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ABSTRACT
This paper presents the application of a new powerful method named as q-homotopy

analysis transform method (q-HATM). The q-HATM is a combination of the q-homotopy
analysis scheme and the Laplace transform approach and more general than other existing
techniques. Abel’s integral equation of the second kind has been solved by using this method.
We solve some examples and plot the graphs. The numerical solutions are shown in the form
of graphs.

Keywords: Abel’s integral equation of second kind; Laplace transform; q-homotopy analy-
sis transform method

1. Introduction
Integral equations form in equations

is a mathematical tool, useful in analysis
of pure and applied sciences. There are so
many problems in science and technology
which usually are solved with the help of
ordinary and partial differential equation.
Such kind of problems can be solved more
effectively with the help of integral equa-
tion methods by first converting differential
equations in integral equations.

The term integral equation was intro-
duced by Paul Du Bois-Raymond in 1888.

Laplace used the integral transform to solve
differential equation and difference equa-
tions in 1782. In 1826, Abel solved the in-
tegral equation having the form

f (ξ) =
∫ ξ

0
(ξ − t)−αg(t)dt, (1.1)

where f is a continuous function and
f (α) = 0, 0 < α < 1. Abel’s integral equa-
tion is solved by Huygens for α = 1

2 .
In 1826, Poisson obtained the inte-

gral equation of type

g(ξ) = f (ξ) + λ
∫ ξ

0
K(ξ, t)g(t)dt, (1.2)
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where g is an unknown function and K(ξ, t)
is a kernel.

The kind of integral equation having
infinite range of integration or discontinu-
ous kernels are known as singular integral
equations, and Abel’s integral equation is
one of the simplest form of singular integral
equation. Abel’s integral equation (AIE) is
presented as

f (ξ) =
∫ ξ

0

g(t)
(ξ − t)−α dt, 0 < α < 1,

(1.3)
where g is an unknown to be determined
and the value of function f is known.

For more information, the references
can be read about a first integral equation
by Wazwaz [1]. In 1924, generalization of
Abel’s integral equation on a finite segment
was studied by Zelion [2], the different type
procedures and applications of Abel’s inte-
gral equation used byWazaz [3], Khan et al.
[4], Agarwal et al. [5], numerical solution
by Atkinson [6]. We can use fractional cal-
culus for solving Chebyshev polynomials.
This polynomial was used by Arazzadech
et al. [7, 8]. Methods for Volterra integral
equations of Abel type integral equation and
procedures for nonlinear integral equation
were presented by Wazwaz et al. [9–13]
and solution of singular integral equation of
Abel type by Panday et al. [14] and Huang
et al. [15].

Abel’s integral equation has been
solved by several authors. The q-homotopy
analysis transform method (q-HATM) [16–
18] is stronger than other computational
schemes. It is a combined form of q-
HAM [19, 20] and Laplace transform tech-
nique. For more explanation, see refer-
ences for fractional Fornbrg-Whitam equa-
tion via Laplace transform solved by Singh
et al. [21], and a comparison of HATM
and HPTM by Khan et al. [22]. Differen-

tial and integral equations have been solved
using HAM by several authors [19, 23–26]
and some differential and integral equations
were solved by using q-HATM [16–18, 20,
27–29].

2. Preliminaries
This section takes us through some

basic and useful definitions and proper-
ties of integral equations and Laplace trans-
forms. These definitions and properties will
be of use in the present paper.

Definition 2.1. A Laplace transform (LT)
is defined as

L [ f (ξ); s] = F(s) =
∫ ∞

0

e−sξ f (ξ)dξ, ξ > 0

(2.1)
provided that the limit exists and is finite.

Definition 2.2. The convolution of two
functions is defined as

f ∗ g =
∫ ξ

0
f (u)g(ξ − u) du. (2.2)

The convolution theorem for the LT is pre-
sented as

L { f ∗ g} = L
[∫ ξ

0
f (u)g(ξ − u) du

]
= F(t)G(t). (2.3)

3. A Computational Technique
In this method, we study the basic

theory and procedure of applied q-HATM
for AIE of second kind. We take a general
AIE of the form:

y(ξ) = f (ξ) −
∫ ξ

a

y(t)
(ξ − t)α dt, 0 < α < 1.

(3.1)
First, taking LT operator on Eq. (3.1), we
have

L[y(ξ)] = L[ f (ξ)] − L
[∫ ξ

a

y(t)
(ξ − t)α dt

]
.

