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ABSTRACT 
 

In this study, a new geocomputing index called the Rain 
Exposure Index (REI) is proposed. REI can be used for flash 
flooding prediction due to heavy rainfall accumulation. The index 
was constructed by computing data from GOES-9 satellite images 
using combinations of image processing and functional constructs. 
Water vapour data from GOES-9 satellites were collected from 1st 
January - 20th September, 2005. Thresholding techniques and varied 
thresholding values from 65-80 with 5 point intervals were used. REI 
forecasting results were compared with Thai Meteorological 
Department (TMD) results. The results indicated that 65-70 
thresholding values provided a higher percentage of correct 
prediction than 75-80 thresholding values.  Comparsion between the 
REI and TMD predictions, found that the REI gave a better correct 
warning of an event than TMD forecasting. 
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INTRODUCTION 
 
Flood disasters are the most frequent and devastating natural disaster in South 

East Asia resulting in loss of life and wide spread damage to property. For the past 30 
years, the number of flood disasters has increased compared to other forms of disaster 
(1). Increases in the frequency or intensity of extreme precipitation events exacerbate 
risks of disastrous flooding both in upland watersheds where such events can trigger 
landslides, and in lower floodplains which are often densely settled (2).  Although 
there are many reasons for flooding, one of the principle reasons is climate (lose of 
more life and wide spread damage to property). The characteristics of flooding events 
in local Thailand have two forms, which are 6flash flood7 where the lag time between 
peak of rainfall intensity and flood event might be in a span of only few hours, and 
6river flood7 where the lag time might be days, or weeks. Floods are now seen as a 
hazard that has to be controlled (3). However, the majority of countries do not 
document or map flooding scientifically (4). 
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Water remains stagnant after the flood recedes, sources of drinking water get 
polluted and food becomes spoiled (5). Inevitably, floods become a part of our living 
system and it is impossible to avoid them. It is then necessary to learn and understand 
the causes of flooding in order to reduce the damages and losses. Several approaches 
are used to lessen the destruction including forecasting the possibility of having 
flooding and identifying flood-prone areas. 

In the last year, meteorological data such as rainfall estimation based on 
remote sensors in the visible (VIS), infrared (IR) radar, and microwave (MW) ranges 
of the spectrum, have been carried out on board several launched platforms. In 
particular, the launch of the newest generation of geostationary satellites, the 
Geostationary Operational Environmental Satellite GOES-I-M series (6) and the 
newest METEOSAT Second Generation (MSG) (7) with its Spinning Enhanced 
Visible and Infrared Imager (SEVIRI), adds new channels to the traditional VIS-IR-
WV (Water vapour) triplet. One particular type of satellite data that this study is 
interested in is the GOES satellite imagery. They carry two separate radiometer 
packages which are an imager and a sounder. The imager has one water vapour 
channel (channel 3); while the sounder has three water vapour bands (bands 10,11,12). 
These channels/bands are sensitive to radiation at various wavelength intervals with in 
the 6.5 - 7.4 µm range. GOES-9 satellite circles the Earth in a geosynchronous orbit, 
which means that they orbit the equatorial plane of the Earth at a speed matching the 
Earth@s rotation. They are designed to operate in the geosynchronous orbit 35,790 km 
above the Earth surface. They provide a constant vigil for the atmospheric triggers for 
severe weather conditions such as tornadoes, flash floods, hailstorms, and hurricanes. 
The satellites receive transmissions from free-floating balloons, buoys and remote 
automatic data collection stations around the world. 

Water vapour absorbs and reradiates electromagnetic radiation in various 
wavelength bands. Such infrared radiation emitted by the Earth/atmosphere is 
intercepted by satellites. Water vapour molecules in the atmosphere absorb outgoing 
terrestrial radiation in the infrared region of the electromagnetic spectrum. The 
AVHRR sensor on the NOAA polar orbiting satellites has two thermal channels, near 
11 and 12 µm, which are designed to correct for water vapour effects when predicting 
sea-surface temperatures (8). Several investigators have employed these thermal 
channels in estimating total column water vapour (or PWV) from the AVHRR sensor 
(~1.1 km at nadir) in a technique referred to as the split-window technique (9,10,11). 
Water vapour data from GOES-9 satellite showed water vapour in the upper 
troposphere, the only area of the atmosphere generally important in everyday weather 
forecasting. These systems have a large effect on weather patterns found at the surface. 

