaces within *S  (WCQ4P) and, 
o 2 subspaces within *S  (WCQ2P). 

During execution each version of these quantizers, the processor>s execution 
times were started recording immediately after the image had already been loaded into 
an image buffer and ended after the pixel mapping phase had already been performed. 
It is noted that for all of the implemented quantizers, the centroid mapping approach 
was used to map the original image pixels to their nearest palette colour and produce 
the quantized version of the image. 

Another important factor in which we are interested from the proposed 
algorithms is the quality of the quantized images. Actually, the evaluation of this factor 
is still an unsolved problem in the image processing research community. That is to 
say, there is still no good objective criterion available for measuring the perceived 
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image similarity. However, the simplest and most widely used criteria is the MSE 
which can simply be computed by use of the following equation: 
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where ),( yxI  and ),( yxI ′  are the pixel>s intensity at ),( yx  taken from the original 
and the quantized images, respectively. M  and N  are the height and width of the 
image and .  stands for the Euclidean distance norm. It is noted that MSE measures 
the average amount of difference between pixels of the original and quantized images. 
A small MSE indicates that the quantized image closely resembles the original one.  

To compare the efficiency improvement and the outcome image quality of the 
quantizer, five standard test images of 512×512 pixels in 24-bit TIFF format were used 
to conduct the experimentations. The images were: Lena, Sailboat on Lake, Airplane, 
Pepper and Baboon. For each quantizer, the processor>s execution times and MSE were 
collected from five required palette sizes of 16, 32, 64, 128 and 256 colours. The 
experimental results for all of these configurations are shown in Table 1, the images 
produced by the quantizers are shown in Figure 3-8, and a comparison between 
execution times and MSEs among different test images for a fixed palette colours of 
256 is shown in Figure 9. 
 

(a) (b) (c) 
 

(d) (e) (f) 
 
Figure 3. (a) original baboon image and its ouantized versions of 256 palette colours 
by: (b) Wu>s quantizer, (c) KSA quantizer, (d) our proposed WCQ8P, (e) our proposed 
WCQ4P and, (f) our proposed WCQ2P. 
 

W  KURDTHONGMEE 



 

 

161

From the experimental results, it is obvious that as far as the execution time is 
concerned, the proposed algorithms outperform all previously published colour 
quantization algorithms within the same class. The quantizer which utilises WSND 
indicator and employs only 2 subspaces to calculate the VRV without taking the square 
root of the Euclidean norm, WCQ2P, is the fastest one, approximately 2.5 times faster 
than the KSA quantizer and 4 times faster than Wu>s quantizer. When the quality of 
the images is considered indirectly by means of MSE, it is obvious that, apart from 
Wu>s quantizer, all quantizers have approximately equal degree of MSE.  That is to 
say, the MSEs of the KCQ, WCQ, WCQ4P, and WCQ2P quantizers are roughly within  
[ ]

MSEMSEMSEMSE
SDMeanSDMean +− ,  for every set of the test images.  

 

(a) (b) (c) 
 

(d) (e) (f) 
 
Figure 4. (a) Original lena image and its quantized versions of 256 palette colours by: 
(b) Wu>s quantizer, (c) KSA quantizer, (d) our proposed WCQ8P, (e) our proposed 
WCQ4P and, (f) our proposed WCQ2P. 
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(a) (b) (c) 
 

(d) (e) (f) 
 
Figure 5. (a) Original pepper image and its quantized versions of 256 palette colours 
by: (b) Wu>s quantizer, (c) KSA quantizer, (d) our proposed WCQ8P, (e) our proposed 
WCQ4P and, (f) our proposed WCQ2P. 
 

(a) (b) (c) 
 

(d) (e) (f) 
Figure 6. (a) Original airplane image and its quantized versions of 256 palette colours 
by: (b) Wu>s quantizer, (c) KSA quantizer, (d) our proposed WCQ8P, (e) our proposed 
WCQ4P and, (f) our proposed WCQ2P. 
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(a) 
 

(b) 
 

(c) 
 

(d) (e) (f) 
 
Figure 7. (a) Original sailboat on lake image and its quantized versions of 256 palette 
colours by: (b) Wu>s quantizer, (c) KSA quantizer, (d) our proposed WCQ8P, (e) 
WCQ4P and, (f) WCQ2P. 
 