(3.2)
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Now we define a nonlinear operator as

N [ϕ(ξ; q)] =L
[∫ ξ

a

y(t)
(ξ − t)α dt

]
+ L [ϕ(ξ; q)] − L[ f (ξ)],

(3.3)

where q ∈
[
0, 1n

]
; n ≥ 1 is an embed-

ding parameter and ϕ(ξ; q) is a real func-
tion. Now, we take a homotopy

(1 − nq)L [ϕ(ξ; q) − y0(ξ)]
= ℏqH(ξ)N [ϕ(ξ; q] , (3.4)

where, L is the Laplace operator, q ∈[
0, 1n

]
; n ≥ 1 is an embedding parameter,

H is an auxiliary function which is nonzero,
ℏ is auxiliary parameter which is negative
in almost all practical situations, y0(ξ) is an
initial approximation of y(ξ) and ϕ(ξ; q) is
an unknown function. For embedding pa-
rameter q = 0 and q = 1

n , the following
conditions hold

ϕ(ξ; 0) = y0(ξ) and ϕ
(
ξ;

1

n

)
= y(ξ).

(3.5)
Consequently, as q increases from 0 to 1

n ,
the solution ϕ(ξ; q) transforms from an ini-
tial value of y0(ξ) to the final solution y(ξ).
With the help of Taylor’s theorem about q,
function ϕ(ξ; q) can also be written in series
form as below. We have

ϕ(ξ; q) = y0(ξ) +
∞∑

m=1

ym(ξ)qm, (3.6)

where

ym (ξ) = 1��m ∂mϕ (ξ; q)
∂qm

��
q=0. (3.7)

If auxiliary parameter ℏ, the initial guess
y0(ξ) and asymptotic parameter n are prop-
erly chosen, the series (3.7) converges at
q = 1

n . Then we have

y(ξ) = y0(ξ) +
∞∑

m=1

[
ym(ξ)

(
1

n

)m]
. (3.8)

Defining the vector
−→y m = {y0(ξ), y1(ξ), ..., ym(ξ)} (3.9)

and differentiating the deformation Eq.
(3.3) m times with respect to q and then
dividing by

��m and finally setting q = 0,
we can construct the m-th order deforma-
tion equation as given below

L [ym(ξ) − kmym−1(ξ)] = ℏH(ξ)Rm

[−→y m−1
]
,

(3.10)
where

Rm

[−→y m−1
]
=

1��m − 1

∂m−1N [ϕ (ξ; q)]
∂qm−1

��
q=0

(3.11)
and

km =
{
0; m ≤ 1
n; m > 1

. (3.12)

It is worth noting that in q-HATM we have
freedom to take the initial guess y0 (ξ), aux-
iliary parameter ℏ which is nonzero and the
asymptotic parameter n. Because of the ex-
istence of the factor

(
1
n

)m in the series solu-
tion obtained in Eq.(3.8), the possibility ex-
ists for themethod to be faster thanwhat can
be found from the standard HATM. It can
be noted here that for n = 1 in Eq. (3.8), q-
HATM converts into standard HATM. The
auxiliary parameter ℏ really plays a very
significant role in controlling the conver-
gence region and also convergence rate to
the solution.

4. Numerical examples
Here some examples are presented to

verify and validate the present work and
some graphs have been plotted between ex-
act and approximate solution for different
values of ℏ. Examples are given as follows:

Example 4.1. By considering AIE of sec-
ond kind in the following manner,

y(ξ) = ξ+4
3
ξ

3
2−

∫ ξ

a

y(t)
√
ξ − t

dt , 0 ≤ ξ ≤ 1.

(4.1)
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An exact solution of the given AIE may be
taken as y(ξ) = ξ.

Now, by taking Laplace transform on
Eq. (4.1), it leads to the following result:

L[y(ξ)] = L
[
ξ +

4

3
ξ

3
2

]
−
√
π

s
L[y(ξ)].