This study aimed at developing a new technique to predict the flood risk areas 
called the Rain Exposure Index (REI). REI was constructed using a combination of 
image processing and functional constructs using real-time water vapour data from 
GOES-9 satellites. REI was able to predict flood risk areas due to heavy rainfall, which 
is normally difficult to predict in time. Then we compared REI results with the Thai 
Meteorological Department (TMD) forecasting. 
 
 
 
 
 

W RUAIRUEN et al 



 

137

MATERIALS AND METHODS 
 
Study Area 

 
Study areas were located at latitude -5oS - 45oN and longitude 90oE - 150oE. 

We used 2-minute (1 minute of latitude = 1 nautical mile, or pproximately 1.852 km) 
resolution terrain and topography from ETOPO2 data (12) to generate coastal contour 
lines for South East Asia. In this study, we focused our work on the Thai boundary. 
Thailand covers an area of 513,115 km2 between latitude 6o-21oN and longitude 98o-
105oE. 
 
GOES-9 Satellite Data 

 
In this study, we used water vapour data from GOES-9 satellites. Water 

vapour images were one of a new series of advanced geostationary sensors with 
improved infrared spatial resolution and radiometric sensitivity (13). Water vapour 
images from the GOES-9 satellite were updated every 30-min at 
http://www.nrlmry.navy.mil/archdat/pacific/western/tropics/vapor/  (14) (Figure 1). 
Multi-temporal datasets of GOES-9 satellite were used during 1st January - 20th 
September, 2005. 
 
Rain-Gauge Data Collection 

 
Rain-gauge data have been the main source of daily rainfall data (15). In this 

study, rain-gauge data during 1st January - 20th September, 2005 were obtained from 
the web site of the Royal Irrigation Department  (16) and the Thai Meteorological 
Department. Flooding events usually occur when the amount of daily rainfall is over 
40 mm/day (17,18). We selected 50 rain-gauge stations from the provinces where 
flooding and non-flooding events occurred such as Chiangmai, Chiangrai, Nan, 
Maehongson, and Nakhonsawan. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FLASH FLOODING AREA PREDICTION 



 

138

 
 

  
Figure 1. Water vapour data from GOES-9 satellite in South East Asia. This image 
was acquired on 12 August 2005. Dark areas represent high water vapour, which 
means heavily rainfall (14). 
 
Digital Image Processing Technique 

 
Water vapour data from GOES-9 were obtained from IR sensors, which gave 

the digitized value from 0 to 255. Water vapour data were then transformed to RGB 
colours by the Navy department, USA in JPEG format. We then downloaded the 
vapour maps from the navy website to our local archive automatically at half an hour 
intervals. These data allowed us to trace back water vapour information for any 
specific area in South East Asia. Each image was decomposed into three-single colour 
channels {i.e. red, green and blue (RGB)} (19). A hypothetical rain-indicating index 
was constructed by inverting the green channel and re-combining it with the red 
channel. The image was then changed into a grey level image ranging from 0 to 1, 
where 0 and 1 represented black and white, respectively. The grey level values of an 
RGB colour image, denoted ),( yxf , were computed using {r(x, y), g(x, y), b(x, y)} in 
Eq. (1) (20). We converted RGB colours to a grey scale image by combining the red, 
green, and blue signals in proportion to the human eye@s sensitivity to them. In this 
study, we chose the weighting coefficients shown in Eq. 1. 

