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ABSTRACT
In this paper, we have proposed an embedded pseudo-Runge-Kutta method (EPRKM)

of order three. We have developed two implicit embedded pseudo Runge-Kutta methods
(EPRKM) for the solution of first order initial value problems of which the first one is fully
implicit and the other is diagonally implicit. Also, a two-step explicit embedded pseudo-
Runge-Kutta method for solving second order initial value problems is also derived. This
development is an effort to minimize the computational cost of classical Runge-Kutta (RK)
method. A classical s-stage RKmethod requires s function evaluations (slopes) per step. The
present methods require four evaluations in the first step and from the second step onwards
it requires only two evaluations per step. The cost of computation in the form of number of
function evaluations (slopes) are compared via Table 1, from which it is evident that our pro-
posed developments are cost-efficient. The proposed methods are tested on two initial value
problems (IVPs) and the errors obtained by these methods are compared with the errors by
RK third order (RK3), third order implicit Runge-Kutta (IRK3) method and Runge-Kutta-
Nyström 3-stage method (RKN3) which are shown in Tables 2 and 3. The convergence and
stability properties are established and the governing theorems are also derived. Intervals
and regions of absolute stability of the proposed methods are also derived, and regions are
depicted in Fig. 1. The proposed methods have wide scope of applicability for the numerical
solution of IVPs which are frequently occurred in physics, chemistry, molecular dynamics,
fluid dynamics and several branches of engineering.
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1. Introduction
The differential equation is an im-

portant mathematical tool which is used to
model several phenomena in physics, heat
flow, fluid flow, vibration, chemical reac-
tion, nuclear reaction and several areas of
economics and finance. In this paper, we
shall be focused on the numerical solution
of an initial value problem (IVP) in a first
order differential equation, given by

dy
dx
= f (x, y), y(x0) = y0, x ∈ [x0, b],

(1.1)
and an IVP in a second order differential
equation

d2y

dx2
= f (x, y, y′),

y(x0) = y0,

y′(x0) = y′0, x ∈ [x0, b], (1.2)

where y = y(x) is an unknown solution
function and f : R2 → R is assumed
that it satisfies the Lipschitz condition so
that there exists a unique solution of IVP
(1.1). Though several analytical tools have
been developed, but they are inadequate
to solve an initial value problem, partic-
ularly in a non-linear ordinary differential
equation. So, an extensive amount of re-
search has been done to find the numeri-
cal solution of IVP. There are several nu-
merical methods such as the Euler method,
Taylor series method, Runge-Kutta formu-
lae, and Predictor-Corrector formulae [1–
3]. The Runge-Kutta formulae is one of
the widely used methods to find the numer-
ical solution of IVPs that arise in the vari-
ous fields of applied mathematics. An ex-
cellent book written by Butcher [4] cov-
ers the whole development of Runge-Kutta
methods. Some significant contributions
can also be found in the literature (see [2]
and [5]). Several types of Runge-Kutta

methods have been developed on the ba-
sis of stability properties and truncation er-
ror bounds [6,7]. Modifications over exist-
ing classical RK methods have been envis-
aged to form new high order accurate RK
methods in the last two decades. Simos
[8] developed an RK method to find the
solution of oscillatory IVP (having a peri-
odic solution) called the exponentially fit-
ted RK method. Another form of modi-
fied RK method is known as the symplectic
RK method was given by Simos and Vigo-
Aguiar [9]. Van de Vyver [10] constructed
an exponentially fitted symplectic implicit
RK method based on the Gauss method.
Van de Vyver [11] first constructed a sym-
plectic RK-Nyström method with increased
phase-leg order. An excellent review on
RK methods by Z. Kalogiratou et al. [6]
includes the whole short history of several
modified RK methods. These include stan-
dard Runge-Kutta-Nyström (RKN), expo-
nentially fitted RK-Nyström, Partition RK
method (PRK), exponentially trigonometri-
cally fitted PRK, symplectic PRK, and RK
with minimum phase-leg, etc.

The classic RK method of order s in-
volves s function evaluations per time step.
So, an attempt to reduce function evalua-
tion per step results in the development of
the pseudo RK method. The pseudo RK
method was first introduced by Byrne [12].

