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ABSTRACT

The Time Dependent Variational Approach (TDVA) is applied to estimate the modula-
tional instability (MI) for Non-Linear Hirota type equations. This approach is new to obtain
the nonlinear dispersion relation (NDR) for such equations. The classical modulational in-
stability criterion is nascent and it establishes many prospective for the MI domain because
of the generalized dispersion relation. Analyzing the Non Linear Partial Differential Equa-
tions, we rederive the classical modulational instability criterion.

Keywords: Modulational instability (MI); Non-linear hirota types equation; Time dependent

variational approach (TDVA)

1. Introduction

Modulational instability (MI) exists
in many different branches of physics and
biology. Many phenomena can be ex-
plained by the interlinking of physical and
biological systems on the basis of modu-
lational instabilities (MI). MI is obtainable
due to the established relation between the
nonlinearity and diffraction/dispersion spe-
cial effects. It has been applied to produce
train soliton-like pulses, which are a prede-
cessor to solitons configuration [I-3]. MI
has been foreseen theoretically for propaga-
tion of electromagnetic and plasma waves

in different media [4-9].

Consider a one dimensional non-
linear partial differential (NLPD) equation
as

OE p O%E L O3E
i— — +iy1—=
ar Pl T3

OE
+61|E’E + 3i0z1|E|28— =0. (1.1)
X

Here E(x,t) is a high-frequency field and
a1,B1, y1 and 01 are real constants with the
relation

a1 81 — 01y1 = constant.
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If a; = y; = 0 then Eq.([L.1) rep-
resents a non-linear Schrodinger equation
[LO].

If 81 = 61 = 0 the equation reduces
to the modified Korteweg-de Vries equa-
tion.

We consider 81 =y1 =1,01 = a1 =
—% Eq. ([L.1)) reduces to Hirota equation

i |[E + Exxx — |[EI*Ex|+Exx—$|EI’E = 0.
(1.2)

2. Modulational
Modal Equation

The augmentation of modulation in-
stability of an uninterrupted wave is dis-
cussed in two steps. In the first step, the
equilibrium situation for simple and precise
monochromatic wave solutions is consid-
ered. In the second step, a small pertur-
bation on the equilibrium situation in am-
plitude propagates a set of equations from
which one draws a conclusion about the
nonlinear dispersion relation. By setting for

Eq. (L2)

E (x, t) — Eoei(kx+wl‘)

Instability  for

we get

w=k?—k*+Ek - 1E] Q2.1
a small perturbation in amplitude

E = Ey(1 + Jy) kx+wo), (2.2)

The perturbation y(x, ¢), is put in Eq. (.2)
then we may get

Oy (9 2\ Y %y
ZE+I(EO+2k—3k)a+(EQ—3k)W
0%y

+1W+(2k—§)E:O. (2.3)

For the solution let

lﬁ (x, t) = Mel(Qx_Q[) + N*e_i(Qx_Q*[)’
(2.4)
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where the wave number Q and the fre-
quency Q are perturbations, respectively (*
indicates complex conjugation).

Using the dispersion relation for evo-
lution of MI, one obtains Im Q > 0

[Q-kQ(2-3k) +0?]
=iloly(E (2k-1)-02).  @3)

This is an instability region of model equa-
tion ([.2) for perturbation. The value of
Q (k) is quadratic in terms of the wave num-
bers O > 0 and the plane wave parameters.
Their imaginary roots are in linearly unsta-
ble mode, with extension rate |Im (Q(k))|.
We now apply TDVA [[11] to recog-
nize the period of unstable wave numbers.
Lagrangian for the Hirota equation ([.2)
+00
L= / |S(E*E, - EE}) — |Ex|
— LIEPPE*Ey — iE}Exx
~H{(E*E)?] dx (2.6)

and consider the plane wave solution

E(x,1) =¢"®x0 [Eo + a(t)ei®a(D+ax)

