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ABSTRACT
The intention of the present study is to investigate the cross-diffusion effect on MHD

fluid flow passing through a vertical channel. Navier slip boundary conditions are applied
by assuming that the channel is filled with a porous medium. The effect of considered pa-
rameters is also studied on heat as well as on mass transfer. With the help of an optimal
homotopic procedure, the transformed governing equations are evaluated. The quantitative
estimates are contributed through graphs and physical quantities are presented through a ta-
ble.
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1. Introduction
A porous medium is a substance

which has pores. Numerous natural sub-
stances such as rocks, soil, wood, cork can
be considered as porous media. The porous
media is used in various science, engineer-
ing and biomedical applications such as
soil and rock mechanics, petroleum tech-
nology, dying process, material science,
human lungs, small bold capillaries, etc.
Porous medium describes the two prompt

properties, namely porosity and permeabil-
ity. Porosity evaluates the amount of fluid
tackled by the material while permeabil-
ity measures quantitatively the ability of
the porous medium to permit fluid flow.
Magnetohydrodynamic fluid flow through
porous medium has many significant roles
in pure science, engineering, technological,
and biomedical fields such as MHD power
generators, MHD accelerators, blood flow
measurements, electrolytes, ionized gases,
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traveling waves tubes, metal-working pro-
cesses, propulsion units, control fusion re-
search, etc. In boundary layer flow prob-
lems, MHD controls the force and heat
exchanged by the surface. Srinivas and
Muthuraj [1] debilitated the homotopy anal-
ysis method to find an approximate solu-
tion for the MHD flow of viscous incom-
pressible fluid with thermal radiation and
porosity effects. Raftari and Vajravelu [2]
investigated the magnetohydrodynamic vis-
coelastic fluid characteristic through a wall.
Heat transfer for micropolar fluid embed-
ded in a porous medium was explored by
Xinhui et al. [3]. The homotopy pertur-
bation method used to discuss the influ-
ence of thermal radiation, chemical reaction
and inclined magnetic field over a vertical
channel was scrutinized by Kothandapani
and Prakash [4]. Ellahi et al. [5] evalu-
ated magnetohydrodynamic flow of Power-
Eyring fluid through slip conditions. MHD
flow over an exponentially stretching sur-
face embedded by porous medium and ther-
mal radiation was elucidated by Sharma and
Gupta [6]. Kumar et al. [7] discussed en-
tropy generation of magnetohydrodynamic
flow over a rotating channel with the poros-
ity effect. Oscillatory flow with the uni-
form magnetic field and viscous dissipation
over a channel was reviewed by Selvi and
Muthuraj [8]. Farooq et al. [9] investi-
gated the transverse magnetic field varia-
tion over a non-uniform channel with slip
condition. Kumar et al. [10] examined the
effects of a constant heat source on frac-
tional exothermic reactions model with ex-
ponential, power and Mittag-Leffler laws in
a porous medium. The boundary layer flow
for viscous fluid over a flat plate was eval-
uated by Sushila et al. [11].

In recent years, the analysis of Du-
four and Soret effects has had great signif-
icance and attracted various scientists and

researchers due to its applications in engi-
neering, industry and geosciences such as
hydrology, petrology, turbine blades, foam
combustion, gas-particle trajectories, etc. It
is observed that the flux of heat caused due
to the gradient of composition is known
as diffusion-thermo or Dufour effect. The
mass flux that occurs due to temperature
gradient is called thermal-diffusion or Soret
effect. In mass and heat transfer processes,
cross-diffusion effects are often neglected
due to their small order of magnitude as
compared with Fick’s and Fourier’s law.
Numerical investigation of non-Newtonian
fluid flow over a vertical channel with Hall
effect and Soret & Dufour effects was re-
ported by Reddy et al. [12]. Mahmoud
and Megahed [13] reviewed the thermal-
diffusion and diffusion-thermo effects on
fluid flow with mixed radiation and ther-
mal radiation properties. Kaladhar and Ko-
muraiah [14] published their work on fluid
flow with the effect of Soret, Dufour, and
Navier slip conditions. Ahmed et al. [15]
presented an analysis of the Dufour and
Soret effects on MHD free convective vis-
cous fluid flow through a channel.