The aim of the present paper is to
propose a new type of pseudo RK method
of order three called the embedded pseudo
RK method. The key benefit of such con-
struction is to reduce the computational cost
and increase the size of the stability region.
Thesemethods are not self-starting and they
require four slopes (function evaluations)
in the first time-step. But from the second
step onwards, only two evaluations per step
are required. Several research works have
been done in this direction and many au-
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thors have attempted to increase the effi-
ciency of the RK method [6]. Goeken and
Johnson [13] proposed a class of RK meth-
ods based on the numerical evaluations of
f and its derivative f ′ to find the solution
of a first order IVP. Wu [14] proposed a
class of explicit RK formulae with reduced
number of function evaluations. Byrne et
al. [15] proposed a pseudo RK method in-
volving two-points. Several research pa-
pers in literature for pseudo RK methods
can be seen in [16–18]. Recently, the nu-
merical solver based on the operational ma-
trix approach is used to solve the IVPs in or-
dinary differential equations of integral and
fractional order (see [19, 20] and the ref-
erences cited therein). The Runge-Kutta-
Nyström method is used to find the numer-
ical solution of second order IVPs (1.2) di-
rectly in which the first order derivative is
missing i.e. the autonomous form of IVP
(1.2). In this paper, we have derived an em-
bedded pseudo Runge-Kutta method given
in Subsection 2.3 for solving am IVP (1.2).
Though, the proposed methods in Subsec-
tions 2.1, 2.2 and 2.3 require initially two
previous values to compute the next itera-
tion, but they require just the previous value
after the first step; in other words, all the
methods are two-step methods. The great
advantage of these methods over the clas-
sical RK methods is the reduction of com-
putation cost. This can be understood via
the Table 1. Also, the point wise errors
obtained here are smaller than errors ob-
tained by the classical RK methods which
are shown in numerical experiments. An-
other important aspect of the proposed de-
velopments is that they maintain absolute
stability in large intervals of step size h as
compared to the classical RK method, i.e.
for a given initial value problem, we have
more options to select larger values of step-
size h than in the RK method.

2. Derivation of the Method
In this section, we derive the embed-

ded pseudo Runge-Kutta method (EPRKM)
for the numerical solution of IVPs of the
first order and second order ordinary differ-
ential equations (ODE). A general one step
method to solve the IVP

dy
dx
= f (x, y), y(x0) = y0, (2.1)

can be written as

yn+1 = yn + hϕ(xn, yn; h), (2.2)
n = 0, 1, 2, . . . N − 1,

where ϕ(xn, yn; h) is a continuous function
of starting iterates xn, yn and step size h.
For an autonomous initial value problem,
we may take Eq. (2.2) as

yn+1 = yn + hϕ(yn, f ; h),
n = 0, 1, 2, . . . N − 1. (2.3)

In this section, we restrict ourselves to au-
tonomous IVPs.

For a general s-stage two-step
pseudo Runge-Kutta method, we choose

ϕ(yn, f ; h) =
s∑

i=1

biki +
s∑

i=1

b′ik−i, (2.4)

ϕ(yn, f ; h) = ϕ1(yn, f ; h) + ϕ2(yn, f ; h).
(2.5)

Here, we consider a general two-stage two-
step pseudo implicit Runge-Kutta method
of the form (2.3) and (2.4), where the slopes
(function evaluations) can be taken as

k1 = f (yn), (2.6)
k−1 = f (yn−1), (2.7)

ki = f (yn + h
i∑

j=1

ai j k j), i = 2, 3, . . . , s,

(2.8)
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k−i = f (yn−1 + h
i∑

j=1

a′
i j k−j). (2.9)

The augmented Butcher table representa-
tion of the s-stage two-step pseudo implicit
Runge-Kutta method is given as:

c1 c−1
c2 a21 a22 · · · c−2 a′

21 a′
22 · · ·

...
...
...

...
...
...

cs as1 as2 · · · ass c−s a′
s1 a′

s2 · · · a′
ss

b1 b2 · · · bs b′1 b′2 · · · b′s

Particularly in this paper, we concentrate
on the derivation of pseudo implicit two-
stage two-step Runge-Kutta method and for
which we consider

ϕ(yn, f ; h) =
2∑
i=1

biki +
2∑
i=1

b′ik−i, (2.10)

where

k1 = f (yn), (2.11)
k−1 = f (yn−1), (2.12)
k2 = f (yn + h(a21k1 + a22k2)), (2.13)
k−2 = f (yn−1 + h(a′

21k−1 + a′
22k−2)).

(2.14)

Applying Taylor’s series approximation in
(2.13) and (2.14), we can derive the gov-
erning equations of the coefficients. In the
following Subsections 2.1 and 2.2 we will
derive EPIRK of order three.