(4.2)
We assume the nonlinear operator as

N[ϕ (ξ; q)] =
√
π

s
L[ϕ (ξ; q)] + L[ϕ (ξ; q)]

− L
[
ξ +

4

3
ξ

3
2

]
. (4.3)

Using the above technique of projected nu-
merical approach, the m-th order deforma-
tion equation for H(ξ) = 1 can be con-
structed as

L [ym(ξ) − kmym−1(ξ)] = ℏRm

[−→y m−1
]
,

(4.4)
where

Rm

[−→y m−1
]
=

√
π

s
L[ym−1(ξ)] + L[ym−1(ξ)]

−
(
1 − km

n

)
L
[
ξ +

4

3
ξ

3
2

]
(4.5)

Now, taking inverse LT on Eq. (4.4), we
have

ym(ξ) = kmym−1(ξ)+ ℏL−1 [Rm

{−→y m−1
}]
.

(4.6)
Considering the initial approximation

y0(ξ) = ξ +
4

3
ξ

3
2

and iterative formula (4.6), we obtain

y0(ξ) = ξ +
4

3
ξ

3
2 , (4.7)

y1(ξ) = ℏ
(
4

3
ξ

3
2 +
π

2
ξ2
)
, (4.8)

y2(ξ) =
4

3
ℏ(n + ℏ)ξ 3

2 +
π

2
ℏ(n + 2ℏ)ξ2

+
8π

15
ℏ2ξ

5
2 , (4.9)

y3(ξ) =
4

3
ℏ(n + ℏ)2ξ 3

2 +
π

2
ℏ(n + ℏ)(n + 2ℏ)ξ2

+
4π

15
ℏ2(7n + 12ℏ)ξ 5

2 +
π2

2
ℏ3ξ3.

(4.10)

Proceeding in the same manner, we can
also compute the rest of the components of
ym(ξ) for m ≥ 4. The solution of the given
AIE by using q-HATM is expressed in se-
ries form as follows:

y(ξ) = y0(ξ) +
∞∑

m=1

[
ym(ξ)

(
1

n

)m]
. Taking, n = 1 and ℏ = −1, we obtain

y(ξ) = ξ + 4

5
ξ3 + ... ; 0 ≤ ξ ≤ 1. (4.11)

In the standard case, n = 1 and ℏ = −1, the
series solution converge to the exact solu-
tion y(ξ) = ξ as m → ∞. The comparative
analysis between q-HATM solution at n = 1
and and exact solution is demonstrated in
Fig. 1. It can be easily noticed from Fig. 1
that the q-HATM solution is in agreement
with the exact solution of AIE.

Example 4.2. In this case, let us consider
AIE of second kind as follows:

y(ξ) = ξ2+16
15
ξ

5
2−

∫ x

a

y(t)
√
ξ − t

dt , 0 ≤ ξ ≤ 1.

(4.12)
An exact solution of the given AIE is y(ξ) =
ξ2. Taking the Laplace transform of both
sides of Eq. (4.12), gives the following re-
sult:

L [y(ξ)] = L
[
ξ2 +

16

15
ξ

5
2

]
−
√
π

s
L[ym(ξ)].

(4.13)
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Fig. 1. Comparison between q-HATM solution
and exact solution.

We assume the nonlinear operator as

N [ϕ (ξ; q)] =
√
π

s
L[ϕ (ξ; q)] + L[ϕ (ξ; q)]

− L
[
ξ2 +

16

15
ξ

5
2

]
. (4.14)

By using the above technique of suggested
numerical scheme, the m-th order deforma-
tion equation for H(ξ) = 1 can be con-
structed in the following manner:

L [ym (ξ) − kmym−1 (ξ)] = ℏRm

(
®ym−1

)
,

(4.15)
where

Rm

[−→y m−1
]
=

√
π

s
L[ym−1(ξ)] + L[ym−1(ξ)]

−
(
1 − km

n

)
L
[
ξ2 +

16

15
ξ

5
2

]
.

(4.16)

Now, taking inverse Laplace transform on
Eq. (4.4), we have

ym (ξ) = kmym−1 (ξ) + ℏL−1 [Rm

(
®ym−1

) ]
.

(4.17)

Considering the initial approximation
y0(ξ) = ξ2 + 16

15ξ
5
2 and iterative formula

(4.17), we obtain

y0(ξ) = ξ2 +
16

15
ξ

5
2 , (4.18)

y1(ξ) = ℏ
(
16

15
ξ

5
2 +
π

3
ξ3
)
, (4.19)

y2(ξ) =
16

15
ℏ(n + ℏ)ξ 5

2 +
π

3
ℏ(n + 2ℏ)ξ3

+
32π

105
ℏ2ξ

7
2 , (4.20)

y3(ξ) =
16

15
ℏ(n + ℏ)2ξ 5

2 +
π

3
ℏ(n + ℏ)(n + 3ℏ)ξ3

+
16π

105
ℏ2(9n + 11ℏ)ξ 7

2 +
π2

12
ℏ3ξ4.