A mathematical formulation of fluid
flow problems can be derived from Navier-
Stokes equations which are non-linear dif-
ferential equations in nature. Solutions of
these differential equations can be obtained
by numerical or analytical methods such as
homotopy perturbation method (HPM), ho-
motopy analysis method (HAM), homotopy
analysis transform method (HATM), Ado-
mian decomposition scheme, variational it-
eration approach, Laplace decomposition
scheme, Runge-Kutta method, shooting
method, etc. Goswami et al. [16, 17]
worked on HPSTM to find the exact solu-
tion of regularized long wave equations in
cold plasma. Kumar et al. [18] studied the
HATM to determine the solution of nonlin-
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ear wave-like differential equations. Singh
et al. [19] investigated the Jeffery-Hamel
fluid flow through non-parallel walls using
the homotopy analysis transform method.
In the present problem, we are using the
OHAM method. This method was first
initiated by Liao [20, 21]. In the present
problem, Mathematica based BVPh 2.0 is
used to elucidate the solution of trans-
formed nonlinear coupled ordinary differ-
ential equations. Many scientists and re-
searchers have worked on the problems re-
lated to channels because they have sub-
stantial utilization in science and engineer-
ing. Fluid low over a deformable channel
with the presence of heat transfer has been
examined by Asghar et al. [22]. The im-
pact of slip boundary on the non-Newtonian
fluid through a channel was studied by El-
lahi [23]. Ng [24] discussed the fluid flow
with slip boundary over a permeable chan-
nel. Sharma and Gupta [25] discussed
the magnetohydrodynamic flow over an in-
clined surface bounded by the convective
boundaries. Terekhov et al. [26] numeri-
cally investigated the heat transfer proper-
ties over vertical isothermal plates. Joule
heating and thermal radiation impact on
MHD flow of nanofluid over a vertical
channel was studied by Srinivasacharya and
Shafeeurrahman [27].

The main theme of the current re-
search is to elucidate the effects of cross-
diffusion and chemical reaction on the
MHD fluid flow by assuming both heat and
mass transfer characteristics through an up-
standing channel that is filled with porous
medium and Navier slip conditions. The
transformed system of equations is then
evaluated by the optimal homotopy analy-
sis method (OHAM).

2. Mathematical Modelling
Consider an incompressible 2-D

electrically conducting flow through an
uplifting channel. Heat and mass transfer
characteristics are considered through the
Fourier’s and Fick’s Law of thermody-
namics. Flow is induced by the Navier
slip conditions by implementing on the
boundary of the governing flow problem.
A constant magnetic field is implemented

Fig. 1. Physical model.

normal to the plates; moreover, the induced
magnetic field is assumed to be negligible.
The representation of the problem is shown
in Fig. 1. Using the above-mentioned
assumption the governing equations are:

vy = 0 ⇒ v = v0 = constant; (2.1)

v0ρ
∂u
∂y
=ρg {βT (T − T1) + βC (C − C1)}

+ µ
∂2u
∂y2

− σB2
0u − µ

κ
u ; (2.2)

ρCpv0
∂T
∂y
=K f
∂2T
∂y2
+ µ

(
∂u
∂y

)2
+
ρDKT

Cs

∂2C
∂y2
+
µ

κ
u2; (2.3)
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v0
∂C
∂y
=D
∂2C
∂y2
+

DKT

Tm

∂2T
∂y2

− K1 (C − C1) ;

(2.4)

with the boundary conditions

u = γ1
∂u
∂y
, T = T1, C = C1 at y = −d,

u = γ2
∂u
∂y
, T = T2, C = C2 at y = d.

(2.5)

Non-dimensional variables are introduced
as

η =
y

d
, u = uo f , θ =

T − T1
T2 − T1

, φ =
C − C1

C2 − C1
.