2.1 Embedded pseudo implicit two-step
Runge-Kutta method (EPIRKM) of or-
der three

Consider the autonomous initial
value problem

dy
dx
= f (y), y(x0) = y0. (2.15)

Let us consider the formula

yn+1 = yn + hϕ(yn, f ; h), (2.16)

where,

ϕ = [ϕ1, ϕ2]T ,
yn = [yn, yn−1]T ,

yn+1 = [yn+1, 0]T ,

and

ϕ(yn, f ; h) = [a1(k1 + k−1) + b(k2 − k−2)],
(2.17)

k1 = f (yn) = fn, (2.18)
k−1 = f (yn−1) = fn−1, (2.19)
k2 = f (yn + a21h(k1 + k2)), (2.20)
k−2 = f (yn−1 + a′

21h(k−1 + k−2)). (2.21)

Let us assume k2 in the series form:

k2 = A1 + hA2 + h2A3 + · · · .

Substituting the value of k2 in Eq. (2.20)
and equating the coefficient of like power of
h followed by using Taylor’s series expan-
sion, we obtain the coefficients which are
given below:

A1 = fn, (2.22)
A2 = a21 fn fyn + a21A1 fyn, (2.23)

A3 = a21A2 fyn +
1

2
a221 f 2n fynyn (2.24)

+
1

2
a221A2

1 fynyn + a221 fnA1 fynyn .

Similarly, if we assume k−2 in the form

k−2 = B1 + hB2 + h2B3 + · · · .

Substituting the value of k−2 in Eq. (2.21)
and equating the coefficients of like powers
of h we get

B1 = fn−1, (2.25)
B2 = a′

21 fn−1 fyn−1 + a′
21B1 fyn−1, (2.26)

B3 = a′
21B2 fyn−1 +

1

2
(a′

21)2B2
1 fyn−1yn−1 .

(2.27)
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Let a′
21 = a21. So, by Taylor’s series ex-

pansion of y(xn + h), we have

yn+1 = y(xn + h) = y(xn) + hy′(xn)

+
1

2
h2y′′(xn) +

1

6
h3y′′′(xn)

+O(h4), (2.28)

using (2.16),

yn+1 − yn = y(xn + h) − y(xn), (2.29)

yn+1 − yn = 2a1hy′(xn) + (−a1 + b

+ 2b(a21 − a′
21
))h2y′′(xn)

+ (a1
2

− b
2
+ a22b + b(a211

− a222))h3y′′′(xn) +O(h4).
(2.30)

Comparing (2.28) with (2.30), we get the
following order conditions

2a1 = 1,

−a1 + b + 2b(a21 − a′
21) =

1

2
,

1

2
a1 −

1

2
b + 2ba′

21 + 2b(a221 − a′2
21) =

1

6
.

(2.31)

From equation (2.31), we get

a1 =
1

2
, a21 =

6 − b
24b
, a′

21 =
−6 + 11b

24b
,

(2.32)
where b is a free parameter. So, the pro-
posed EPIRK method of order O(h4) is ob-
tained by Eqs. (2.16)-(2.21) together with
the constants given in (2.32).

2.2 Embedded pseudo diagonally im-
plicit two-step Runge-Kutta method
(EPDIRKM) of order three

Consider the autonomous initial
value problem

dy
dx
= f (y), y(x0) = y0. (2.33)

In case of diagonally implicit method, we
consider the following evaluation func-
tions:

k1 = f (yn) (2.34)
k−1 = f (yn−1), (2.35)
k2 = f (yn + a11hk2), (2.36)

k−2 = f (yn−1 + a22hk−2). (2.37)

The approximate solution of (2.33) is given
by

yn+1 = yn + h[a1(k1 + k−1) + b(k2 − k−2)].
(2.38)

Putting k2 in the form

k2 = A1 + hA2 + h2A3 + · · · ,

and applying Taylor’s series expansion in
(2.36) we get first three coefficients in k2
as

A1 = f (yn), (2.39)
A2 = a11A1 fyn, (2.40)

A3 = a11A2 fyn +
1

2
a11A2

1 fynyn . (2.41)

Similarly, the expansion of k−2 of the form

k−2 = B1 + hB2 + h2B3 + · · · ,

where

B1 = fn−1, (2.42)
B2 = a22B1 fyn−1, (2.43)

B3 = a22B2 fyn−1 +
1

2
a222B2

1 fyn−1yn−1 .

(2.44)

Taylor’s series expansion of y(xn + h) is

y(xn+1) =y(xn) + hy′(xn) +
1

2
h2y′′(xn)

+
1

6
h3y′′′(xn) +O(h4), (2.45)
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using (2.38), we get

yn+1 − yn = y(xn + h) − y(xn) (2.46)

yn+1 − yn = 2a1hy′(xn) + (−a1 + ba11

+ b − ba22)h2y′′(xn) + (
a1
2

− b
2

+ a22b + b(a211 − a222))h3y′′′(xn)
+O(h4). (2.47)

Comparing (2.45) and (2.47), the order con-
ditions are

2a1 = 1, (2.48)
ba11 − ba22 + b = 1, (2.49)

a1
2

− b
2
+ a22b + b(a211 − a222) =

1

6
.

