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ABSTRACT
In this work, we attempt to identify parameters that are significant in blood flow

through human arteries. For this, we developed a mathematical model and carried out sim-
ulations using data on human arteries and then performed a statistical analysis of the data
generated. The mathematical model considers blood as a Newtonian fluid with its constitu-
tive equation comprising two parameters termed as fluid parameters, namely the density and
viscosity. Arteries are modelled as tapered and elastic circular pipes wherein the radius of
the artery is in terms of the material parameters, termed taper fraction, expanding/contracting
parameter and aspect ratio

(
=

radius of the artery
length of the artery

)
. Blood flow is described as pulsatile with the

frequency of oscillations as the flow parameter monitored. The resulting system of partial
differential equations is solved using the Homotopy Analysis Method (HAM). Data on hu-
man arteries (healthy) has been taken from literature, and we worked on different age groups
ranging from 15 years to 65 years, both on male and female populations. The two physical
quantities of interest i.e. the wall shear stress (WSS) and the volumetric flow rate have been
computed and analysis has been carried out to identify significant parameters using a multi-
ple linear regression model.

Keywords: Blood flow; HAM; Human artery; Mathematical model; Newtonian fluid; Sta-
tistical analysis; Wall shear stress

1. Introduction
Understanding blood flow in the hu-

man arterial system is important owing to

its significance not only in diagnosing dis-
eases related to heart and circulatory sys-
tem but also in the design of efficient med-
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ical devices. A literature survey shows that
researchers have used different methodolo-
gies, namely lumped parameter modelling,
mathematical modelling and clinical meth-
ods to unveil the mechanism governing this
system. Although each method has its ad-
vantages and limitations, the present work
is on applying mathematical modelling to
the problem of identifying parameters to be
monitored in blood flow through human ar-
teries.

In general, construction of mathe-
matical models for the human arterial sys-
tem requires appropriate mathematical de-
scription of the salient features of this sys-
tem, i.e. (i) flow of blood is due to pulsatile
pressure gradient induced by the heart, (ii)
blood is a complex fluid that is a suspen-
sion of particles, and (iii) the arteries are
elastic/ muscular with tapering and branch-
ing. Hence, mathematical models comprise
three sets of parameters, i.e. flow param-
eters, fluid parameters and mechanical pa-
rameters to describe each of these features,
and thus one has to handle three sources
of non-linearities, namely geometric, struc-
tural (or mechanical) and fluid related. As
observed by Jiyauan et al. [1], the human
circulatory system has self-repairing mech-
anisms and possibly it is not required to in-
troduce all three sources of non-linearities
into a mathematical model. However, not
much work has been reported in the di-
rection of identifying the appropriate non-
linearity/non-linearities to be included in a
model for different arteries in the human ar-
terial system. Thus, this study aims to de-
velop a mathematical model for blood flow
in arteries with its radius varying from mm
to µm and use statistical tools to identify
significant parameters to be monitored in
individuals

2. Statement of the Problem
A mathematical description of the

features of the circulatory system described
above includes flow parameters to describe
the flow of blood, fluid parameters by
fluid constitutive equations to describe the
complex nature of blood, and mechanical
parameters for describing the mechanical
properties of arteries. As mentioned above,
mathematical models should include non-
linearities, namely geometric non-linearity
as the flow domain is unknown, fluid con-
stitutive nonlinearity due to the complex na-
ture of fluid, i.e. blood and structure con-
stitutive inequality as the arterial vessel is
elastic with stress-strain response varying
along with the system [2]. Thus, a model
incorporating all these three non-linearities
would result in a computationally expensive
one and is not often desirable. Hence, it is
necessary to understand the mechanism of a
system to explore the possibility of reducing
this complexity and still be able to achieve
accuracy. Thus, an attempt made in this
direction for the human arterial system re-
sulted in a finding that this system has self-
repair mechanisms where, in some arteries,
the arterial wall can remodel itself by in-
creasing its external diameter to accommo-
date plaque without narrowing the lumen,
and hence, it is understood that not all non-
linearities or parameters in the model may
have significant effect on the flow variables
[1]. Therefore, in this work, we propose to
develop a mathematical model with a New-
tonian fluid model to describe blood and ar-
teries as tapered and elastic circular pipes.
This model is then applied to carry out sim-
ulations using data on human arteries, and
statistical analysis has been performed to
identify the most significant parameters in
the model developed.
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3. Formulation of the Problem
A mathematical model has been

