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ABSTRACT

This paper presents a simulation of incompressible viscous flow 
within a two-dimensional square cavity. The objective is to develop a 
method originated from Lattice Gas (cellular) Automata (LGA), which 
utilises discrete lattice as well as discrete time and can be parallelised 
easily. Lattice Boltzmann Method (LBM), known as discrete Lattice 
kinetics which provide an alternative for solving the Navier–Stokes 
equations and are generally used for fluid simulation, is chosen for the 
study. A specific two-dimensional nine-velocity square Lattice model 
(D2Q9 Model) is used in the simulation with the velocity at the top of the 
cavity kept fixed. LBM is an efficient method for reproducing the 
dynamics of cavity flow and the results which are comparable to those of
previous work.
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INTRODUCTION

The objective of our study is to simulate water flow using Lattice Boltzmann
Method (LBM) (1,2,3,4). In general, in order to understand the dynamics of water
flow, we have to solve the Navier-Stokes equation (5) since it is the most fundamental
equation that governs fluid flow. Initial variables to study are, for example, velocity
(uv ), density (ρ ) and pressure (Ρ ). The Navier-Stokes equation is a partial
differential equation that is difficult to solve for complicated boundary and initial
conditions. Consequently, numerical methods have been applied to find their solutions.
Those conventional numerical methods are Computational Fluid Dynamics (CFD),
Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume
Method (FVM) etc. A new numerical method with more advantages has recently made
its appearance among those conventional ones. This is the LBM that was developed
from Lattice Gas Automaton of fluid. LBM enables parallelisation; moreover, it has
the simplicity of programming and the ability to incorporate microscopic interaction.

Historically, Frisch and co-workers introduced Lattice Boltzmann Equation
(LBE) to calculate the viscosity of the Lattice Gas Cellular Automata (LGCA) in 1987
(6,7,8). In 1988, McNamara and Zanetti introduced Lattice Boltzmann models as an
independent numerical method for hydrodynamic simulation. LGCA was modified to
get rid of the noise. The Boolean fields were replaced by continuous distribution over
Frisch Hasslacher Pomeau (FHP) and Face-Centered–Hyper-Cubic (FCHC) Lattice
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with Fermi-Dirac distribution as equilibrium function. In 1989, Higuera and Jiménez
simplified the LBM by linearising collision operator. From 1990 to 1991 Chen and co-
workers, and Qian and co-workers replaced Fermi-Dirac distribution by Maxwell-
Boltzman distribution that is close to the local equilibrium state. Around 1991 and
1992, Koelman, Qian et al., and others recovered the Navier-Stokes macroscopic
equation by choosing the local equilibrium distribution in the Lattice BGK model, and
collision operator was replaced by single time relaxation.

This work utilises a version of LBM in Mathematica computing environment
(9,10,11). Mathematica is known to be a high-level programming language as well as a
computing software system that provides a wide variety of numerical, algebraic,
symbolic and graphical computations. From our experience of undertaking this work,
Mathematica is found to have expected simplicity.

Lattice Boltzmann Method for Two-dimensions: Nine-velocity Square Lattice 
Model

A square Lattice with unit spacing is used on each node of which  there are
eight neighbours connected by eight links. Particles can only reside on a node and
move to their nearest neighbours along these links in the unit time. There are 3 types of
particles on each node with nine different velocities. ieσ

v
 is the velocity (see Figure

1). The symbol σ  signifies the type of particle (σ  = 0, 1, 2). The symbol i represents
the velocity direction. That is, for a particle at rest, we use ie0

v  with speed 00 =iev .

For a particle moving along axes, we use ie1
v  with speed 11 =iev  and for a diagonally

moving particle, ie2
v  with speed 22 =iev .

Figure 1.  Nine-velocity square Lattice model (D2Q9 Model)

The occupation of the three types of particles is represented by the single-
particle distribution function, ),( txif v

σ  which is the probability of finding a particle at

node xv  and time t with velocity ieσ
v . When 0=σ , there is only 01f . The
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occupation of particles moving along axes is defined as 11f , 12f , 13f  and 14f  while

the occupation of diagonally moving particles is defined as 21f , 22f , 23f  and 24f .
In general, the particle distribution function satisfies the Lattice Boltzmann equation.

itxiftiexif σΩ=σ−+σ+σ
vvvv ),()1,( , (1)

where iσΩ
v  is the collision operator, representing the rate of the particle distribution

change due to collisions.
The collision operator is then simplified by the single time relaxation

approximation (12) and the Lattice Boltzmann equation becomes the Lattice
Boltzmann GK (LBGK) equation (in Lattice units):

[ ]),()0(),(1
),()1,(

txiftxif

txiftiexif

vv

vvv

σ−στ
=

σ−+σ+σ
,

(2)

where ),()0( txif v
σ  is  the  equilibrium  distribution at xv  and t and τ  is the single

time relaxation, which controls the rate of approaching equilibrium. The density per
node, ρ , and the macroscopic velocity, uv  are defined in terms of the particle
distribution function by

∑
σ

∑ σ=ρ
i if , ∑

σ
∑ σσ=ρ
i ieifu vv (3)

A suitable equilibrium distribution can be chosen in the following form for each type
of particles.