(2.50)

Solving Eqs. (2.48)-(2.50) we get

a1 =
1

2
, a11 =

−12 + 13b − 6b2

12b(b − 2) ,

a22 =
12 − 23b + 6b2

12b(b − 2) , (2.51)

where b is a free parameter. Eqs (2.34)-
(2.38) together with the values of coeffi-
cients given in (2.51) govern the desired
EPDIRKmethod of order three. Here, trun-
cation error is of order O(h4).
2.3 Embedded Pseudo two-stage two-
step explicit Runge-Kutta method for
second order IVP

In this section, we derive an explicit
embedded pseudo Runge-Kutta for a sec-
ond order initial value problem:

d2y

dx2
= f (x, y, y′), y(x0) = y0, y

′(x0) = y′0.

(2.52)
Like the methods proposed in Subsections
2.1 and 2.2, this method is not self-starting;
it requires four slopes in the first step and

from the second step onwards it requires
only two slopes (evaluation functions) per
step which means that it incurs less com-
putation cost than the classical RK method
of order three. Consider the two-step two-
stage pseudo RK formula

yn+1 = yn+hy′n+[a(k1+ k−1)+b(k2− k−2),
(2.53)

y′n+1 = y′n+
1

h
[a∗(k1+ k−1)+b∗(k2− k−2))],

(2.54)
where,

k1 =
h2

2
f (xn, yn, y′n),

k−1 =
h2

2
f (xn−1, yn−1, y′n−1),

k2 =
h2

2
f (xn + c2h, yn + c2hy′n + a21k1,

y′n +
b21
h

k1),

k−2 =
h2

2
f (xn−1 + c3h, y′n−1 + c3hyn−1

+ a31k−1, y′n−1 +
b31
h

k−1).

Choosing the conditions, a21 = c2, b21 =
2c2, a31 = c3, b31 = 2c3 and expanding k2
and k−2 by Taylor’s series, we get the fol-
lowing order conditions

2a = 1, (2.55)

−a + bc2 + b − bc3 =
1

3
, (2.56)

a + b(c22 − 1) + c3b(2 − c3) =
1

6
, (2.57)

2a∗ = 2. (2.58)

The system of Eqs (2.55)-(2.58) has two de-
grees of freedom. Letting b and b∗ as free
parameters and solving the system, one can
get:

c2 =
25 − 12b

60b
= a21, (2.59)
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c3 =
−25 + 48b

60b
= a31, (2.60)

a =
1

2
, a∗ = 1. (2.61)

Since not all coefficients of h4 in y′n+1 and
h3 in yn+1 are equal, the local truncation
error in solution y(x) is of order O(h4)
and of order O(h3) in y′(x). Eqs (2.53)-
(2.54), together with the values of coef-
ficients given in (2.59)-(2.61), established
the desired pseudo Runge-Kutta method for
IVP (2.52).

If the free parameters b and b∗ are
taken as b = 1 and b∗ = 1

2 , then the gov-
erning EPRK method is:

k1 =
h2

2!
f (xn, yn, y′n),

k−1 =
h2

2!
f (xn−1, yn−1, y′n−1),

k2 =
h2

2!
f (xn +

13

60
h, yn +

13

60
hy′n +

13

60
k1,

y′n +
13

30h
k1),

k−2 =
h2

2!
f (xn−1 +

23

60
h, yn−1 +

23

60
hy′n−1

+
23

60
k1, y′n−1 +

23

30h
k−1),

yn+1 = yn + hy′n +
1

2
k1 +

1

2
k−1 + k2 − k−2,

y′n+1 = y′n +
1

h

(
k1 + k−1 +

1

2
k2 −

1

2
k−2

)
.

3. Stability Properties
Definition 3.1. The single step method

yn+1 = yn + hϕ(xn, yn; h) (3.1)

is said to be consistent if ∀ϵ > 0 there ex-
ist a step-size h(ϵ) > 0 such that |Tn | <
ϵ, for 0 < h < h(ϵ), for every pair of
points (xn, y(xn)),(xn+1, y(xn+1)) on the so-
lution curve in domain [x0, b], where

Tn =
y(xn+1) − y(xn)

h
− ϕ(xn, y(xn); h).