(4.21)

Proceeding in the same manner, we can
also compute the rest of the components of
ym(ξ) for m ≥ 4. The solution of given AIE
by using q-HATM can be expressed in se-
ries form as follows:

y(ξ) = y0(ξ) +
∞∑

m=1

[
ym(ξ)

(
1

n

)m]
.

Taking, n = 1 and ℏ = −1 , we obtain

y(ξ) = ξ2 − π
2

12
ξ4 + ...; 0 ≤ ξ ≤ 1. (4.22)

In the standard case, n = 1 and ℏ = −1, the
series solution converge to the exact solu-
tion y(ξ) = ξ2 as m → ∞. The compar-
ative examination between q-HATM solu-
tion at n = 1 and ℏ = −1 exact solution is
displayed in Fig. 2. It can be easily seen
from Fig. 2 that the q-HATM solution is in
agreement with the exact solution.

Example 4.3. Here we would consider the
sameAIEwhich is of second kind in the fol-
lowing way:

y(ξ) = 1
√
ξ
+π−

∫ ξ

0

y(t)
√
ξ − t

dt, 0 ≤ ξ ≤ 1.

(4.23)
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Fig. 2. Comparison between q-HATM solution
and exact solution.

And an exact solution of the considered in-
tegral equation is y(ξ) = 1√

ξ
. Taking LT of

both sides of Eq. (4.3.1), gives the follow-
ing result:

L [y(ξ)] = L
[
1
√
ξ
+ π

]
−
√
π

s
L [y(ξ)] .

(4.24)
We assume the nonlinear operator as

N [ϕ (ξ; q)] =
√
π

s
L[ϕ (ξ; q)] + L[ϕ (ξ; q)]

− L
[
1
√
ξ
+ π

]
. (4.25)

Using the above technique of projected nu-
merical approach, the m-th order deforma-
tion equation for H(ξ) = 1 can be con-
structed as

L [ym (ξ) − kmym−1 (ξ)] = ℏRm

(
®ym−1

)
,

(4.26)
where

Rm

[−→y m−1
]
=

√
π

s
L[ym−1(ξ)] + L[ym−1(ξ)]

−
(
1 − km

n

)
L
[
1
√
ξ
+ π

]
.

(4.27)

Now, taking inverse LT on Eq. (4.26), we
have

ym (ξ) = kmym−1 (ξ) + ℏL−1 [Rm

(
®ym−1

) ]
.

(4.28)
Considering the initial approximation
y0(ξ) = 1√

ξ
+ π and iterative formula

(4.28), we obtain

y0(ξ) =
1
√
ξ
+ π, (4.29)

y1(ξ) = πℏ(1 + 2ξ
1
2 ), (4.30)

y2(ξ) = πℏ(n+ℏ)+2πℏ(n+2ℏ)ξ
1
2 + π2ℏ2ξ,

(4.31)

y3(ξ) = πℏ(n + ℏ)2 + 2πℏ(n + ℏ)(n + 3ℏ)ξ
1
2

+ π2ℏ2(2n + 3ℏ)ξ + 4π2

3
ℏ3ξ

3
2 .

(4.32)

Proceeding in this manner, we can also
compute the rest of the components of
ym(ξ) for m ≥ 4. The solution of the con-
sidered integral equation by q-HATM is ex-
pressed in the following series form as

y(ξ) = y0(ξ) +
∞∑

m=1

[
ym(ξ)

(
1

n

)m]
.

Taking, n = 1 and ℏ = −1, we obtain,

y(ξ) = 1
√
ξ
− 4π2

3
ξ3 + ...; 0 ≤ ξ ≤ 1.

(4.33)
In standard case n = 1 and ℏ = −1, the se-
ries solution converge to the exact solution
y(ξ) = 1√

ξ
as m → ∞. The comparative

analysis between the q-HATM solution at
n = 1 and ℏ = −1 and the exact solution is
presented in Fig. 3. It can be easily noticed
from Fig. 3 that the q-HATM solution is in
agreement with exact solution.
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Fig. 3. Comparison between q-HATM solution
and exact solution.