.2
2
32)2(

2
9)2(31

36
1)0(

2

,2
2
32)1(

2
9)1(31

9
1)0(

1

,2
2
31

9
4)0(

0






 −⋅+⋅+ρ=






 −⋅+⋅+ρ=






 −ρ=

uuieuieif

uuieuieif

uif

vvvvv

vvvvv

v (4)

The relaxation time is related to the viscosity by

2
16 +ν

=τ , (5)

where ν  is the kinetic viscosity.
Having chosen the appropriate Lattice size and the characteristic velocity, v

can be calculated for a given Reynolds number (Re) and then the relaxation time can
be determined by using Eq. (5). Starting from an initial density and  velocity  fields,
the equilibrium distribution function can be obtained using Eq.  (4),  and ),( txif v

σ  can

be initialised  as ),()0( txif v
σ .  For  each  time step, the updating of the particle

distribution can be split into two sub-steps: collision and streaming. It is irrelevant
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which one is the first for a long time run. The collision process at position xv  occurs
according to the right hand side of the Lattice Boltzmann equation given as Eq. (2).
The resulting particle distribution at xv , which is the sum of the original distribution
and the collision term, is then streamed to the nearest neighbour of iex σ+ vv , for particle

velocity ieσ
v . Then ρ , uv  can be computed from the updated ),( txif v

σ  using Eq. (3).

The updating procedure can be terminated for steady state problems when a certain
criterion is satisfied. The method can also be used for transient problems.

Cavity Flow Simulation

Cavity flow simulation uses Cartesian coordinates with the origin located at
the lower left hand corner as shown in Figure 2. The cavity has an n node on each
side. The velocity components u and v are in x and y directions. Re is the Reynolds
number defined as

Figure 2. Cavity flow configuration, coordinate, boundary conditions  
and initial conditions of the velocity

ν
=

HuvRe ,
(6)

and ν  is the kinematic viscosity as given in Eq. (5), the height of the cavity is H, and
velocity of the top plate is uv .

The top boundary moves from left to right with constant velocity. Initially the
velocities at all nodes, except at the top node, are set to zero. The x-velocity of the top
is u=0.01 for Re<100, u=0.1 for Re≥100 and the y-velocity, v=0. Uniform fluid

density 7.2=ρ  is imposed initially. The equilibrium distribution function, )0(
ifσ is then

calculated using (4) and ifσ  is set to equal to )0(
ifσ for all node at t=0. The evolution

of ifσ  can then be found by succession of streaming and relaxation processes. After
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streaming, the velocity of the top boundary is reset to its uniform initial velocity. At

the end of each streaming and collision process cycle, ifσ  at the top is set to the

equilibrium state. Bounce-back boundary conditions are used on the three stationary
walls.

There are three types of nodes on a Lattice, namely, fluid nodes (white node),
bounce-back (no-slip) boundary conditions nodes or wall nodes (black nodes), and
pressure-velocity boundary conditions nodes or top nodes (gray nodes). (see Figure 3)

Figure 3. Boundary conditions of cavity flow. Particles propagate to their next 
neighbours

Figure 4. Bounce-back boundary conditions, inevv −=oute

We use two types of boundary conditions (8,13) in this simulation.
1. Bounce back boundary conditions
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The on-grid situation is easy; just reverse all populations sitting on a boundary
node. When fluid nodes move into wall nodes, the bounce-back occurs; fluid nodes
move in the opposite directions with the same speed or infoutf = , as shown in
Figure 5.

Figure 5. Propagation boundary conditions, inout ee vv −=

2. Propagation boundary conditions (see Figure 5)
When fluid nodes move into fluid nodes, they continue moving in the same

direction with the same speed, as shown in Figure 6.

Figure 6. Propagations of 11f

At t=0, the first time step, 11f  is at the node x=0, y=1. At t=1, 11f  moves to

node x=1, y=1, and so on. The propagation of 24,...,14,13,12 ffff  occurs in the

similar way as 11f  in their own directions except 01f  which is the propagation for rest
particles. These rest particles are of course still at the node.