Lemma 3.2. The function f is said to sat-
isfy the Lipschitz condition in the domain
D = {x = x0 + nh : x0 ≤ nh ≤ b} if
∥ f (x)− f (y)∥ ≤ L∥x−y∥, ∀x, y ∈ D,where
L ≥ 0 is the Lipschitz constant.

Theorem 3.3. If f (x, y) is Lipschitz contin-
uous and yn, zn are any two points on the
solution curve, then the function ϕ(yn, f ; h)
is Lipschitz continuous in D with respect to
the first component. i.e.

∥ϕ(yn, f ; h) − ϕ(zn, f ; h)∥ ≤ L̂ϕ ∥yn − zn∥.

Proof. First, we prove that

∥ki(yn) − ki(zn)∥ ≤ αi ∥yn − zn∥, ∀i (3.2)

∥k−i(yn)−k−i(zn)∥ ≤ βi ∥yn−zn∥∀i. (3.3)

Consider,

∥k1(yn) − k1(zn)∥ = ∥ f (yn) − f (zn)∥
≤ L∥yn − zn∥
= α1∥yn − zn∥,

i.e. (3.2) is true for i = 1. For, i = 2, con-
sider,

∥k2(yn) − k2(zn)∥

=∥ f (yn + h
2∑
j=1

ai j k j(yn))

− f (zn + h
2∑
j=1

ai j k j(zn)∥

≤L∥yn + h(a21k1(yn) + a22k2(yn)) − zn
− h(a21k1(zn) + a22k2(zn))∥

≤L(∥yn − zn∥ + h|a21∥k1(yn) − k1(zn)∥
+ h|a22∥k2(yn) − k2(zn)∥)

and so

∥k2(yn) − k2(zn)∥

≤ L
(
1 + h|a21 |
1 − hL |a22 |

)
∥yn − zn∥
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= α2∥yn − zn∥, (3.4)

where

α2 = L
(
1 + h|a21 |
1 − hL |a22 |

)
,

i.e. the inequality (3.2) is true for i = 2 also.
So, by induction it can be shown that:

∥ki(yn) − ki(zn)∥

≤ ∥ f (yn) + h
i∑

j=1

ai j k j(yn)

− f (zn) − h
i∑

j=1

ai j k j(zn)∥

∥ki(yn) − ki(zn)∥
= L∥yn − zn∥

+ Lh∥
i−1∑
j=1

ai j
(
k j(yn) − k j(zn)

)
∥

+ Lh∥aii (ki(yn) − ki(zn)) ∥

∥ki(yn) − ki(zn)∥

≤ L
(
1 + h|ai j |
1 − hL |aii |

)
∥yn − zn∥

∥ki(yn) − ki(zn)∥ ≤ αi ∥yn − zn∥,

where

αi = L
(
1 + h|ai j |
1 − hL |aii |

)
,

i.e. the inequality (3.2) holds ∀ i. Similarly
we consider

∥k−1(yn−1) − k−1(zn−1)∥
= ∥ f (yn−1) − f (zn−1)∥
≤ L∥yn−1 − zn−1∥,

∥k−1(yn−1)−k−1(zn−1)∥ = β1∥yn−1−zn−1∥.
(3.5)

Repeating the similar procedure as in ki we
can prove that:

∥k−i(yn−1)− k−i(zn−1)∥ ≤ βi ∥yn−1− zn−1∥.
(3.6)

Consider,

ϕ(yn, f ; h) =
s∑

i=1

biki(yn) +
s∑

i=1

bik−i(yn−1)

= ϕ1(yn, f ; h) + ϕ2(yn−1, f ; h).
(3.7)

First we take,

∥ϕ1(yn, f ; h) − ϕ1(zn, f ; h)∥

= ∥
s∑

i=1

biki(yn) −
s∑

i=1

biki(zn)∥

≤
s∑

i=1

|bi ∥ki(yn) − ki(zn)∥

∥ϕ1(yn, f ; h) − ϕ1(zn, f ; h)∥

≤
s∑

i=1

αi |bi |∥yn − zn∥. (3.8)

Similarly,

∥ϕ2(yn−1, f ; h) − ϕ2(zn−1, f ; h)∥

= ∥
s∑

i=1

bik−i(yn−1) − bik−i(zn−1)∥

≤
s∑

i=1

|bi ∥k−i(yn−1) − k−i(zn−1)∥

≤
s∑
i=

βi |bi ∥(yn−1) − (zn−1)∥. (3.9)

Next, we will show that

∥ϕ(yn, f ; h) − ϕ(zn, f ; h)∥ ≤ L̂ϕ ∥yn − zn∥,

where,

ϕ = (ϕ1, ϕ2), yn = (yn, yn−1), zn = (zn, zn−1).
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Consider,

