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ABSTRACT
The purpose of this paper is to extend and improve some results concerning of R′-max-

Kannan and R′′-Kannan mappings to Rñ-contraction and Rñ-Kannan mappings. Second, we
establish new mapping, that is a Rñ-contraction and Rñ-Kannan mappings. More than that,
we prove the results of fixed point for such mappings in metric spaces.
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1. Introduction
Let (X, d) be a metric space and T be

a mapping from X into itself. A mapping
T is a contraction if there exists a number
r ∈ [0,1) such that

d(T x,T y) ≤ rd(x, y) (1.1)

for all x, y ∈ X . The well-known Banach
contraction principle is the following: If
T : X → X is a contraction mapping of
a complete metric space X into itself, then

1. there is x∗ in X which is a unique

fixed-point,

2. Tnx → x∗ for all x ∈ X ,

3. d(Tnx, x) ≤ rn

1−r d(x,T x),∀ x ∈ X .

The theorem of Banach and its extensions
usually are proved by the fact that the geo-
metrical series

∞∑
n=0

rn is convergent. Some

different proof of the Banach theorem is
given by Kannan [1], where he investigated
properties of subsets of X , defined as Sr =
{x ∈ X : d(x,T x) ≤ r},0 < r < +∞. Fur-
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ther, Kannan [2] showed the following: If
X is a complete metric space and mapping
T : X → X satisfies the following condi-
tion

d(T x,T y) ≤ r(d(x,T x) + d(y,T y)) (1.2)

for all x, y ∈ X , where 0 < r < 1
2 . Then

T has exactly a fixed point in X . The con-
dition (1.1) and (1.2) are independent, as it
was shown by two examples in [2].

In 1972, Bianchini [3] introduced
generalized Kannan mapping which gener-
alized the concept of Kannan [2] as fol-
lows: Let T be a self-mapping on a met-
ric space X . A mapping T is called a gener-
alized Kannan mapping or Bianchini map-
ping if there exists r ∈ [0,1) such that

d(T x,T y) ≤ r max{d(x,T x), d(y,T y)}
(1.3)

for all x, y ∈ X .
In 2015, Khojasteh et al. [4] in-

troduced the notion of Z-contraction de-
fined by simulation function. Then, they
proved a new fixed point theorem concern-
ing Z-contraction which generalizes Ba-
nach’s contraction principle. Recently,
Roldan-López-de-Hierro and Shahzad [5]
introduced the concept of R-contraction de-
fined by R-function in order to generalize
the previous results.

In 2017, Mongkolkeha et al. [6] in-
troduced a simulation function in the frame-
work of b-metric spaces showed below:

Definition 1.1 ([6]). Let K be a given real
number such that K ≥ 1. A K-simulation
function is a mapping ζ : [0,∞)× [0,∞) →
R satisfying the following conditions:

(ζ1) ζ(0,0) = 0,
(ζ2) ζ(Kt, s) ≤ s − Kt, for all t, s > 0,
(ζ3) if {tn}, {sn} are sequences in

[0,∞) such that lim
n→∞

Ktn = lim
n→∞

sn > 0 and

tn < sn for all n ∈ N, then

lim
n→∞
ζ(Ktn, sn) < 0.

The class of all K-simulation functions ζ :
[0,∞) × [0,∞) → R is denoted by Z∗ .

Example 1.2 ([6]). Let λ,K ∈ R such that
λ < 1 and K ≥ 1. Define the mapping ζ :
[0,∞) × [0,∞) → R by

ζ(Kt, s) =
{

s − Kt if s < t,
λs−Kt
Ks+1 if s ≥ t .

Then ζ ∈ Z∗ but ζ < Z , where Zis simula-
tion functions and Z∗ is K-simulation func-
tions.

In 2018, Wiriyapongsanon and Phu-
dolsitthiphat [7] defined a generalization of
R-contraction in b-metric spaces, called R′-
contractions, via R′-functions and proved
the existence and uniqueness of fixed point
for such classes of mappings in complete b-
metric spaces.

Definition 1.3 ([7]). Let K be a given real
number such that K ≥ 1. A function ñ :
[0,∞) × [0,∞) → R is called R′-function if
it satisfies the following two conditions:

• (ñ′
1) If {an} ⊂ (0,∞) is a sequence

such that ñ(Kan+1,an) > 0 for all n ∈
N, then an → 0.