),(114.0),(589.0),(299.0),( yxbyxgyxryxf ++=  [1] 
 
Where, r = red, g = green, b = blue, x and y were spatial (plane) coordinates, and the 
amplitude of f at any pair of coordinates (x, y) was called the intensity or grey level of 
the image at that point. A monochrome digital image f (x, y) was a 2D array of 
luminance (brightness) values Eq. (2), 
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With ),( yxf Z∈ , where Z was the domain of the integers, and 
0 1),( −≤≤ Lyxf , where typically .256=L  Each element of the array was called a pel 
(i.e. picture element), or more commonly pixel. Values in this range can be efficiently 
represented by 8 binary digits (note that 2562 8 = ) and therefore, each pixel occupied 
one byte in memory. Total storage requirements for an image were therefore of the 
order of M×N bytes, where M and N were the number of rows and columns in the 
image array, respectively. 

Flash floods occur in short time scales over which flood producing rainfall 
occurs (generally < 6 hours) over small spatial scales. Therefore, 24 images (12 hrs) 
were used in the study. REI was constructed by integrating all 24 images using an 
image multiplication technique. If there were high amounts of water vapour in all 24 
images, the REI would be high. This high REI means a high probability of heavy 
rainfall in 12 hrs (i.e. flash flooding). The final image was transformed to pixel with 
values ranging from 0-255. These images contained only two principal grey-level 
regions (Figure 2a). 

The next step of the algorithm was to threshold the final image in order to 
decide which pixels in the image corresponded to flood risk areas. A thresholding 
technique is a well-known technique for image segmentation (21,22). Grey-level 
images were converted into binary images (23). The final image was segmented into 
two classes using a global threshold (Figure 2b). In the final binary image, each pixel 
value was determined or assigned to hold the values of 0 or 1 based on a comparison 
criteria with some global threshold value (T), e.g. by Eq. (3). 
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[3] 

 
Where, x, y = x, y coordinates and T = threshold value 
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         (a) 
 

 

 (b) 
 
Figure 2. REI images for flash flooding in Chiangmai Province on 13th August 
2005 (white circle), (a) before using a 70 thresholding value, and (b) after 
using a 70 thresholding value. 
 

 
 
However, given some appropriate measurement of the quality of the 

segmentation, automatic threshold selection algorithms can be derived. The function 
[OptimumThreshold] returned a threshold value based on one of two user selectable 
minimisation criteria. The user may select a threshold value that minimised the mean 
squared error between the original and the binary image or one that minimised the 
weighted sum of group variances, where the group variances were formed from the 
pixels that fell above and below some chosen threshold (24). The function 
[OptimumThreshold] gave different threshold values for each flooding event. The 
images contained only two principal grey-level regions (25). Then, we viewed these 
values as random quantities, and plotted the histogram to estimate the probability 
density function (26). We used 87 reported non-flooding events and 13 reported 
flooding events to determine the thresholding value that gave the most correct 
predictions. We used the report of flooding and non-flooding events from TMD, 
newspapers, the Civil Defence Secretariat, the Royal Thai Police, and the Department 
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of Pollution Control report to obtain flooding events. We varied thresholding values 
from 0-255 values to determine which range of thresholding value that could detect 
flooding events. After we found that range, we tested the range in 5 value intervals in 
order to get a more precise thresholding value. The histogram was the probability 
density function of a random variable (Figure 3). The final image with the flooding 
area should be shown in white colour called REI. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Histogram of the final image with an arrow pointing at the 70-thresholding 
values. 
 
Forecasting and Validation of Flooding Area 

 
This study forecasted flood risk areas during 1st August - 20th September, 

2005 by using the REI forecasting model. We used the report of flood warning events 
from TMD. We checked for the flooding events from newspapers and the Civil 
Defence Secretariat, the Royal Thai Police, and the Department of Pollution Control 
report. We compared the REI forecasting results with the TMD forecasting results. 

The validation step was performed using the amount of daily rainfall data 
from the Royal Irrigation Department, Thailand at Chiangmai, Maehongson, and 
Nakhonsawan provinces. We plotted the amount of daily rainfall through time and 
expected a high amount of daily rainfall during flooding events by using Mathematica. 
Then, we compared the amount of daily rainfall to see if a high amount of daily rainfall 
occurred at the same period as when the REI and TMD predicted flooding events. If 
there were some events that were predicted by the REI forecasting as flooding events 
but these flooding events were not reported by the TMD as flooding events, then we 
plotted an amount of daily rainfall to see if the amount of daily rainfall was more than 
40 mm/day. If so, this suggested that it would be very likely that a flooding event 
would occur. We would use a high amount of daily rainfall as an indicator of flooding 
events. Therefore, the amount of daily rainfall was plotted during the time that the REI 
predicted flooding. 
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Data Analysis 
 
Chi-Square tests were used to test whether the REI and TMD made a correct 

prediction greater than 50% of the time. A Chi-Square test was also used to compare 
whether the REI and TMD gave the same correct prediction. 
 
