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ABSTRACT 
          In this work, the authors studied the Fekete-Szegö problems for certain classes of 

analytic functions associated with petal type domain and modified sigmoid function. The 

initial coefficient bounds have been obtained and discussed the relevant connection to Fekete-

Szegö inequalities. The results give birth to some corollaries.  
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1.  Introduction 

 

Let  be the class of function  

analytic in the open unit disc 

 and of the form  

 

                          (1.1) 

 

 normalized by . Recall 

that,  is the univalent function which 

has the starlike and convex functions as its 

subclasses which satisfies  

and . The usual classes 

of functions aforementioned have been used 

to define various subclasses of analytic 

functions by many scholars and their 

interesting results can not be ignored. 

Two functions  and  are said to 

be subordinate to each other, written as 

, if there exists a schwartz function  

such that 

  

                                      (1.2) 

 

 where  and  for . 

Let  denote the class of analytic functions 

such that  and  

(see [1]). 

Goodman [2] initiated the concept 

of conic domain to generalize a convex 

function which generated the first parabolic 

region as an image domain of analytic 

functions. He introduced and studied the 

class of uniformly convex functions which 

satisfy  

 

 
 

 Ma and Minda [3] gave a characterization 

of the class  which satisfy  

 
 

 The characterization gave birth to the first 

parabolic characterization of the class  

which satisfy  

 

                                (1.3) 

 

 and (1.3) was later generalized by Kanas 

and Wisniowska [4, 5] to  

 

 
 

 The  represents the right half plane for 

, hyperbola for , parabolic 

for  and elliptic regions for . 

Many researchers have worked 

tirelessly on generalized conic domains and 

their results are too voluminous to discuss 

(see for example [6], [7] and so on). 

Moreover, the petal type region 

 was also 

generalized from (1.3) to   

 

 
  by Noor and Malik [8]. 

 

Recently, Murugusundaramoorthy et al. [9] 

studied the Fekete-Szegö problems for 

space of logistic sigmoid functions based on 

quasi-subordination for the classes 

,  and  in which 

interpretations satisfy 

 

               (1.4) 

  

                                              
(1.5) 

 and  

                                                  
                                                                    (1.6) 

 where ,  is the logistic sigmoid 

function and the results obtained are added 
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to literature. 

A function  is said to be in the 

class ; if and only if  

                                                          
                                                                    (1.7) 

 where . 

 

Varying  and  “in 

(1.7),” one may obtain the classes of 

functions studied by Goodman [1] and 

Kanas [10]. 

 

Also, the classes  and 

 are uniformly Janowski starlike 

and convex functions satisfies  

 

                (1.8) 

 

 and  
 

                   (1.9) 

 

         See Noor and Malik [8]. Setting  

and  (1.8) and (1.9) obtains the 

classes of functions studied by Goodman [2] 

and Ronning [11].  

 

The relevant connection to Fekete-

Szegö inequalities is a way of maximizing 

the non-linear functional  for 

various subclasses of univalent function 

theory. See [12], [13], [14] [15], [16], [17], 

[18] and so on. 

We recall the definition and 

properties of a sigmoid function as a special 

function that deals with an information 

process inspired by the way a nervous 

system such as the brain processes 

information. It contains large numbers of 

highly interconnected processing elements 

(neurones) working together to solve a 

specific problem. It has application in real 

analysis, topology, differential equations, 

algebra and so on. Special functions can be 

trained by example and categorized into 

three classes of functions namely, sigmoid, 

ramp and threshold functions. The familiar 

function among all these is the sigmoid; 

because of its gradient descendent learning 

algorithm, it can be evaluated in different 

ways but majorly by truncated series 

expansion. 

 

A sigmoid function of the form  

     

                                         (1.10) 

 

is differentiable and has the following 

characteristics: 

 

(i) it outputs real numbers between 0 and 1 

(ii) it maps a very large output domain to a 

small range of inputs 

(iii) it never loses information because it is a 

one-to-one function and 

(iv) it increases monotonically. 

 

The characteristics aforementioned are very 

useful in geometric function theory. 

Fadipe et al. [19] modified  in 

(1.10) to  

 

                                        (1.11) 

 

 which has a series expansion of the form  

 

                                                              (1.12) 

 

          Some properties were proved; see 

details in [9], [20], [21], [22] and so on. 

          Motivated by earlier works by 

Goodman [2], Fadipe et al. [19], Olatunji 

[20] and Malik et al. [23], in this work, the 

authors aim is to obtain the Fekete-Szegö 

inequalities for certain classes of analytic 
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functions associated with petal type domain 

and modified sigmoid function. The results 

are new and give birth to some corollaries. 

 

For the purpose of the main results, 

the following definitions  are 

 

Definition 1.1: A function  is said to 

be in the class 

, if and 

only if  

        

                                                              (1.13) 

 and . 

 

Definition 1.2: A function  is said to 

be in the class 

, if and 

only if   

 

   

                                                                        (1.14) 

  and . 

 

Definition 1.3: A function  is said to 

be in the class 

, if and 

only if   

 

      

                                                              (1.15) 

  and . 

 

2.  Main Results 

 
Theorem 2.1: Let  

 and of the form 

 Then ,denoting the 

coefficients of  by 

respectively, the absolute values of 

the coefficients are bounded as such 

, 

 

, 

 

                                                                         (2.1) 

 

Proof. For  and of the form 

,  consider  

     ,                                  (2.2) 

 where  is such that  and 

. It follows easily that  

 

                                                                (2.3) 

Now, if  

 

,  

 

then from (2.3), one may obtain 
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, 

  where  and  

see [10]. Using these, the series reduces to  

            (2.4) 

 

 Since , so from relations 

(1.2), (1.7) and (2.4), one may have  

 

 
 

                                                                (2.5) 

 

If , then equating 

coefficients of  and , to obtain  

                                   (2.6) 

 

               (2.7) 

 

,                                                               (2.8) 

 which completes the proof of Theorem 2.1. 