constructed using the Navier Stokes equa-
tions for the fluid flow [3]. The fluid,
i.e. blood, is taken to be Newtonian and,
for the behaviour of the artery, models
have been chosen as described in [4, 5].
Furthermore, we assume that the flow is
axisymmetric and the fluid is incompress-
ible, so that the velocity vector and the
pressure, denoted by q and p respectively,
are functions of r , z and time t only. We
assume that the non-vanishing compo-
nents of the velocity vector are in radial and
axial directions so that the velocity vector is

q (r, z, t) = (u (r, z, t) , 0,w (r, z, t)) .
Also, let the thermodynamic pressure p be
p (r, z, t).

Now, the continuity equation and
momentum equations take the form

∂u
∂r
+

u
r
+
∂w

∂z
= 0, (3.1)

∂u
∂t
+ u
∂u
∂r
+ w
∂u
∂z

= −1

ρ

∂p
∂r

− 1

ρ

(
1

r
∂

∂r
(rτrr ) +

∂

∂z
(τrz)

)
,

(3.2)

∂w

∂t
+ u
∂w

∂r
+ w
∂w

∂z

= −1

ρ

∂p
∂z

− 1

ρ

(
1

r
∂

∂r
(rτrz) +

∂

∂z
(τzz)

)
.

(3.3)

Here, ρ is the density of the blood, and τi j
are the components of the deviatoric stress
tensor [3].

Under the assumption that the radial
flow velocity and the convective accelera-
tion terms are respectively of a smaller or-
der of magnitude with respect to the ax-
ial flow velocity and the local acceleration

terms, the radial momentum Eq. (3.2) re-
duces to

− ∂p
∂r
= 0. (3.4)

Thus, it is clear that the pressure is indepen-
dent of r . Since the fluid is consideredNew-
tonian, its constitutive equation is

τi j = −pδi j + 2µei j (3.5)

where p is the thermodynamic pressure, µ
is the viscosity and ei j is the rate of defor-
mation tensor [3].

Using the constitutive Eq. (3.5),
Eq. (3.1), Eq. (3.2) and Eq. (3.3) take the
form

∂u
∂r
+

1

r
u +
∂w

∂z
= 0, (3.6)

− ∂P
∂r
= 0, (3.7)

ρ

(
∂w

∂t
+ u
∂w

∂r
+ w
∂w

∂z

)
= −∂P

∂z
+ µ

(
1

r
∂

∂r

(
r
∂w

∂r

)
+
∂2w

∂z2

)
.

(3.8)

Since the pipe is considered tapered
with contracting/expanding nature, it is
modelled as

R (z, t) = R0

(
1 − f

z
L

)
(1 − βt)0.5 (3.9)

where R0 is the radius of the pipe at the in-
let, f is the fraction of tapering, β is the con-
tracting/expanding parameter, and L is the
length of the pipe [4, 5].

As the fluid (blood) flow in the pipe
(arteries) is due to the pumping of the heart
which is pulsatile, the pressure gradient is,

− ∂P
∂z
= a0 + a1cosωt, (3.10)
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where a0 is the average blood pressure, a1 is
the pulse difference and ω is the frequency
of oscillations, i.e. the heart rate per minute.

Now, the aim is to solve the cou-
pled system of partial differential equations
given by Eq. (3.6) to Eq. (3.8) together with
the boundary conditions given by

u = ∂R
∂t (z, t) on r = R (z, t)

(fluid velocity matches with the rate of dis-
placement of the wall),

w = 0 on r = R (z, t)

(no-slip condition),

u = 0,
∂w

∂r
= 0 at r = 0 (3.11)

(velocity is finite at the center of the pipe).