(2.6)
Using these non-dimensional parameters in
equations (2.2)-(2.5), we get the governing
dimensionless equations as

f ′′ − R f ′ + λ (θ + βφ) −
(
M2 + Kp

)
f = 0;

(2.7)

θ ′′ − RPr θ ′ + Pr Ec ( f ′)2 + Pr D f φ
′′

+ Pr EcKp f 2 = 0; (2.8)

φ′′ − RScφ′ + ScSrθ ′′ − KScφ = 0; (2.9)

with

η = −1 : f − β1 f ′ = θ = φ = 0;

η = 1 : f − β2 f ′ = 0, θ = φ = 1.
(2.10)

Where the prime denotes differenti-

ation with respect to η, R =
ρv0d
µ

represents suction/injection parameter,

Re =
ρu0d
µ

indicates Reynolds num-

ber, GrT =
gβT (T2 − T1) d3

ν2
stands

for temperature Grashoff number,

GrC =
gβC (C2 − C1) d3

ν2
stands for mass

Grashoff number, β =
GrC
GrT

is the buoyancy

ratio, λ =
GrT
Re

is the mixed convection

parameter, M2 =
σB2

0d2

µ
indicates mag-

netic parameter, Kp =
d2

κ
implies porosity

parameter, Pr =
µCp

K f
signifies Prandtl

number, Ec =
u20

Cp (T2 − T1)
symbolizes

Eckert number, D f =
DKT (C2 − C1)
νCsCp (T2 − T1)

is for Dufour number, Sc =
ν

D
displays

Schmidt number, Sr =
DKT (T2 − T1)
νTm (C2 − C1)

shows thermo-diffusion or Soret parame-

ter, K =
K1d2

ν
represents chemical reaction

parameter, β1 =
γ1
d

and β2 =
γ2
d

illustrates
the slip parameters. At the vertical wall
the skin friction coefficients

(
Cf

)
, Nusselt

number (Nu) and Sherwood number (Sh)
are given by:

ReCf1 = f ′ (−1) , ReCf2 = f ′ (1) ;
Nu1,2 = −θ ′ (η)|η=−1,1,
Sh1,2 = −φ′ (η)|η=−1,1, (2.11)

where

Cf =
τw

ρu20
, Nu =

qwd
K f (T2 − T1)

,

Sh =
qmd

D (C2 − C1)
; (2.12)

and

τw = µ
∂u
∂y

����
y=±d
, qw = −K f

∂T
∂y

����
y=±d
,

qm = −D
∂C
∂y

����
y=±d
. (2.13)

3. Methodology
For the OHAM calculation, we guess

an accurate analytical approximation of ve-
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locity f (η), temperature θ (η), and mass
φ (η) satisfying boundary condition equa-
tion (2.10) as follows:

f0 (η) = 0, θ0 (η) =
1 + η

2
, φ0 (η) =

1 + η

2
;

(3.1)
and the auxiliary linear operators for veloc-
ity, temperature and mass profiles are

L f =
∂2

∂η2
, Lθ =

∂2

∂η2
, Lφ =

∂2

∂η2
. (3.2)

Introducing zeroth-order deformations as

(1 − p) L f [ f (η; p) − f0 (η)]
= ph f Nf [ f (η; p) , θ (η; p) , φ (η; p)] ;

(3.3)

(1 − p) Lθ [θ (η; p) − θ0 (η)]
= phθNθ [ f (η; p) , θ (η; p) , φ (η; p)] ;

(3.4)

(1 − p) Lφ [φ (η; p) − φ0 (η)]
= phφNφ [θ (η; p) , φ (η; p)] ; (3.5)

subject to the boundary conditions

f (−1; p) − β1 f
′ (−1; p) = 0, θ (−1; p) = 0,

φ (−1; p) = 0, f (1; p) − β2 f
′ (1; p) = 0,

θ (1; p) = 1, φ (1; p) = 1, (3.6)

where p ∈ [0, 1] is the embedding param-
eter, h f , hθ , and hφ indicate non-zero aux-
iliary parameters, Nf , Nθ , and Nφ are the
nonlinear operators denoted as:

Nf [ f (η; p) , θ (η; p) , φ (η; p)]

=
∂2 f (η; p)
∂η2

− R
∂ f (η; p)
∂η

+ λ (θ (η; p) + βφ (η; p))

−
(
M2 + Kp

)
f (η; p) ; (3.7)

Nθ [ f (η; p) , θ (η; p) , φ (η; p)]

=
∂2θ (η; p)
∂η2

− RPr
∂θ (η; p)
∂η

+ Pr Ec
(
∂ f (η; p)
∂η

)2
+ Pr D f

∂2φ (η; p)
∂η2

+ Pr EcKp( f (η; p))2; (3.8)

Nφ [θ (η; p) , φ (η; p)]

=
∂2φ (η; p)
∂η2

− RSc
∂φ (η; p)
∂η

+ ScSr
∂2θ (η; p)
∂η2

− KScφ (η; p) .

(3.9)

The mth-order deformation equations are
given as

L f [ fm (η) − χm fm−1 (η)] = h f R f
m (η) ;

(3.10)
Lθ [θm (η) − χmθm−1 (η)] = hθRθ

m (η) ;
(3.11)

Lφ [φm (η) − χmφm−1 (η)] = hφRφ
m (η) ;

(3.12)
and boundary conditions are

fm (−1) = 0, θm (−1) = 0, φm (−1) = 0,

fm (1) = 0, θm (1) = 0, φm (1) = 0.
(3.13)

The nonlinear operators are defined as

R f
m (η) = f ′′m−1 − R f ′m−1 + λ (θm−1 + βφm−1)

−
(
M2 + Kp

)
fm−1; (3.14)

Rθ
m (η) = θ ′′m−1 − RPr θ ′m−1

+ Pr Ec
m−1∑
n=0

f ′m−1−n f ′n + Pr D f φ
′′
m−1

+ Pr EcKp

m−1∑
n=0

fm−1−n fn; (3.15)
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Rφ
m (η) = φ′′m−1 − RScφ′m−1 + ScSrθ ′′m−1

− KScφm−1; (3.16)

In which

χm =

{
0, m ≤ 1,
1, m > 1.

(3.17)

For p = 0 and p = 1, we have

f (η; 0) = f0 (η) , θ (η; 0) = θ0 (η) ,
φ (η; 0) = φ0 (η) ,
f (η; 1) = f (η) , θ (η; 1) = θ (η) ,
φ (η; 1) = φ (η) . (3.18)

We have to assume the initial guess approx-
imations f0 (η), θ0 (η), and φ0 (η), the auxil-
iary parameters h f , hθ , and hφ , and the lin-
ear operators L f , Lθ , and Lφ to be selected
such that at every point p ∈ [0, 1] equa-
tions (3.3) - (3.5) have a solution. By using
Taylor’s series and equation (3.18); f (η; p),
θ (η; p), and φ (η; p) can be presented as

f (η; p) = f0 (η) +
∞∑

m=1

fm (η)pm; (3.19)

θ (η; p) = θ0 (η) +
∞∑

m=1

θm (η)pm; (3.20)

φ (η; p) = φ0 (η) +
∞∑

m=1

φm (η)pm. (3.21)

It is also assumed that the mth-order deriva-
tive of f (η), θ (η), and φ (η) with respect to
p exist and are given by

fm (η) = 1

m!

∂m f (η; p)
∂pm

����
p=0

; (3.22)

θm (η) = 1

m!

∂mθ (η; p)
∂pm

����
p=0

; (3.23)

φm (η) = 1

m!