The complexity of the problem depends on the speed on the top, viscosity,
and size and geometry of the cavity.
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Our Algorithm for Programme Construction.

1. Data input are Lattice size, tmax, the initial density, 7.2=ρ , Re, u=0.01 or
u= 0.1

2. Compute the viscosity, ν  and the relaxation time (τ), (Eq. 5,6)

3. Compute the initial )0(
ifσ  and initial )0(

ifif σ=σ  (Eq. 4)
4. Implementation of LBM on the Lattice (loop computation with model

time)
4.1 Compute streaming of particles to new locations (shifting the

particle distribution function to the neighbour node in direction
of the velocity)

4.2 Compute the effect of boundary conditions (bounce-back rule if
walls)

4.3 Compute particle function redistribution due to collision (Eq. 2)
4.4 Compute the macroscopic variables (density, velocity) (Eq. 3)
4.5 Compute the new equilibrium particle distribution function     

(Eq. 4)
4.6 Check for reaching the steady flow, t=tmax to stop the

calculations.
5. Results output (velocity vector plot, streamlines, velocity profile and

velocity components).
All of the results are normalised to allow comparisons between the present

work and other previous studies based on a unit square cavity with unit velocity of the
top boundary.

RESULTS

Figure 7  shows that better resolutions can be obtained when the number of
Lattice nodes increases. The observed circulation in the cavity is clockwise. The centre
of the primary vortex is located at (0.53, 0.75) for the present work, and (0.52, 0.72) in
(14). In addition, Figure 8 shows fluid streamlines when reaching steady state with
Re=10 for different Lattice sizes. The better resolution can be observed as the number
of Lattice nodes increases.

          (a) 10x10 Lattice size (b) 20x20 Lattice size
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(c) 30x30 Lattice size (d) 40x40 Lattice size

Figure 7.  Velocity vector plots when the system reaches steady state with Re=10 for
different Lattice sizes

      (a) 10x10 Lattice size       (b) 20x20 Lattice size

      (c) 30x30 Lattice size       (d) 40x40 Lattice size

Figure 8. Fluid streamlines when reaching steady state with Re=10 for different
Lattice sizes
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Figure 9 shows velocity vector field plots when reaching steady state with
30×30 Lattice size for different Re. The primary vortex moves to the centre when Re
grows higher e.g. for Re=100 the vortex is at (0.60,0.73) for the present work, and at
(0.62,0.74) in (15). For Re=400, the vortex is at (0.57,0.63) for the present work, and
at (0.56,0.60) in (14).

(a) (b)

(c) (d)

(e) (f)

Figure 9. Velocity vector fields.  Re numbers were set to 10, 100, 200, 300, 400, and
500 for a, b, c, d, e, and f respectively
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Fluid streamlines are shown in Figure 10 when the system reaches steady
state with 30×30 Lattice size for different Re. We observe the primary vortex moving
to the centre when Re grows higher. From the plots, circular streamlines for high Re
are noted.

(a) (b)

(c) (d)

(e)       (f)

Figure 10. Streamlines of fluid flow. Re numbers were set to 10, 100, 200, 300, 400,
and 500 for a, b, c, d, e and f respectively
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Figure 11 shows comparison of velocity profiles for uy at y=0.5 when
reaching steady state between present results and (14). The velocity profiles observed
from the two works are in good agreement. In addition, Figure 12 shows comparison
of velocity profiles for ux at x=0.5 when reaching steady state between present results
and (14). The velocity profiles observed from the two works are also in good
agreement.

         (a)

         (b)

Figure 11. The velocity profiles for v (uy) change from curve at lower values of Re to
straight line for higher Re numbers. (a) the result from present work and (b) the result
from (12)
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        (a)

        (b)

Figure 12. The velocity profiles for u (ux) change from curve at lower values of Re to 
straight line for higher Re numbers. (a) the result from present work and (b) the result
from (12)

Steady state behaviour in different Lattice sizes for Re =10 is shown in 
Figure 13. The fine Lattice requires more computing time to reach steady state. A
linear, not power-law, increase of time step to reach steady state for different Lattice 
sizes is observed. Steady state behaviour for 20×20 Lattice size with different Re 
numbers is also shown in Figure 14. At low Re numbers the time step to reach steady 
state is shorter and the time step to reach steady state increases linearly with Re 
numbers. Finally, Figure 15 shows the relationship between computing time for a 
single step and Lattice size. Exponential increases are noted.
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                (a)

(b)