∥ϕ(yn, f ; h) − ϕ(zn, f ; h)∥
= ∥ϕ1(yn, f ; h) − ϕ1(zn, f ; h)
+ ϕ2(yn−1, f ; h) − ϕ2(zn−1, f ; h)∥
≤ ∥ϕ1(yn, f ; h) − ϕ1(zn, f ; h)∥
+ ∥ϕ2(yn−1, f ; h) − ϕ2(zn−1, f ; h)∥

≤
s∑

i=1

αi |bi ∥yn − zn∥

+

s∑
i=1

βi |bi ∥yn−1 − zn−1∥

≤
s∑

i=1

αi |bi ∥yn − zn∥

+

s∑
i=1

βi |bi ∥yn − zn∥

≤
(

s∑
i=1

αi |bi | +
s∑

i=1

βi |bi |
)
∥yn − zn∥,

where

∥yn−zn∥ = max (∥yn − zn∥, ∥yn−1 − zn−1∥) .

Thus,

∥ϕ(yn, f ; h) − ϕ(zn, f ; h)∥ ≤ L̂ϕ ∥yn − zn∥,
(3.10)

where,

L̂ϕ =

s∑
i=1

(αi |bi | + βi |bi |) .

from inequality (3.10), we conclude that

ϕ(yn, f ; h)

is Lipschitz continuous in the first compo-
nent yn. □

Remark: If for the limit h → 0 and n →
∞, sequence {xn} is convergent say

lim
n→∞

xn = x.

Then,

lim
n→∞

Tn = y′(x) − ϕ(x, y; 0). (3.11)

So, the numerical method (3.1) is consis-
tent if and only if ϕ(x, y; 0) = f (x, y), or
ϕ(y, f ; 0) = f (y) (for autonomous IVP).

Definition 3.4. An iteration method yn+1 =
yn + hϕ(xn, f ; h) is stable if for each initial
value problem satisfying the Lipschitz con-
dition there exist positive constants h0 and
M such that the difference between two nu-
merical solutions yn and zn such that ∥yn −
zn∥ ≤ M ∥y0 − z0∥, ∀0 ≤ h ≤ h0.

Theorem 3.5. If ϕ(y, f ; h) satisfies the Lip-
schitz condition in y then the method

yn+1 = yn + hϕ(y, f ; h)

is stable. i.e.

∥yn+1 − zn+1∥ ≤ M ∥y0 − z0∥,

where, M = (1 + |h|L)n+1 and

yn+1 = yn + hϕ(yn, f ; h),
zn+1 = zn + hϕ(zn, f ; h).

Proof.

∥yn+1 − zn+1∥ = ∥yn + hϕ(yn, f ; h) − zn
− hϕ(zn, f ; h)∥
≤ ∥yn − zn∥ + h∥ϕ(yn, f ; h)
− ϕ(zn, f ; h)∥
≤ ∥yn − zn∥ + hL̂∥yn − zn∥
(Using Theorem 3.3)

∥yn+1 − zn+1∥ ≤ (1 + hL̂)∥yn − zn∥, ∀n

≤ (1 + hL̂)(1 + hL̂)∥yn−1
− zn−1∥

≤ (1 + hL̂)n+1∥y0 − z0∥. □
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Remark: If we choose an initial guess such
that ∥y0 − z0∥ < ϵ then ∥yn−1 − zn−1∥ < ϵ.

Theorem 3.6. If ϕ(y, f ; h) satisfies the Lip-
schitz condition in y and h and the itera-
tion method (3.1) is consistent and if en =
y(xn)−yn, n ≥ 0 denotes the error at the nth

iteration where x0 is the initial point, then
the error bound ∥en∥ exists and is given by

∥en∥ ≤ (1 + hLϕ)n(∥e0∥ + hL̃),

i.e. error is bounded.

Proof. Let en = y(xn) − yn, en+1 =

y(xn+1) − yn+1 from (3.1)

yn+1 = yn + hϕ(yn, f ; h), (3.12)

by mean value theorem,

y(xn+1) = y(xn) + hy′(xn + θh), 0 ≤ θ ≤ 1.
(3.13)

By subtracting equation (3.12) from (3.13),
we get the error as

en+1 = en + h[ϕ(yn, f ; h) − y′(xn + θh)].
(3.14)

∥en+1∥ ≤ ∥en∥ + h∥ϕ(yn, f ; h)
− ϕ(y(xn), f ; h)∥
+ h∥ϕ(y(xn), f ; h) − ϕ(y(xn), f ; 0)∥
+ h∥ϕ(y(xn), f ; 0) − y′(xn + θh)∥,

(3.15)

where

∥ϕ(yn, f ; h) − ϕ(y(xn), f ; h)∥
≤ Lϕ ∥yn − y(xn)∥
= Lϕ ∥en∥.