• (ñ′
2) If {an}, {bn} ⊂ (0,∞) are two

sequences such that lim sup
n→∞

Kan =

lim sup
n→∞

bn = L ≥ 0 and verifying

that L < Kan and ñ(Kan, bn) > 0 for
all n ∈ N, then L = 0. The class of all
R′-functions ñ : [0,∞) × [0,∞) → R
is denoted by R∗. We also consider
the following property.

• (ñ′
3) If {an}, {bn} ⊂ (0,∞) are two

sequences such that bn → 0 and
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ñ(Kan, bn) > 0 for all n ∈ N, then
an → 0.

Lemma 1.4 ([7]). Every K-simulation
function is a R-function that also verifies
(ñ′

3).

Definition 1.5 ([7]). Let (X, d) be a metric
space. A mapping T : X → X is called
R-contraction if there exists an R-function
ñ : A × A → R such that ran(d) ⊆ A and
ñ(d(T x,T y), d(x, y)) > 0 for all x, y ∈ X
such that x , y.

Notice that if we take ñ(t, s) = λs − t
for all s, t ≥ 0 and λ ∈ [0,1) in Definition
1.5, then R-contraction become the Banach
contraction.

Theorem 1.6 ([7]). Let (X, d) be a complete
b-metric space with coefficient K ≥ 1. Let
T : X → X be R′-contraction with respect
ñ ∈ R∗. If ñ(Kt, s) ≤ s − Kt for all s, t ∈
(0,∞) then T has a unique fixed point.

In 2019, Cholatis et al. [8] improved
R′-contractions and via R′-functions map-
pings to R′-Max-Kanan and R′′-Kanan
mappings by using the concept of Kanan
mappings. Second, who establish newmap-
ping, that is R′-Max-Kanan and R′′-Kanan
mappings and prove the results of fixed
point for R′-Max-Kanan and R′′-Kanan
mappings in b-metric spaces. Moreover,
who obtain fixed point theorems for R′-
Max-Kanan and R′′-Kanan mappings in b-
metric spaces

Theorem 1.7 ([8]). Let (X, d) be a
complete b-metric space with coef-
ficient K ≥ 1. Let T : X → X
be R′-Max-Kanan mapping , i.e.,
ñ(2Kd(T x,T y),max{d(x,T x), d(y,T y)}) >
0, with respect to ñ ∈ R∗. If
ñ(2Kt, s) ≤ s − 2Kt for all s, t ∈ (0,∞) then
T has a unique fixed point.

Definition 1.8 ([8]). Let K be a given real
number such that K ≥ 1. A function ñ :
[0,∞)× [0,∞) → R is called R′′-function if
it satisfies the following two conditions:

• (ñ′
1) If {an} ⊂ (0,∞) is a sequence

such that ñ(2Kan+1,an + an+1) > 0
for all n ∈ N, then an → 0.

• (ñ′
2) If {an}, {bn} ⊂ (0,∞)

are two sequences such that
lim sup
n→∞

Kan = lim sup
n→∞

bn = L ≥ 0

and verifying that L < Kan and
ñ(Kan, bn) > 0 for all n ∈ N, then

L = 0. The class of all R′′-
functions ñ : [0,∞) × [0,∞) → R. is
denoted by R∗∗.We also consider the
following property.

• (ñ′
3) If {an}, {bn} ⊂ (0,∞) are two

sequences such that bn → 0 and
ñ(Kan, bn) > 0 for all n ∈ N, then
an → 0.

Theorem 1.9 ([8]). Let (X, d) be a complete
b-metric space with coefficient K ≥ 1. Let
T : X → X be R′′-Kannan mapping, i.e.,
ñ(2Kd(T x,T y),max{d(x,T x), d(y,T y)}) >
0, with respect to ñ ∈ R∗. If
ñ(2Kt, s) ≤ s − 2Kt for all s, t ∈ (0,∞) then
Thas a unique fixed point.

The purpose of this paper is to extend
and improve some results concerning of R′-
max-Kannan and R′′-Kannan mappings to
Rñ-contraction and Rñ-Kannan mappings.
Second, we establish new mapping, that is
a Rñ-contraction and Rñ-Kannan mappings.
More than that, we prove the results of fixed
point for such mappings in metric spaces.
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2. Main Results
In this section, we prove fixed

point theorems for Rñ-contraction and Rñ-
Kannan mappings in metric spaces.

Definition 2.1. A function ñ : [0,∞) ×
[0,∞) → R is called Rñ-function if it sat-
isfies the following two conditions:

• (ñ1) If {an} ⊂ (0,∞) is a sequence
such that ñ(2an+1,an + 2an+1 +
an+2) > 0 for all n ∈ N, then an → 0.