Example 4.4. Again consider the following
AIE of second kind,

y(ξ) = 2
√
ξ −

∫ ξ

0

y(t)
√
ξ − t

dt, 0 ≤ ξ ≤ 1.

(4.34)
We get to an exact solution of the equation
as y(ξ) = 1 − eπξer f c

(√
πξ

)
. Taking LT

of both sides of Eq. (4.34), produces the
following result:

L [y(ξ)] = L
[
2
√
ξ
]
−
√
π

s
L [y(ξ)] .

(4.35)
We assume the nonlinear operator as

N [ϕ (ξ; q)] =
√
π

s
L[ϕ (ξ; q)]

+ L[ϕ (ξ; q)] − L
[
2
√
ξ
]
.

(4.36)

Using the projected numerical technique
given above, the m-th order deformation
equation for H(ξ) = 1 can be constructed
as

L [y0(ξ) − kmym−1(ξ)] = ℏRm

(−→y m−1

)
,

(4.37)

where

Rm

[−→y m−1
]
=

√
π

s
L[ym−1(ξ)] + L[ym−1(ξ)]

−
(
1 − km

n

)
L[2

√
ξ].

(4.38)

Now, taking the inverse Laplace transform
for Eq. (4.37), we have

ym (ξ) = kmym−1 (ξ) + ℏL−1 [Rm

(
®ym−1

) ]
.

(4.39)
Consider the initial approximation y0(ξ) =
2
√
ξ and iterative formula (4.39), we obtain

y0(ξ) = 2
√
ξ, (4.40)

y1(ξ) = πℏξ, (4.41)

y2(ξ) = πℏ(n + ℏ)ξ +
4π

3
ℏ2ξ

3
2 , (4.42)

y3(ξ) =πℏ(n + ℏ)2ξ +
8π

3
ℏ2(n + ℏ)ξ 3

2

+
π2

2
ℏ3ξ2, (4.43)

y4(ξ) =πℏ(n + ℏ)3ξ + 4πℏ2(n + ℏ)2ξ
3
2

+
3π2

2
ℏ3(n + ℏ)ξ2 + 8π2

15
ℏ5ξ

5
2 .

(4.44)

Proceeding in this manner, we can also
compute the rest of the components of
ym (ξ) for m ≥ 5. The solution of given
AIE by q-HATM is expressed in the subse-
quent series form as

y(ξ) = y0(ξ) +
∞∑

m=1

[
ym(ξ)

(
1

n

)m]
.

Taking, n = 1 and ℏ = −1, we obtain,

y(ξ) = 2
√
ξ − πξ + 4π

3
ξ

3
2 − π

2

2
ξ2
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− 8π2

15
ξ

5
2 + ...; 0 ≤ ξ ≤ 1.

(4.45)

Or

y(ξ) =
∞∑

m=1

(−1)n−1(πξ)
n
2

Γ
(
1 + n

2

) = 1−E 1
2

(
−
√
πξ

)
,

where

Eα(z) =
∞∑
n=0

zn

Γ(αn + 1)

is a well-known Mittag-Leffler function.
So,

y(ξ) = 1 − eπξer f c
(√
πξ

)
. (4.46)

In the standard case, n = 1 and ℏ = −1, the
series solution converges to the exact solu-
tion y(ξ) = 1 − eπξer f c

(√
πξ

)
as m →

∞. The comparative study between the q-
HATM solution at n = 1 and ℏ = −1 and
the exact solution is exhibited in Fig. 4. It
can be easily seen from 4 that the q-HATM
solution is in agreement with the exact so-
lution.

Fig. 4. Comparison between q-HATM solution
and exact solution.

5. Conclusions
In the analytical view of this paper,

the q-HATM is successfully applied on the
second kind of Abel’s integral equation.
The q-HATM provides a large convergence
region with great efficiency and positive-
ness. We obtain the analytical result of the
AIEs in the form of series solution which is
computed very easily. In the fourth section,
four examples have been given to investi-
gate and demonstrate the versatility of the
newly obtained approaches. By comparison
with other methods, q-HATM is very pow-
erful and a stronger method than others and
we see more advantages to this method. In
this method we can choose the value of aux-
iliary linear operator L, auxiliary function
H(ξ) and initial function y0(ξ) with free-
dom. Specialization of this method lies in
the fact that the obtained solutions having
auxiliary parameter and asymptotic param-
eter n provide an easy way to adjust and
control the convergence region and the rate
of convergence of the derived series solu-
tion.
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