Similarly,

∥ϕ(y(xn), f ; h) − ϕ(y(xn), f ; 0)∥ ≤ L1h,

(as ϕ(y(xn), f ; h) is Lipschitz continuous
with respect to h) and

∥ϕ(y(xn), f ; 0) − y′(xn + θh)∥
≤ L2θh∥y′(xn + θ1h)∥,
≤ L3h, (where 0 < θ1 < 1)

where L3 = θ∥y′(xn + θ1h)∥. So,

∥en+1∥ ≤∥en∥ + hLϕ ∥en∥ + hL1 + hL3

∥en+1∥ ≤∥en∥(1 + Lϕh) + h(L1 + L3)
∥en+1∥ ≤(1 + Lϕh)n+1∥e0∥ + h(L1 + L3)

[1 + (1 + Lϕh) + (1 + Lϕh)2 + · · ·
+ (1 + Lϕh)n]

∥en+1∥ ≤(1 + Lϕh)eLb ∥e0∥

+ h(L1 + L3)
[
eLb − 1

hLϕ

]
∥en+1∥ ≤(1 + Lϕh)neLb ∥e0∥

+ h(L1 + L3)
[ (1 + Lϕh)n − 1

hLϕ

]
,

or

∥en∥ ≤ (1 + Lϕh)n [∥e0∥ + h(L1 + L3)] ,

or

∥en∥ ≤ (1 + Lϕh)n[∥e0∥ + hL̃]. □

3.1 Absolute Stability
In this section, we compute the in-

terval of absolute stability for the pro-
posedmethods given in Subsections 2.1 and
2.2. For the interval of absolute stabil-
ity of EPRKM proposed in Subsections 2.1
and 2.2, we apply these methods on the
Dahlquist test problem:

dy
dx
= λy, λ = α + iβ, α < 0. (3.16)

Themethod derived in Subsection 2.1 given
in Eqs (2.16)-(2.21) along with coefficients
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(2.32) is a two-step method i.e. the govern-
ing difference equation is of the second or-
der. The characteristic polynomials ϕ(z,w),
to test the absolute stability are given by:
For, EPIRKM in Subsection 2.1:

ϕ(z,w) =

w2 −
(
1 +

z
2
+ 0.8

(z + 0.270833z2)
1 − 0.270833z

)
w

−
(

z
2
− 0.8

(z + 0.145833z2)
1 − 0.145833z

)
. (3.17)

On the other hand, for EPDIRKM in Sec-
tion (2.2):

ϕ(z,w) = w2 −
(
1 +

z
2
+

0.94z
1 − 0.42499z

)
w

−
(

z
2
− 0.94z
1 − 0.3611z

)
, (3.18)

where, z = λh.
The region of absolute stability is de-

fined as the set of all those values of z for
which the roots of the stability polynomial
lie inside the unit circle, i.e. {z ∈ C :
|w | < 1} and it is displayed in Figure 1.
If z = λh is real, then the intervals of ab-
solute stability are (-3.75, 0) and (-1.82, 0)
for the EPRK methods given in Subsection
2.1 and 2.2, respectively. So, these methods
are not A-stable as they are not absolutely
stable in the whole negative complex plane.
However, they have large regions of abso-
lute stability. To find the interval of abso-
lute stability we follow the Routh-Hurwitz
criterion. The truncation error of embedded
Runge-Kutta methods proposed in Subsec-
tions 2.1, 2.2 and 2.3 are of orderO(h4). So,
their local truncation errors satisfy |T .E .| ≤
O(h4), which infers that all the three pro-
posed methods are of order three. The cost
of computation for the proposed methods is
shown in Table 1. In Table 1, we have made
a comparison of a number of function eval-
uations between our proposed methods and

existing classical Runge-Kutta method of
order 3 (explicit and implicit). It is quite ev-
ident that our proposedmethod isO(h4) like
the classical RK3method andRunge-Kutta-
Nyström method of order 3 (RK3) but re-
quires fewer function evaluations which en-
sure that the proposed methods are compu-
tationally efficient. Although, there are two
fewer slope computations in IRK3 than our
proposed methods, this causes a large in er-
ror. As seen in Table 2, it is evident that
IRK3 has a much larger error than EPDIRK
proposed in Subsection 2.2.