• (ñ2) If {an}, {bn} ⊂ (0,∞) are two
sequences such that lim sup

n→∞
an =

lim sup
n→∞

bn = L ≥ 0 and verifying

that L < an and ñ(an, bn) > 0 for
all n ∈ N, then L = 0.

• (ñ3) If s ≥ l, then ñ(t, s) ≥ ñ(t, l).

Theorem 2.2. Let (X, d) be a complete met-
ric and suppose that let T : X → X be Rñ-
contractionmapping with respect to ñ ∈ R∗,
i.e.

ñ(2d(T x,T y), d(x,T y) + d(y,T x)) > 0

for all x ∈ X . If ñ(t, s) ≤ s − t for all s, t ∈
(0,∞), then T has a unique fixed point.

Proof. Let x0 ∈ X be a arbitrary point. Let
{xn} be Picard sequence of T based on x0,
that is xn+1 = T xn for all n ≥ 1. If there
exists n0 ∈ N such that xn0+1 = xn0, then
T xn0 = xn0 which implies that xn0 is a fixed
point. Assume xn , xn+1 for all n ∈ N.
Let {an} ⊂ (0,∞) be a sequence defined by
an = d(xn, xn+1) > 0 for all n ∈ N. By Rñ-
contraction mapping, (ñ1) and (ñ3), we get

ñ(2an+1,an + 2an+1 + an+2)
= ñ(2d(xn+1, xn+2), d(xn, xn+1)+

d(xn+1, xn+2) + d(xn+1, xn+2)+
d(xn+2, xn+3))

≥ ñ(2d(xn+1, xn+2), d(xn, xn+2)+
d(xn+1, xn+3))
= ñ(2d(T xn,T xn+1), d(xn,T xn+1)
+ d(xn+1,T xn)) > 0.

By using the condition (ñ1), we get
that

lim
n→∞

d(xn, xn+1) = lim
n→∞

an = 0.

Next, we show that {xn} is a Cauchy
sequence reasoning by contradiction. If
{xn} is not a Cauchy sequence, then there
exists ε0 > 0 such that

d(xnk , xmk
) > ε0 and d(xnk , xmk−1) ≤ ε0,

(2.1)
for all mk > nk ≥ k . We consider, for any
mk > nk ≥ k,

ε0 < d(xnk , xmk
)

≤ (d(xnk , xmk−1) + d(xmk−1, xmk
))

≤ ε0 + d(xmk−1, xmk
).

Taking limit superior form k to infinity, we
have

ε0 ≤ lim sup
k→∞

d(xnk , xmk
) ≤ ε0. (2.2)

So,

lim sup
k→∞

d(xnk , xmk
) = ε0. (2.3)

Since

d(xnk , xmk
) ≤ d(xnk , xmk−1) + d(xmk−1, xmk

)
≤ ε0 + d(xmk−1, xmk

),

taking limit superior from k to infinity,

lim sup
k→∞

d(xnk , xmk−1) = ε0. (2.4)

Since d(xnk−1, xmk
) ≤ d(xnk−1, xnk ) +

d(xnk , xmk
), taking limit superior from k to
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infinity,

lim sup
k→∞

d(xnk−1, xmk
) ≤ ε0. (2.5)

By Rñ-contraction mapping,

0 < ñ(2d(xnk , xmk
), d(xnk−1,T xmk−1)+

d(xmk−1,T xnk−1))
< ñ(2d(xnk , xmk

), d(xnk−1, xmk
)+

d(xmk−1, xnk ))
≤ [d(xnk−1, xmk

) + d(xmk−1, xnk )]
− 2d(xnk , xmk

).

By (2.1)-(2.5), we get that

lim sup
k→∞

2d(xnk−1, xmk
) = 2ε0.

And, so

lim sup
k→∞

d(xnk , xmk
)

= lim sup
k→∞

(d(xnk−1, xmk
) + d(xnk , xmk−1))

= ε0.

By using condition (ñ2), ε0 = 0. That is a
contradiction. Thus {xn} is a Cauchy se-
quence. Since (X, d) is complete, there ex-
ists z ∈ X such that xn → z. By defini-
tion of convergence sequence, for any ε > 0
there exists N ∈ N such that

d(xn, z) < ε for all n > N . (2.6)

Next, we will show that z is fixed point. Let
Ω := {n ∈ N : d(xn, z) = 0}. Assume that
Ω is not finite, then we can find n0 > N
such that d(xn0, z) = 0 i.e. xn0 = z. Since
xn0 , xn0+1 and xn0+1 = T xn0 = T z, z ,
T z. Let ε = d(z,Tz)

2 > 0. By (2.6), we get

ε >d(xn0+1, z)
=d(T xn0, z) = d(T z, z) = 2ε,

which is a contradiction. Therefore Ω is fi-
nite, there exists n0 such that d(xn, z) > 0

for all n > n0. Since T is a Rñ-contraction
mapping,

0 < ñ(2d(T xn,T z), d(xn,T z) + d(z,T xn))
≤ d(xn,T z) + d(z,T xn) − 2d(T xn,T z).