4. Solution to the Problem
Introducing the following non-

dimensional scheme,

r∗ =
r
R0
, z∗ =

z
L
, t∗ = ωt,

u∗ =
u

R0ω
, w∗ =

w

Lω
(4.1)

Eq. (3.6), Eq. (3.8), after dropping ‘*’
transform to

∂u
∂r
+
1

r
u +
∂w

∂z
= 0 (4.2)

∂w

∂t
+ u
∂w

∂r
+ w
∂w

∂z

= P∗ − 1

α2

(
∂2w

∂r2
+
1

r
∂w

∂r
+ δ2
∂2w

∂z2

)
,

(4.3)

where
P∗ = − 1

ρω2L2

∂P
∂z

is the non-dimensional pressure
gradient, δ = R0

L is the aspect ratio

and α =
√

ρωR2
0

µ is the Womersley number.
And the boundary conditions in the

non-dimensional form are

u = ∂R∗

∂t (z, t) ,w = 0 on r = R∗ (z, t),

u = 0,
∂w

∂r
= 0 at r = 0, (4.4)

where

R∗ (z, t) = (1 − f z) (1 − βt)0.5. (4.5)

It may be noted that hereafter while men-
tioning the expression for the radius given
in Eq. (4.5), ‘*’ will be dropped from the
same.

Since the above mathematical model
given by Eq. (4.2), Eq. (4.3) is a cou-
pled system of non-linear partial differen-
tial equations and finding analytical so-
lutions is almost not impossible; we im-
plemented the Homotopy Analysis Method
(HAM) for finding semi-analytical solu-
tions [6–11]. For this, we identified the ho-
motopy for Eq. (4.2) as

h1 (p) = (1 − p)
(
∂2u
∂r2

)
+hp

(
∂u
∂r
+
1

r
u +
∂w

∂z

)
(4.6)

and for Eq. (4.3), the homotopy is taken as

h2 (p) = (1 − p)
(
∂2w

∂r2

)
+kp

(
∂w

∂t
+ u
∂w

∂r
+ w
∂w

∂z
+ P

− 1

α2

(
∂2w

∂r2
+
1

x
∂w

∂r
+ δ2
∂2w

∂z2

))
,

(4.7)

where h and k are auxiliary parameters.
Following the method described by Liao
[7, 8], let us take

u (r, z, t) = u0 (r, z, t) + u1 (r, z, t) p
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+u2 (r, z, t) p2 + u3 (r, z, t) p3 + . . .

(4.8)

and

w (r, z, t) = w0 (r, z, t) + w1 (r, z, t) p

+w2 (r, z, t) p2 + w3 (r, z, t) p3 + . . .

(4.9)

Let the initial solution be u0 (r, z, t) = 0,
w0 (r, z, t) = 0. Now, substituting the ex-
pressions for u (r, z, t) and w (r, z, t) from
Eq. (4.8), Eq. (4.9) in Eq. (4.6), Eq. (4.7),
collecting the coefficients of p1 and equat-
ing them to zero, we have

∂2u1
∂r2

= 0, (4.10)

k
a0 + a1cost

ρω2L2
+
∂2w1

∂r2
= 0. (4.11)

The above equations are solved (using
MATHEMATICA) alongwith the boundary
conditions,

u1 =
∂R (z, t)
∂t

, w1 = 0 on r = R (z, t)

u1 = 0,
∂w1

∂r
= 0 at r = 0 (4.12)

and the expression for the first approxima-
tion of the velocity components has been
obtained. We, then, collect the coefficient
of p2 from RHS of Eq. (4.6), and Eq. (4.7)
and equate them to zero to obtain the equa-
tions governing the second approximations
of the velocity components as shown below.