 

RESULTS AND DISCUSSION 
 
After using an image processing technique at the 70-thresholding value, the 

final image showed flooding risk areas, indicated in white colour (Figure 4). We used 
87 reported non-flooding events and 13 reported flooding events to determine the 
thresholding value that gave the most correct predictions. We found that 65-80 
thresholding values could be used to predict the flood risk area. When thresholding 
values were varied from 65-80 with 5-value intervals, 65 and 70-thresholding values 
gave a more accurate prediction than 75 and 80-thresholding values (Table 1, Figure 
4a-d). Therefore, 65-70-thresholding values should be used in the REI because these 
thresholding values gave a better prediction of flood risk area. 

TMD showed 50% false predictions on flooding/non-flooding events (Table 
2). On the other hand, REI correctly predicted flooding/non-flooding events greater 
than 50% probability. When we compared between the REI and TMD predictions, we 
found that the REI gave a better correct warning event than TMD forecasting {Pearson 
Chi-square test: 36.92

1 =χ , P < 0.05 (Table 2)}. 
During 1st - 31st August 2005, there were two reported flooding events from 

both TMD and REI forecasting. The amount of daily rainfall during these two flooding 
events was higher than non-flooding events (Figure 5). However, there was one event 
that was predicted by the REI forecasting as a flooding event but was not reported by 
the TMD as a flooding event (i.e. during 20th - 23rd August, 2005) (Figure 5). If we 
consider the amount of daily rainfall, this event should result in flooding as REI 
predicted because the amount of daily rainfall during that period was much higher than 
40 mm/day. 
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(d) 
 

 
Figure 4. REI images for flash flooding with 65-80-thresholding values: 
(a) 65, (b) 70, (c) 75 and (d) 80. 

 
 

There are few spatial and temporal data available on flooding events and even 
fewer models that provide accurate flooding predictions in time. Besides TMD 
forecasting, REI forecasting offers a new way to predict flooding events. In short, REI 
could help in preventing serious damage and may help to decrease the death and 
economic disaster from serious flooding. 

However, there were limitations of the current technique. This technique 
depends on the real time availability of the data from GOES-9 satellites. They would 
have a problem with our technique if water vapour data that were collected were not 
complete.  Another limitation is the resolution of the on-board satellite sensors. For 
current GOES-9 satellites the resolution is somewhat at mesoscale, so it is not possible 
to pinpoint a small size location such as Tambon or district. Besides, using the 
acquisition of hydrological data including variables relating to flow velocities, erosion, 
sedimentation, discharge patterns topography/terrain data were needed. Finally, at the 
time of doing this research, we have very limited access to data from some 
departments to validate our technique. 

 
Table 1. Accuracy assessment of four thresholding values. n represents the number of 
events. 
 

Non-flooding Events Flooding Events Thresholding Value 
(n = 87) Accuracy 

(%) 
(n = 13) Accuracy 

(%) 
65 87 100 12 92.31 
70 87 100 12 92.31 
75 87 100 11 84.62 
80 87 100 11 84.62 
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Figure 5. The amount of daily rainfall (mm) from rain-gauge stations in (   ) 
Chiangmai and (�) Nakhonsawan Provinces. Closed and open symbols represent 
flooding and non-flooding predictions, respectively; □, ∆ represent REI and TMD 
forecasting, respectively. 
 
 

Table 2. The accuracy of warning events between TMD and REI forecasting 
techniques. *P < 0.01 
 

Forecasting Technique Correct Warning  
Events 

False Warning 
Events 

Statistic test 

TMD 13 8 19.12
1 =χ  

REI 15 3 00.82
1 =χ * 

Total 28 11  
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