Hence,

2d(xn+1,T z) = 2d(T xn,T z)
≤ d(xn,T z) + d(z, xn+1)
≤ d(xn, xn+1)
+ d(xn+1,T z) + d(z, xn+1).

And, so

d(xn+1,T z) ≤ d(xn, xn+1) + d(z, xn+1).

Taking limit n to infinity,
lim
n→∞

d(xn+1,T z) = 0. That is xn+1 → T z.

By the uniqueness of the limit in a b-metric
space and xn+1 → z, we get that T z = z.
Finally, let us show that z is unique fixed
point of T . Assume x = T x and y = T y

such that x , y. Let an = d(x, y) > 0 for
all n ∈ N. By assumption, we have

ñ(2an+1,an + 2an+1 + an+2)
= ñ(2d(x, y), d(x,T y) + d(y,T x)) > 0.

By using (ñ1),we get an → 0,which imply
that d (x, y) = 0, which is a contradiction.
So x = y. □

Theorem 2.3. Let (X, d) be a complete met-
ric space and let T : X → X be Rñ-Kannan
mapping with respect to ñ ∈ R∗, i.e.,

ñ(2d(T x,T y),max{d(x,T y), d(y,T x)}) > 0

for all x ∈ X . If ñ(t, s) ≤ s − t for all s, t ∈
(0,∞), then T has a unique fixed point.

Proof. Let x0 ∈ X be a arbitrary point. Let
{xn} be Picard sequence of T based on x0,
that is, xn+1 = T xn for all n ≥ 1. If there
exists n0 ∈ N such that xn0+1 = xn0, then
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T xn0 = xn0 which implies that xn0 is a fixed
point. Assume xn , xn+1 for all n ∈ N.
Let {an} ⊂ (0,∞) be a sequence defined by
an = d(xn, xn+1) > 0 for all n ∈ N. By
Rñ-Kannan contractive condition, (ñ1) and
(ñ3), we get

ñ(2an+1,an + 2an+1 + an+2)
≥ ñ(2an+1,max{an + an+1,an+1 + an+2})
= ñ(2d(xn+1, xn+2),max{d(xn, xn+1)
+ d(xn+1, xn+2), d(xn+1, xn+2)
+ d(xn+2, xn+3)})

≥ ñ(2d(xn+1, xn+2),max{d(xn, xn+2),
d(xn+1, xn+3)})
= ñ(2d(T xn,T xn+1),max{d(xn,T xn+1),

d(xn+1,T xn)})
> 0.

By using the condition (ñ1),we get that

lim
n→∞

d(xn, xn+1) = lim
n→∞

an = 0.

Next, we show that {xn} is a Cauchy se-
quence reasoning by contradiction. If {xn}
is not a Cauchy sequence, then there exists
an ε0 > 0 such that

d(xnk , xmk
) > ε0 and d(xnk , xmk−1) ≤ ε0

(2.7)
for all mk > nk ≥ k . We consider, for any
mk > nk ≥ k,

ε0 < d(xnk , xmk
)

≤ (d(xnk , xmk−1) + d(xmk−1, xmk
))

≤ ε0 + d(xmk−1, xmk
).

Taking limit superior form k to infinity, we
have

ε0 ≤ lim sup
k→∞

d(xnk , xmk
) ≤ ε0.

So,

lim sup
k→∞

d(xnk , xmk
) = ε0. (2.8)

Since

ε0 < d(xnk , xmk
)

≤ d(xnk , xmk−1) + d(xmk−1, xmk
)

≤ ε0 + d(xmk−1, xmk
),

taking limit superior from k to infinity,

lim sup
k→∞

d(xnk , xmk−1) = ε0. (2.9)

Since d(xnk−1, xmk
) ≤ d(xnk−1, xnk ) +

d(xnk , xmk
), taking limit superior from k to

infinity,

lim sup
k→∞

d(xnk−1, xmk
) ≤ ε0. (2.10)

By Rñ-Kannan contractive condition,

0 < ñ(2d(xnk , xmk
),

max{d(xnk−1,T xmk−1), d(xmk−1,T xnk−1)})
< ñ(2d(xnk , xmk

),
max{d(xnk−1, xmk

), d(xmk−1, xnk )})
≤ [max{d(xnk−1, xmk

), d(xmk−1, xnk )}]
− 2d(xnk , xmk

).