− hβ
1 − βt − hk f (1 − f z)

(1 − βt) a0 + a1cost

ρω2L2
+
∂2u2
∂r2

= 0,

(4.13)

(
k +

k2

α
+

k2

xα
− δ

2k2 f 2 (1 − βt)
α

− k2β(1 − f z)2
2

)
a0 + a1cost

ρω2L2
+(

k2x2 − k2(1 − f z)2 (1 − βt)
)

a1sint
2 ρω2L2

+
∂2w2

∂r2
= 0.

(4.14)
These equations are again solved us-

ing the boundary conditions given by

u2 = 0, w2 = 0 on r = R (z, t),

u2 = 0,
∂w2

∂r
= 0 at r = 0 (4.15)

to get the second approximation to the ve-
locity components. Subsequent approxima-
tions are obtained by collecting the next
higher powers of p and equating them to
zero to find the system of equations govern-
ing the next higher approximations to veloc-
ity components. The resultant systems are
solved together with homogenous bound-
ary conditions similar to the ones given in
Eq. (4.15) and thus we obtain expressions
for u (r, z, t) and w (r, z, t) in terms of the
auxiliary parameters h and k. As observed
by Liao, these parameters affect the conver-
gence region and also the rate of conver-
gence and hence, are to be determined us-
ing a certain class of curves called h-curves.
Since the model that we are working with
has two auxiliary parameters and finding
both of them using h-curves is difficult, we
implemented the following method to iden-
tify the region of convergence.

Initially, we fixed the value of ‘h’
at −0.00007 and, for this value, we deter-
mined the range of ‘k’ using h-curves. Fig.
1 depicts h-curves to identify the range of
the auxiliary parameter ‘k’. From these
graphs, we identified the range for ‘k’, and
the value −0.06 has been taken for the study
(see in Fig. 2).
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Fig. 1. h-curves to identify the range for the
auxiliary parameter ’k’

Fig. 2. Graphs of u(r, z, t) and w(r, z, t) for k =
−0.06

5. Results and Discussions
To carry out simulations using the de-

veloped model, we considered data on hu-
man arteries [12,13] as shown below in Ta-
bles 1, 2 and 3.

Table 1 shows different age groups
and the average blood pressure (sys-
tolic/diastolic) in mmHg (for healthy indi-

Table 1. Avg Blood Pressure (mmHg)

Age Group Female Male
15 − 18 117/77 120/85
19 − 24 120/79 120/79
25 − 29 120/80 121/80
30 − 35 122/81 123/82
36 − 39 123/82 124/83
40 − 45 124/83 125/83
46 − 49 126/84 127/84
50 − 55 129/85 128/85
56 − 59 130/86 131/87
≥ 60 134/84 135/88

viduals) in that group.
Table 2 presents the range for heart-

rate in healthy individuals of different age
groups inmales and females. This table also
shows the data we considered to carry out
simulations using the mathematical model.

Table 3 presents other parameters in
the model, and the values taken to carry out
simulations. The values of density and vis-
cosity are taken from data on human blood,
whereas the other mathematical parameters
take values that describe the different states
of the artery. For example, taper fraction
with value 0.01 describes the case where the
radius (outlet) of the artery reduces to 99%
of the inlet radius. Similarly, the value 0.1
describes the case where the outlet radius
reduces to 90% of the inlet radius. Nega-
tive values of the parameter β indicate the
state where the artery contracts with time
and positive values describe the state where
the artery expands. The value of δ= 0.001
models an artery of radius 1mm and the
value δ=10−5 models that of radius 1µm.

We then applied the multiple regres-
sion techniques, with WSS and volumetric
flow rate, taken to be dependent on the dif-
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Table 2. Heart Rate per minute

Heart Rate Heart Rate
(Female) (Male)

Age Group
Data from Values Data from Values

literature [13] considered literature [13] considered
18 − 25 70 − 73 70, 72, 73 70 − 73 70, 72, 73

