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ABSTRACT
The Time Dependent Variational Approach (TDVA) is applied to estimate the modula-

tional instability (MI) for Non-Linear Hirota type equations. This approach is new to obtain
the nonlinear dispersion relation (NDR) for such equations. The classical modulational in-
stability criterion is nascent and it establishes many prospective for the MI domain because
of the generalized dispersion relation. Analyzing the Non Linear Partial Differential Equa-
tions, we rederive the classical modulational instability criterion.
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1. Introduction
Modulational instability (MI) exists

in many different branches of physics and
biology. Many phenomena can be ex-
plained by the interlinking of physical and
biological systems on the basis of modu-
lational instabilities (MI). MI is obtainable
due to the established relation between the
nonlinearity and diffraction/dispersion spe-
cial effects. It has been applied to produce
train soliton-like pulses, which are a prede-
cessor to solitons configuration [1–3]. MI
has been foreseen theoretically for propaga-
tion of electromagnetic and plasma waves

in different media [4–9].
Consider a one dimensional non-

linear partial differential (NLPD) equation
as

i
∂E
∂t
+ β1

∂2E
∂x2
+ iγ1

∂3E
∂x3

+ δ1 |E |2E + 3iα1 |E |2 ∂E
∂x
= 0. (1.1)

Here E(x, t) is a high-frequency field and
α1,β1, γ1 and δ1 are real constants with the
relation

α1β1 − δ1γ1 = constant.
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If α1 = γ1 = 0 then Eq.(1.1) rep-
resents a non-linear Schrödinger equation
[10].

If β1 = δ1 = 0 the equation reduces
to the modified Korteweg-de Vries equa-
tion.

We consider β1 = γ1 = 1, δ1 = α1 =
−1

3 Eq. (1.1) reduces to Hirota equation

i
[
Et + Exxx − |E |2Ex

]
+Exx− 1

3 |E |2E = 0.
(1.2)

2. Modulational Instability for
Modal Equation

The augmentation of modulation in-
stability of an uninterrupted wave is dis-
cussed in two steps. In the first step, the
equilibrium situation for simple and precise
monochromatic wave solutions is consid-
ered. In the second step, a small pertur-
bation on the equilibrium situation in am-
plitude propagates a set of equations from
which one draws a conclusion about the
nonlinear dispersion relation. By setting for
Eq. (1.2)

E (x, t) = E0ei(kx+wt)

we get

w = k3 − k2 + E2
0 k − 1

3E2
0 (2.1)

a small perturbation in amplitude

E = E0 (1 + ℑψ) ei(kx+wt). (2.2)

The perturbation ψ(x, t), is put in Eq. (1.2)
then we may get

i
∂ψ

∂t
+ i

(
E2
0 + 2k − 3k2

) ∂ψ
∂x
+ (E0 − 3k) ∂

2ψ

∂x2

+ i
∂3ψ

∂x3
+
(
2k − 1

3

)
E = 0. (2.3)

For the solution let

ψ (x, t) = Mei(Qx−Ωt) + N∗e−i(Qx−Ω∗t),
(2.4)

where the wave number Q and the fre-
quency Ω are perturbations, respectively (*
indicates complex conjugation).

Using the dispersion relation for evo-
lution of MI, one obtains Im Ω > 0[

Ω − kQ (2 − 3k) +Q3
]

= i |Q |
√(

E2
0

(
2k − 1

3

)
− Q2

)
. (2.5)

This is an instability region of model equa-
tion (1.2) for perturbation. The value of
Ω (k) is quadratic in terms of the wave num-
bers Q > 0 and the plane wave parameters.
Their imaginary roots are in linearly unsta-
ble mode, with extension rate |Im (Ω(k))|.

We now apply TDVA [11] to recog-
nize the period of unstable wave numbers.
Lagrangian for the Hirota equation (1.2)

L =

+∞∫
−∞

[
i
2 (E

∗Et − EE∗
t ) − |Ex |2

− i
2 |E |2E∗Ex − iE∗

xExx

−1
6 (E

∗E)2
]

dx (2.6)

and consider the plane wave solution

E(x, t) =ei(kx+wt)
[
E0 + a(t)e(iΦa (t)+qx)

+b(t)e(i(Φb (t)−qx))
]
. (2.7)

Here we consider the intervallic boundary
situation on the E (x, t)with integration lim-
its x ∈ [0, 2π] after substitution in Eq. (2.5),

124



R. D. Pankaj et al. | Science & Technology Asia | Vol.25 No.1 January - March 2020

then Lagrangian for the Hirota equation

L = π



2q2
(
(a + b)2 − 2ab

)
−2

(
a2Φa + b2Φb

)
−4kq

(
a2 − b2

)
+ q

(
E3
0

+E2
0ab sin (Φa + Φb)

+a4 − b4
)
+ 1

2

(
1
3 − k

) (
E4
0

−2E2
0 − 4E2

0ab cos (Φa + Φb)
)

−1
2

(
1
3 − k

) ( (
a2 + b2

)2
− 2ab (ab + 2)

)
−k3

(
E2
0 + a2 + b2

)
−k2q

(
3a2 − 3b2

)
−kq2

(
3a2 − b2

)



.