Figure 13. Steady state behaviour with different Lattice sizes for Re =10. (a) Velocity 
component, u (0.5,0.2), Labels a, b, c and d are for 10×10, 20×20, 30×30 and 40×40 
Lattice sizes respectively. (b) Time step to reach steady state for different Lattice sizes
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       (a)

        (b)

Figure 14. Steady state behaviours for 20×20 Lattice size with different Re numbers. 
(a) Velocity component, u (0.5,0.2) at each time step. Labels a, b and c are for            
Re = 100, 200 and 300 respectively. (b) The time step to reach steady state increases 
linearly when Re increases
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Figure 15. Relationship between computing time for a single step and Lattice sizes.
Dots represent computing time for one step from actual simulation and the line is the
result of an exponential fitted function

Long computing time on the personal computer (Pentium III 1 GHz, 128 MB 
RAM, 100 MHz Front size bus, Microsoft Windows XP Professional and Mathematica
4.1) alerts us to observe our programme behaviour. Estimated computing time and 
numbers of time step to reach steady state are shown in Table 1.

Table 1. Numbers of time step and computing time for various Lattice sizes with
Re=10

Lattice size Number of Time Step Estimated Computing Time (days)
65×65 5553 13.6

129×129 11537 205.8
257×257 23505 2111.7
513×513 47441 18920.8

When we perform a simulation with any Re’s in a small Lattice, we can also
predict the time step and the whole time we need to reach steady state in a larger
Lattice. Results are shown in Table 2.

Table 2.  Numbers of time step and computing time to reach steady state for various 
Re number for 20×20 Lattice size

Re Number of Time Step Predicted Computing Time (hr)
1000 12014 6.3
2000 24014 12.7
5000 60014 31.7
7500 90014 47.5
10000 120014 63.3
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Similarly, when we perform a simulation with any Lattice sizes and a small
Re we can also predict the time step and the whole time we need to reach steady state
for higher Re simulation. The results are shown in Figure 15.

DISCUSSION

Using LBM with D2Q9 model, it is observed that Re number affects the 
primary vortex location and time to reach the steady state while the Lattice size affects 
only the time to reach the steady state. Re number also has an effect on the time to 
reach steady state. The simulation of a small scale cavity flow in 2D by LBM in this 
work strongly calls for a further development of parallel programming in order to 
improve the computing time and to increase grid sizes because the simulation results 
indicate a non-linear increase of computing time to reach steady state over Lattice sizes 
and Re numbers. A PC cluster and perhaps a more efficient parallel programme for 
computation are required to develop the simulation to finer Lattice with higher Re. It 
should be noted that even when the velocity profile of our simulation performed on a 
single personal computer is compared to that of the work  (14) performed with 256×
256 Lattice on parallel computers, the normalised velocity profile and required time 
steps needed to reach a steady state observed from the two works are in good 
agreement. Future work will include different geometry settings to study other flow 
patterns.
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บทคัดยอ

ปานจิต  มุสิก1,2 กฤษณะเดช  เจริญสุธาสินี2
การจําลองการไหลแบบไมอัดตัวในโดเมนส่ีเหล่ียมสองมิติโดยวิธีโครงผลึกโบลทซมาน

การศึกษาครั้งนี้เปนการจําลองการไหลแบบไมอัดตัวในโดเมนสี่เหลี่ยมสองมิติ วัตถุ-
ประสงค เพื่อพัฒนาวิธีการท่ีพัฒนามาจากออโตมาตาแบบ Lattice Gas Automata (LGA) ท่ีใช
โครงรางและเวลาท่ีไมตอเนื่อง โดยสามารถทําใหคํานวณแบบขนานไดงาย โดยเลือกวิธ ี Lattice 
Boltzmann Method (LBM) ซึ่งเปนท่ีรูจักวาเปนโครงรางแบบจลนศาสตรแบบไคเนติกไมตอเนื่อง 
เพื่อแกสมการนาเวียรสโตกส (Navier–Stokes equation) ซึ่งมักใชกับการจําลองของไหลโดยท่ัว
ไป นอกจากนี้ เรากําหนดใหแบบจําลองสองมิติมีโครงรางแบบสี่เหลี่ยม 9 ทิศทาง (D2Q9 Model) 
ใชในการจําลองความเร็ว โดยใหความเร็วท่ีดานบนของโดเมนคงท่ีเปนเง่ือนไขขอบเขต พบวา วิธี
นี้เปนวิธีท่ีมีประสิทธิภาพท่ีจะสรางพลวัตของการไหล  และผลท่ีไดจากการจําลองก็ใกลเคียงกับ
งานวิจัยอื่น
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