Table 1. Comparison of order of the method
and total No. of function evaluations (slopes)
incurred in N time-steps.

Case Order Total no. of function evaluations
RK3 O(h4) 3N
IRK3 O(h4) 2N
RKN3 O(h4) 3N

EPRKM (2.1) O(h4) 2N+2
EPRKM (2.2) O(h4) 2N+2
EPRKM (2.3) O(h4) 2N+2

4. Numerical Experiments
First, we consider the autonomous

initial value problem in first order ODE
given by

dy
dx
= −y2, y(0) = 1, x ∈ [0, 1], (4.1)

where y(x) is an unknown solution. We ap-
ply the embedded implicit pseudo-Runge-
Kutta method proposed in Subsection 2.2.
Using the Eqs. (2.34)-(2.38) together with
(2.51) and taking h = 0.1 for the numerical
solution for various value of x, errors are
calculated. Further, the point wise errors
are compared with the errors obtained by
the classical RK third order method (RK3)
which is depicted in Table 2. From Ta-
ble 2, it is quite obvious that errors are
smaller than in the RK3 method which
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shows the high accuracy of the proposed
method. Next, we consider an IVP in sec-
ond order ODE, given by

d2y

dx2
= (1 + x2)y, y(0) = 1, y′(0) = 0.

(4.2)
We apply the method proposed in Subsec-
tion 2.3 to the IVP (4.2). The solutions
at various values of x and local point wise
errors are calculated. Further, the point
wise errors are compared with the errors
obtained by 3-stage Runge-Kutta-Nyström
(RKN3) method in Table 3. From Table 3,
it is evident that errors obtained here are
smaller than the errors by RKN3, which
alongwith the fact that the proposedmethod
involves less cost, ensures the superiority of
the method given in Subsection 2.3.

Table 2. Absolute error (point wise) in solution
at different values of for the IVP (4.1), with total
of function evaluations.

Method→ RK3 IRK3 EPDIRK
x N=27 N=18 N=20↓

0.2 4.18(-5) 4.59(-3) 4.14(-6)
0.3 4.74(-5) 7.41(-3) 3.58(-6)
0.4 4.88(-5) 9.13(-3) 1.83(-6)
0.5 4.80(-5) 1.01(-2) 1.92(-7)
0.6 4.61(-5) 1.06(-2) 2.08(-6)
0.7 4.37(-5) 1.09(-2) 3.71(-6)
0.8 4.11(-5) 1.09(-2) 5.03(-6)
0.9 3.85(-5) 1.08(-2) 6.07(-6)
1.0 3.60(-5) 1.07(-2) 6.86(-6)

Note: Notation a(b) means a × 10b .

5. Conclusion
In this paper, we have successfully

proposed two embedded implicit pseudo-
Runge-Kutta methods of order three for
the numerical solution of a first order IVP.
Another explicit type embedded pseudo
Runge-Kutta method for a second-order

Table 3. Absolute error (point wise) in solution
y(x) at different values of x (h = 0.1) for the
IVP (4.2), with N total of function evaluations.

Method→ RKN3 Our Method (Sec. 2.3)
x N=27 N=20↓

0.2 4.18(-6) 3.51(-6)
0.3 4.24(-6) 6.64(-6)
0.4 4.36(-6) 3.52(-6)
0.5 4.53(-6) 4.92(-8)
0.6 4.77(-6) 5.70(-6)
0.7 5.09(-5) 1.25(-6)
0.8 5.50(-6) 2.14(-5)
0.9 6.02(-6) 1.21(-5)
1.0 6.69(-6) 0.00000

Note: Notation a(b) means a × 10b .

Fig. 1. Stability region for EPIRKM (2.1) and
EPDIRK (2.2).

IVP is also derived. These methods expend
much less cost of computation in the form of
evaluation functions (slopes) which is quite
evident from Table 1. These methods are
also tested on numerical experiments. Two
IVPs, one is of order one and the other one is
of order two, are solved using the methods
given in Subsection 2.2 and Subsection 2.3.
The results so obtained are compared error
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wise with the results obtained by the classi-
cal RK3, IRK3 and RKN3 methods. These
comparisons are made in Table 2 and Table
3, which show that the errors are smaller.
Thus the proposed methods are more effi-
cient, accurate and superior to the existing
Runge-Kutta methods. Stability properties
and governing theorems establish conver-
gence and stability. The proposed methods
are also applied to the test problems to find
the interval of absolute stability which are
significantly large in size.

To improve the order of accuracy, we
may use the Richardson active or passive
extrapolation. The combination of EPRKM
with the Richardson extrapolation scheme
can be the scope of further research in this
direction.
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