(2.8)
It’s dependent on a, b,Φa andΦb. Equation
of motion for a(t)

d
dt

(
∂L
∂ Ûa

)
− ∂L
∂a
= 0

⇒ aΦa = C1b + C2b
[
sin (Φa + Φb)

− cos (Φa + Φb)

+ b
2

(
1
3 − k

) (
(4q + 1) a2 + 2b2

) ]
.

(2.9)

Equation of motion for Φa(t)

d
dt

(
∂L
∂ ÛΦa

)
=

∂L
∂Φa

⇒ Ûa = C2b [sin (Φa + Φb) − cos (Φa + Φb)] .
(2.10)

Equation of motion for b(t)

d
dt

(
∂L
∂ Ûb

)
=
∂L
∂b

⇒ b ÛΦb = C3b + C2a
[
sin (Φa + Φb)

− cos (Φa + Φb) + a
2

(
1
3 − k

) (
(4q

+ 1)b2 + a2
)]
. (2.11)

Equation of motion for Φb(t)

d
dt

(
∂L
∂ ÛΦb

)
=

∂L
∂Φb

⇒ Ûb = C2a [sin (Φa + Φb) − cos (Φa + Φb)] ,
(2.12)

where

C1 =
1
2

(
1
3 − k

)
E2
0 − q2 − 2kq − 1

2qE2
0

− 1
2 k3 + 3

2 k2q + 3
2 kq2,

C2 = −
(
1
3 + k

)
E2
0,

C3 =
1
2

(
1
3 − k

)
E2
0 − q2 + 2kq

− 1
2qE2

0 − 1
2 k3 + 3

2 k2q + 3
2 kq2,

when a = b,Φ = Φa + Φb, then

Ûa = da
dt
= C2a (sinΦ − cosΦ) , (2.13)

ÛΦ = dΦ
dt
= (C1 + C3)+2C2 sinΦ−2C2 cosΦ.

(2.14)
Let A = C1 + C3, B = C2. Then Eq. (2.14)

2(A−2B)√
(A2−8B2)

tan−1
[
(A−2B) tan

(
Φ

2

)
+2B

√
(A2−8B2)

]
= t,

Φ = 2tan−1
{

1
(A−2B)

[
√

A2 − 8B2

tan

(
t
√
(A2−8B2)
2(A−2B)

)
− 2B

]}
,

tan Φ2 =

√
(A2−8B2)
(A−2B)2 tan

[
t
2

√
(A2−8B2)
(A−2B)2

]
− 2B

(A−2B) . (2.15)
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If A2 − 8B2 > 0 ⇒ (C1 + C3)2 − 8C2
2 > 0

⇒
(
E0
2 (13 − k − q) + q2(k − 2 − k3 + 3k2q)

)2
− 8

(
−( 1

3+k E2
0 )
)2
> 0, (2.16)

then by Eq. (2.13)

log a = (A2−8B2)
2B(A−3B) log

[
1+tan2

Φ

2

A2+tan2
Φ

2

]
− (A−2B)2

(A2−8B2)tan
−1

[
(A−2B)2

(A2−8B2) tan
Φ

2

]
+
(A2−8B2)
(A−3B)

[
Φ

2 +
(A−2B)2

(A2−8B2)
tan−1

[
(A−2B)2

(A2−8B2) tan
Φ

2

] ]
. (2.17)

Eq. (2.17) shows when A − 2B < 0 is sta-
ble and when A − 2B0 is unstable. Three
and two dimension simulation for Eq. (2.7)
whose parameters are derived in Eqs. (2.8)-
(2.17) are represented in Fig. 1 and Fig. 2.

Fig. 1. Three dimension simulation for Eq.
(2.7) with time measure ∆t = 1/50, 0 ≤ t ≤ 80
and Space measure ∆x = 1/5, 0 ≤ x ≤ 100

3. Result and Discussion
In this paper, modulational instabil-

ities of the Hirota equation are discussed
in the form of nonlinear dispersion re-
lation (NDR) by a time dependent vari-
ational approach. We obtain a Euler-
Lagrange equation of motion in favour of

Fig. 2. Two dimension time step ∆t = 0.02,
0 ≤ t ≤ 100 for Eq. (2.17) and x = 0

the time-dependent variables and scruti-
nize their strength for different amplitudes
(wave number and frequency) of perturba-
tion of wave solution. It is found that the
analogous solidity circumstance obtaining
a new ordinary differential equation, whose
exceptional situations communicate to sta-
bility/instability criteria, is recognized. To
the best of our knowledge, the time de-
pendent variational approach (TDVA) has
not been implemented for constructing the
modulational instability and solutions of
this model.
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