+b(t)e(i(¢b(f)—qx))] ) (2.7)
Here we consider the intervallic boundary
situation on the E (x, r) with integration lim-
its x € [0, 2] after substitution in Eq. (2.3),
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then Lagrangian for the Hirota equation + B2+ az) . @2.11)
24> ((a +b)? — 2ab) . .
~2 (a2, + b2y Equation of motion for ®;(¢)
~dkq (@ = %) + 4 (Ey d ( L ) oL
+EZabsin (O, + ©p) T\ aa | T
0 a dt \ od 0D,
+a = bt + L (- k) (B ’
[ —n —2E2 — 4E2ab cos (Dg + Dp)) = b = Coa[sin (O, + Dp) — cos (D, + Dp)],
5 (5 k) (@ +7)’ (2.12)
where
—2ab(ab + 2)
—k3(E§+a2+b2) G = %(%_k)Eg_‘f_qu_%qu
—k2q (3a® — 3b?) = 3k + 3kq + Sk,
—kq? (3a® - b?) Cy= - (3+k)E,
(2.8) 11 2 _ 2
. = 5(s—k)E; - 2k
It’s dependent on a, b, @, and ®@,,. Equation G=3 (f 2) [1) 3q ;2 1 s 5
of motion for a(r) —39Ey — 3k + 5k7q + 5kq7,
i 6_L _B_L_O whena = b, ® = ®, + @, then
dt\oa)] da Ja
a= 7 Coa (sin® —cos @), (2.13)
= ad, = Cib+ Cgb sin ((Da + (Db) . dd
o= r = (C1 + C3)+2C5 sin ®—2C5 cos D.
—cos (D, + Dp) (2.14)

+5(3-4) ((4q +1)a + 2b2) ] Let A = C1 +C3, B = Cy. Then Eq. (2.14)

(2.9)
2a28) 1 (A-2B)tan()+2B | t
Equation of motion for @ () \(A2-8B?) V(A2=sB2) -0
d (0L _ 4L
dt \od,) 00,
— -1 1 2 _ 2
= i = Cob[sin (®y + Dp) — cos (g + )] - © = 2tan {(A—QB) VA" -8B
(2.10)
Equation of motion for b(¢) tan (t \/é?:—;;Q)) _9B }
d(oLy_oL
di\ob) b

o _ (A%2-8B?) t (A%2-8B2?)
tan 5 = (A2B) tan 5 (A2B)

2B (2.15)

= bb, = C3b + Cga[sin (Dy + D)
~ (A=2B)"

—cos (g + Dp) + 2 (3 —k) ((4q
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IfA2-8B2>0= (C; +C3)>=8C2 >0

2
:(ES%—k—q)+q2(k—2—k3+3k2q))

8 (—(ﬁE@)f >0, (2.16)

then by Eq. (2.13)

] _ (AQ—SBQ) 1+tan2%
oga = 2B(A-3B) 08 A2+tan2%
A-2B)? -1 [ (A-2B)?
— —((A2_83)2)tan [—((A2—SB)2) tan %]
(A%-8B%) [, (A-2B)°
(A-3B) |2 ~ (A2-8B?)
-1 [ (A-2B)?
tan [W tan %” L @17)

Eq. (2.17) shows when A — 2B < 0 is sta-
ble and when A — 2B0 is unstable. Three
and two dimension simulation for Eq. (2.7)
whose parameters are derived in Egs. (2.8)-
(B.17) are represented in Fig. [l and Fig. [,

Fig. 1. Three dimension simulation for Eq.
(£.7) with time measure Az = 1/, 0 < t < 80
and Space measure Ax = 1/;,0 < x < 100

3. Result and Discussion

In this paper, modulational instabil-
ities of the Hirota equation are discussed
in the form of nonlinear dispersion re-
lation (NDR) by a time dependent vari-
ational approach. We obtain a Euler-
Lagrange equation of motion in favour of
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Fig. 2. Two dimension time step At
0 < <100 for Eq. (2.17) and x = 0

0.02,

the time-dependent variables and scruti-
nize their strength for different amplitudes
(wave number and frequency) of perturba-
tion of wave solution. It is found that the
analogous solidity circumstance obtaining
a new ordinary differential equation, whose
exceptional situations communicate to sta-
bility/instability criteria, is recognized. To
the best of our knowledge, the time de-
pendent variational approach (TDVA) has
not been implemented for constructing the
modulational instability and solutions of
this model.
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