So, we have, for any k ∈ N,

2ε0 < 2d(xnk , xmk
)

≤ max{d(xnk−1, xmk
), d(xmk−1, xnk )}

≤ max{d(xnk−1, xmk
), ε0}

≤ d(xnk−1, xmk
) + ε0.

By (2.9)-(2.10), we get that

lim sup
k→∞

2d(xnk−1, xmk
) = 2ε0.

And, so

lim sup
k→∞

d(xnk , xmk
)

= lim sup
k→∞

(d(xnk−1, xmk
) + d(xnk , xmk−1))

= ε0.
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By using condition (ñ2) ε0 = 0. That is a
contradiction. Thus {xn} is a Cauchy se-
quence. Since (X, d) is complete, there ex-
ists z ∈ X such that xn → z. By definition
of convergence sequence,

for any ε > 0 there exists N, (2.11)

such that d(xn, z) < ε for all n > N .
Next, we will show that z is fixed

point. Let Ω := {n ∈ N : d(xn, z) = 0}.
Assume that Ω is not finite, then we can
find n0 > N such that d(xn0, z) = 0
i.e. xn0 = z. Since xn0 , xn0+1 and
xn0+1 = T xn0 = T z, z , T z. Let
ε = d(z,Tz)

2 > 0. By (2.11), we have

ε > d(xn0+1, z) = d(T xn0, z) = d(T z, z) = 2ε,

which is a contradiction. Therefore Ω is fi-
nite, there exists n0 such that d(xn, z) > 0
for all n > n0. Since T is a Rñ-kannan map-
ping,

0 < ñ(2d(T xn,T z),
max{d(xn,T z), d(z,T xn)})
≤ max{d(xn,T z), d(z,T xn)}
− 2d(T xn,T z)
≤ d(xn,T z) + d(z,T xn) − 2d(T xn,T z).

Hence,

2d(T xn,T z) ≤ d(xn,T z) + d(z, xn+1)
≤ d(xn, xn+1) + d(xn+1,T z) + d(z, xn+1).

And, so

d(T xn,T z) ≤ d(xn, xn+1) + d(z, xn+1).

Taking limit n to infinity, {xn+1 = T xn} →
T z. By the uniqueness of the limit, T z = z.
Finally, we show that z is unique fixed point
of T . Assume x = T x and y = T y such that
x , y. Let an = d(x, y) > 0 for all n ∈ N.
We consider

0 < ϱ(2d(T x,T y),

max{d(x,T y), d(y,T x)})
< max{d(x,T y), d(y,T x)} − 2kd(x, y)
< d(x, y) − 2d(x, y)
= −d(x, y),

which is a contradiction. So x = y.

□

3. Conclusion
The purpose of this paper is to extend

and improve some results concerning of R′-
max-Kannan and R′′-Kannan mappings to
Rñ-contraction and Rñ-Kannan mappings.
Second, we establish new mapping, that is
a Rñ-contraction and Rñ-Kannan mappings.
More than that, we prove the results of fixed
point for such mappings in metric spaces as
follows:
1.) Let (X, d) be a complete metric and let
T : X → X be Rñ-contraction mapping
with respect to ñ ∈ R∗, i.e.

ñ(2d(T x,T y), d(x,T y) + d(y,T x)) > 0

for all x ∈ X . If ñ(t, s) ≤ s − t for all s, t ∈
(0,∞) then T has a unique fixed point.
2.) Let (X, d) be a complete metric space
and let T : X → X be Rñ-Kannan mapping
with respect to ñ ∈ R∗, i.e.,

ñ(2d(T x,T y),max{d(x,T y), d(y,T x)}) > 0

for all x ∈ X . If ñ(t, s) ≤ s − t for all s, t ∈
(0,∞), then T has a unique fixed point.

4. Discussion
Future research directions may also

be possible.
Open problems 1:

If T satisfies
ñ(5d(T x,T y),max{d(x, y), d(x,T x), d(y,T y)
, d(x,T y), d(y,T x)}) > 0, then T has a
unique fixed point.
Open problems 2:
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If T satisfies
ñ(5d(T x,T y),max{d(x, y), d(x,T x), d(y,T y)
, d(x,T y), d(y,T x)}) > 0, then T has a
unique fixed point.
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