26 − 35 73 − 76 73, 75, 76 71 − 74 71, 73, 74

36 − 45 74 − 78 74, 76, 78 71 − 75 71, 73, 75

46 − 55 74 − 77 74, 76, 77 72 − 76 72, 74, 76

56 − 65 74 − 77 74, 76, 77 72 − 75 72, 74, 75

> 65 73 − 76 73, 75, 76 70 − 73 70, 72, 73

Table 3. Other parameters and their values

Density (ρ) (in kg.m−3)
1055

1058.1

1061.2

Viscosity (µ) (in Pa.s)
0.00552

0.00619

0.00686

Taper Fraction ( f )

0.01

0.03

0.05

0.07

0.09

0.1

−0.05
Contracting/ −0.01
Expanding 0

Parameter (β) 0.01

0.05

Aspect Ratio (δ)

0.01

0.001

0.0001

0.00001

ferent parameters of our model and noted
the p-values.

Table 4 shows the p-values for WSS,
and volumetric flow rate for different age
groups in the female population and Table 5
presents the same for the male population.

From Tables 4 and 5, we see that
among the fluid parameters, i.e., viscosity
and density, viscosity has a significant ef-
fect on both WSS and flow rate whereas
density has a significant effect only on the
volumetric flow rate in all the age groups
for both male and female populations. In
the case of material parameters, we see
that taper fraction has no significant ef-
fect on the physical quantities among all
ages and in both genders while the expand-
ing/contracting parameter exhibits it. We
also observe that the frequency of oscilla-
tions (mentioned as heart rate in the table),
which is the flow parameter, has a signifi-
cant effect on both WSS and flow rate in all
age groups for both male and female popu-
lation.

101



A. Karthik et al. | Science & Technology Asia | Vol.25 No.1 January - March 2020

Table 4. p-values for WSS and Volumetric flow rate in Female Population

WSS p-values

Age Group
Heart Rate Aspect Ratio Taper Contracting

Density Viscosity
Rate Ratio fraction Expanding Parameter

19 − 24 4.11 × 10−5 2 × 10−16 0.5275 0.0017 0.6449 2 × 10−16

25 − 29 8.27 × 10−5 2 × 10−16 0.52718 0.00169 0.64467 2 × 10−16

30 − 35 8.27 × 10−5 2 × 10−16 0.52718 0.00169 0.64467 2 × 10−16

36 − 39 8.62 × 10−7 2 × 10−16 0.52901 0.00177 0.64613 2 × 10−16

40 − 45 8.62 × 10−7 2 × 10−16 0.52901 0.00177 0.64613 2 × 10−16

46 − 49 0.000103 2 × 10−16 0.527099 0.001686 0.644601 2 × 10−16

50 − 55 0.000103 2 × 10−16 0.527099 0.001686 0.644601 2 × 10−16

56 − 60 0.000897 2 × 10−16 0.588984 0.007268 0.693526 2 × 10−16

> 60 8.27 × 10−5 2 × 10−16 0.52718 0.00169 0.64467 2 × 10−16

Vol. Flow rate p-values

Age Group
Heart Rate Aspect Ratio Taper Contracting

Density Viscosity
Rate Ratio fraction Expanding Parameter

19 − 24 0.0295 2 × 10−16 0.1923 1.60 × 10−10 2 × 10−16 3.78 × 10−11

25 − 29 0.0367 2 × 10−16 0.192 1.56 × 10−10 2 × 10−16 3.67 × 10−12

30 − 35 0.0367 2 × 10−16 0.192 1.56 × 10−10 2 × 10−16 3.67 × 10−12

36 − 39 0.00893 2 × 10−16 0.19383 1.85 × 10−10 2 × 10−16 4.47 × 10−12

40 − 45 0.00893 2 × 10−16 0.19383 1.85 × 10−10 2 × 10−16 4.47 × 10−12

46 − 49 0.0392 2 × 10−16 0.1919 1.55 × 10−10 2 × 10−16 3.64 × 10−12

50 − 55 0.0392 2 × 10−16 0.1919 1.55 × 10−10 2 × 10−16 3.64 × 10−12

56 − 60 0.0392 2 × 10−16 0.1919 1.55 × 10−10 2 × 10−16 3.64 × 10−12

> 60 0.0367 2 × 10−16 0.192 1.56 × 10−10 2 × 10−16 3.67 × 10−12
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Table 5. p-values for WSS and Volumetric flow rate in Male Population