(a) 
 

(b) 
 

(c) 
 

(d) (e) (f) 
 

Figure 8. (a) Original lena image and its quantized by the WCQ2P quantizer versions 
of different palette colours: (b) 16, (c) 32, (d) 64, (e) 128 and, (f) 256. 
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From the experimentation results, we can clearly conclude that our proposed 
algorithm for colour image quantization has a superior performance in terms of 
execution time compared to all of its predecessors at the cost of comparable image 
quality. Above all, many complex operations found in the previously published 
algorithm have been substituted by simpler counterparts. This makes the algorithm 
more suitable to be realized in the hardware form on FPGA platforms. 
 
 

CONCLUSION AND FUTURE WORK 
 

In this paper, techniques to quantize a digital colour image in order to reduce 
the representation number of colours to be suitable for different type of displays were 
surveyed. The disadvantages of the techniques for highly restricted resource utilization 
and real-time constrained applications were also described. With such  disadvantages 
in mind, we proposed a superior quantization algorithm in terms of computational time 
and suitability for hardware realization. The algorithm employs a simple geometry to 
get rid of complex operations found in previously published papers. The proposed 
algorithm has proved to outperform the previously proposed quantizers in the class in 
terms of execution time with comparable image quality. With the benefits of simple 
operations within the algorithm, it opens an opportunity to transform the algorithm into 
hardware-based implementation. 
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 Figure 9. A comparison of execution times and MSEs among different test images for a fixed palette colours of 256. 
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Table 1. Experimental Results: processor execution times and mean squared errors, obtainable from difference quantizers operated upon the 
set of standard test images: baboon, lena, pepper, airplane, sailboat on lake. 

WCQ2P WCQ4P WCQ8P KCQ WU Test Image Palette   Colours MSE Time (mS) MSE Time (mS) MSE Time (mS) MSE Time (mS) MSE Time (mS) 
16 135.7 5 141.6 9 141.5 12 142.7 18 136.5 33 
32 127.9 8 125.5 10 123.0 14 125.5 18 118.0 35 
64 106.2 9 106.0 10 104.1 15 104.8 19 93.2 37 
128 92.8 10 83.7 13 83.0 16 84.2 20 68.5 38 

 
256 67.0 10 67.7 14 66.1 18 62.9 22 47.5 40 

            

16 94.0 7 100.0 9 100.4 12 103.0 17 84.6 31 
32 74.5 8 71.4 9 73.3 15 71.3 19 58.4 33 
64 49.0 8 52.4 10 48.7 16 50.5 18 37.4 35 
128 36.7 8 38.6 10 32.8 16 33.1 19 24.2 36 

 

256 27.9 8 26.9 11 22.4 17 22.2 20 15.3 38 
            

16 109.7 9 106.5 9 115.8 17 115.3 20 109.7 33 
32 90.9 9 96.3 10 104.4 17 101.5 20 84.7 35 
64 76.2 9 79.2 10 87.0 18 84.9 21 58.7 36 
128 60.4 10 57.6 11 61.0 18 63.8 22 39.9 36 

 

256 42.1 10 46.4 12 46.2 19 52.1 22 25.4 44 
            

16 61.5 9 73.9 10 75.7 18 77.4 20 46.5 31 
32 58.4 9 71.6 10 71.8 19 71.0 22 27.6 31 
64 43.3 9 44.0 11 44.3 18 43.2 23 18.7 33 
128 30.8 10 39.4 13 28.4 19 26.9 23 11.9 36 

 

256 25.1 11 19.6 13 19.0 20 18.8 23 7.9 44 
            

16 105.9 8 104.6 11 106.5 18 109.8 21 92.6 31 
32 98.0 8 96.7 11 97.5 19 95.4 22 75.6 32 
64 82.8 9 90.5 12 83.1 19 74.8 24 53.8 33 
128 67.7 9 65.1 12 62.6 21 56.8 24 38.6 34 

 

256 56.0 10 48.4 12 50.1 22 48.0 24 25.9 36 
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