 

Theorem 2.2: Let  

and of the form 

(1.1). Then, denoting the coefficients of 

 by respectively, the 

absolute values of the coefficients are 

bounded as such 

                                                                (2.9) 

for a real number . 

 

Proof. If  

 

 and  then it follows from (1.2), (1.7) 

and (1.13)  

 

,      

                                                                   (2.10) 

 

 where  is such that  and 

. The right hand side of (2.10) 

gets its series form from (2.5) and reduces 

to   

 

                                                              (2.11) 

 

  If , then the left 

hand side of (2.10) gives  

 

                   

                                                              (2.12) 

  

From (2.11), (2.12) and comparison of 

coefficients of  and  we get  

                                       (2.13) 

 and  

                                                             (2.14) 

  

This implies, by using (2.13)  

 

                                                             (2.15) 

 which completes the proof of Theorem 2.2. 
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Theorem 2.3: Let  

and of the form 

(1.1). Then, denoting the coefficients of 

 by respectively, the 

absolute values of the coefficients are 

bounded as such 

                                                              (2.16) 

for a real number . 

 

Proof. If  

 

 and  then it follows from (1.2), (1.7) 

and (1.14)  

 

,                                        

                                                              (2.17) 

 where  is such that  and 

. The right hand side of (2.17) 

gets its series form from (2.5) and reduces 

to  

 

 

                                                                      (2.18)  

                                                                                         

 If , then the left 

hand side of (2.18) gives  

 

                                                             (2.19)  

                                                                   

From (2.18) and (2.19), comparison of 

coefficients of  and  gives  

 

                                         (2.20) 

 and  

 

                                                              (2.21) 

  

This implies, by using (2.20)  

,                                                             (2.22) 

  

 which completes the proof of Theorem 2.3. 

 

Theorem 2.4: Let  

and of the form 

(1.1). Then, denoting the coefficients of 

 by respectively, the 

absolute values of the coefficients are 

bounded as such 

 ,                                                            (2.23) 

for a real number .  

                                                                  

Proof. If  

 and 

 then it follows from (1.2), (1.7) and 

(1.15)  
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                                                              (2.24) 

 where  is such that  and 

. The right hand side of (2.24) 

gets its series form from (2.4) and reduces 

to 

  

                                                              (2.25)  

                                    

If , then the left 

hand side of (2.24) gives  

 

                                                                      (2.26) 

  

From (2.25) and (2.26), comparison of 

coefficients of  and  gives  

                                         (2.27) 

  

and  

                                                              (2.28) 

  

This implies, by using (2.27)  

                                                              (2.29) 

  

which completes the proof of Theorem 2.4. 

 

Taking  and  in Theorem 2.1 

to obtain 

 

Corollary 2.1: Let  

and of the form 

. Then, denoting the 

coefficients of  by 

respectively, the absolute values of 

the coefficients are bounded as such 

, 

 

, 

and 

       

      

Setting  and  in Theorem 2.2 

obtains 

 

Corollary 2.2: Let  

and of the form 

(1.1). Then, denoting the coefficients of 

 by respectively, the 

absolute values of the coefficients are 

bounded as such  

 

      

for a real number . 

  

Putting  in Corollary 2.2, one may 

have 

 

Corollary 2.3: Let  

and of the form 

(1.1). Then, denoting the coefficients of 

 by respectively, the 

absolute values of the coefficients are 

bounded as such  

     

for a real number .  

 

Taking  in Corollary 2.2 gets 
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Corollary 2.4: Let  

and of the form 

(1.1). Then, denoting the coefficients of 

 by respectively, the 

absolute values of the coefficients are 

bounded as such  

    

for a real number . 

 

Inserting  and  in Theorem 

2.3 we obtain 

 

Corollary 2.5: Let  

and of the form 

(1.1). Then,  denoting the coefficients of 

 by respectively, the 

absolute values of the coefficients are 

bounded as such  

      

for a real number .  

                              

 Putting  in Corollary 2.5 we get 

 

Corollary 2.6: Let  

and of the form 

(1.1). Then, denoting the coefficients of 

 by respectively, the 

absolute values of the coefficients are 

bounded as such  

         

for a real number . 

 

Setting  in Corollary 2.5, one may 

have  

 

Corollary 2.7: Let  

and of the form 

(1.1). Then, denoting the coefficients of 

 by respectively, the 

absolute values of the coefficients are 

bounded as such  

         

for a real number . 

 

Putting  and  in Theorem 2.4 

we get 

 

Corollary 2.8: Let  

and of the form 

(1.1). Then, denoting the coefficients of 

 by respectively, the 

absolute values of the coefficients are 

bounded as such  

 , 

for a real number .  

 

 Taking  in Corollary 2.8 to obtain 

 

Corollary 2.9: Let  

and of the form 

(1.1). Then, denoting the coefficients of 

 by respectively, the 

absolute values of the coefficients are 

bounded as such  

    

for a real number . 

 

Inserting  in Corollary 2.8, one may 

have 

 

Corollary 2.10: Let  

and of the form 

(1). Then, denoting the coefficients of 

 by respectively, the 

absolute values of the coefficients are 

bounded as such  

      

for a real number .  
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