WSS p-values

Age Group
Heart Rate Aspect Ratio Taper Contracting

Density Viscosity
Rate Ratio fraction Expanding Parameter

19 − 24 4.11 × 10−5 2 × 10−16 0.5275 0.0017 0.6449 2 × 10−16

25 − 29 5.24 × 10−5 2 × 10−16 0.5274 0.0017 0.6448 2 × 10−16

30 − 35 5.24 × 10−5 2 × 10−16 0.5274 0.0017 0.6448 2 × 10−16

36 − 39 3.13 × 10−7 2 × 10−16 0.52943 0.00179 0.64646 2 × 10−16

40 − 45 3.13 × 10−7 2 × 10−16 0.52943 0.00179 0.64646 2 × 10−16

46 − 49 4.44 × 10−7 2 × 10−16 0.52928 0.00178 0.64635 2 × 10−16

50 − 55 4.44 × 10−7 2 × 10−16 0.52928 0.00178 0.64635 2 × 10−16

56 − 60 6.61 × 10−5 2 × 10−16 0.52727 0.00169 0.64474 2 × 10−16

> 60 4.11 × 10−5 2 × 10−16 0.5275 0.0017 0.6449 2 × 10−16

Vol. Flow rate p-values

Age Group
Heart Rate Aspect Ratio Taper Contracting

Density Viscosity
Rate Ratio fraction Expanding Parameter

19 − 24 0.0295 2 × 10−16 0.1923 1.60 × 10−10 2 × 10−16 3.78 × 10−11

25 − 29 0.0318 2 × 10−16 0.1922 1.59 × 10−10 2 × 10−16 3.74 × 10−12

30 − 35 0.0318 2 × 10−16 0.1922 1.59 × 10−10 2 × 10−16 3.74 × 10−12

36 − 39 0.0655 2 × 10−16 0.19424 1.92 × 10−10 2 × 10−16 4.67 × 10−12

40 − 45 0.0655 2 × 10−16 0.19424 1.92 × 10−10 2 × 10−16 4.67 × 10−12

46 − 49 0.00729 2 × 10−16 0.1941 1.9 × 10−10 2 × 10−16 4.6 × 10−12

50 − 55 0.00729 2 × 10−16 0.1941 1.9 × 10−10 2 × 10−16 4.6 × 10−12

56 − 60 0.0342 2 × 10−16 0.1921 1.58 × 10−10 2 × 10−16 3.71 × 10−12

> 60 0.0295 2 × 10−16 0.1923 1.60 × 10−10 2 × 10−16 3.78 × 10−11
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6. Conclusion
In this paper, the work is on identify-

ing parameters that are significant in blood
flow in human arteries through a mathe-
matical modelling approach and statistical
analysis. Two dimensional Navier Stokes
equations for fluid flow are considered to
construct the mathematical model and data
on human arteries (healthy) has been taken
from literature to simulate the model. By
analysing the data generated using statis-
tical tools, the following conclusions were
derived:

1. Density and viscosity: Viscosity of
the fluid, i.e. blood, has a signifi-
cant effect on bothWSS and flow rate
whereas the density of the blood has
a significant effect only on the volu-
metric flow rate in all age groups for
both male and female population.

2. Taper fraction, expand-
ing/contracting characteristics:
Taper fraction did not show any
significant effect on the physical
quantities of all ages and gender
whereas the expanding/contracting
parameter has significant effect
indicating that the elastic nature of
the artery or arterial stiffness param-
eter is an important parameter that
helps in understanding the abnormal
states (anomalies) of human arterial
system.

3. Frequency of oscillation: It also has
been observed that frequency of os-
cillations has a significant effect on
both WSS and flow rate in all age
groups for both male and female pop-
ulation strongly suggesting the heart
rate as another important parameter
that has to be monitored.
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