∂mφ (η; p)
∂pm

����
p=0

. (3.24)

The auxiliary parameters are chosen prop-
erly such that the series (3.22) - (3.24) are
convergent at p = 1. Therefore, by putting
Eq. (3.18) into (3.22)-(3.24) at p = 1 we
get

f (η) = f0 (η) +
∞∑

m=1

fm (η); (3.25)

θ (η) = θ0 (η) +
∞∑

m=1

θm (η); (3.26)

φ (η) = φ0 (η) +
∞∑

m=1

φm (η). (3.27)

Now, the basic solution of Eqs. (3.10)-
(3.12) can be written as

fm (η) = f ∗m (η) + c1 + c2η; (3.28)

θm (η) = θ∗m (η) + c3 + c4η; (3.29)
φm (η) = φ∗m (η) + c5 + c6η. (3.30)

Here f ∗m (η), θ∗m (η) and φ∗m (η) are special
solutions.

4. Results and Discussions
We analyzed the influence of various

parameters that arise in the study of veloc-
ity, temperature, and concentration distri-
butions. The OHAM technique was applied
for the numerical solution of ordinary dif-
ferential equations. The solutions are ob-
tained graphically and the presence of these
parameters on physical quantities is shown
through tables. The profiles of velocity
f (η), temperature θ (η), and concentration
φ (η) are calculated and displayed via plots
in Fig. 2 to 10 with dissimilar values of β1,
β2, M , Kp, D f , K and Sr when the other
parameters are at uniform value. By using
OHAM, numerical values of average square
residual errors are calculated at different or-
ders and indicated in Table 1. Values of op-
timal convergence control parameter at var-
ious orders of estimations are shown in Ta-
ble 2. The convergence of obtained series
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solution is presented in Table 3. The effect
of distinct values of various parameters β1,
β2, M , Kp, D f , K and Sr on skin friction
coefficient, Nusselt number and Sherwood
number are analyzed and displayed in Table
4. Fig. 2 represents the effect of slip flow
variable β1 on f (η). It is observed from the
figure that expansion in the slip flow pa-
rameter, increases fluid velocity f (η) be-
cause the slip parameter reduces the fric-
tional forces between the fluid layers and,
as a result, fluid velocity increases. Vary-
ing the value of slip flow variable β2 on
f (η) can be observed in Fig. 3. It is clearly
shown that with an increment in slip param-
eter β2, fluid velocity decreases and slip ve-
locity increases. The effect of the magnetic
parameter on fluid velocity can be seen in
Fig. 4. It shows that the flow velocity de-
creases with enhancement in the magnetic
parameter because in the fluid, the avail-
ability of the magnetic field induces Lorentz
force, which exerts a retarding force on the
fluid velocity. This force causes a dragging
effect on the flow, hence the velocity de-
creases. This retarding force can control
the fluid’s velocity which is very important
in MHD power generators and electromag-
netic coating of materials. Fig. 5 shows the
effect of increasing the value of the porosity
parameter on velocity distribution. It is no-
ticed that the velocity profile decreases with
the increase of the porosity parameter be-
cause the presence of the porosity parame-
ter offers higher restriction to the fluid flow.

Fig. 6 illustrates the influence of Du-
four number on the temperature profile. An
increment in Dufour number increases the
thermal boundary layer thickness and the
temperature distribution. A higher concen-
tration gradient occurs due to larger values
of Dufour number. Energy transfer takes
place at a higher rate and, therefore, the
temperature increases. The influence of

Dufour number on the concentration profile
is seem in Fig. 7. It is evident that concen-
tration decreases with a rise in Dufour num-
ber. The temperature difference between
the fluid and the wall decreases with an in-
crement in Dufour number, causing more
heat to be transferred to the fluid which af-
fects the fluid’s viscosity. Hence, the con-
centration profile decreases.

Fig. 8 illustrates the influence of var-
ious values of the chemical reaction param-
eter on the concentration distribution. It
indicates that an enhancement in the value
of the chemical reaction parameter causes a
decrement in the concentration of the fluid
because of a fall in chemical molecular dif-
fusivity.

The variation of the Soret number
on temperature profile is depicted in Fig.
9. The temperature and thermal bound-
ary layer thickness decrease as the Soret
number increases. The thermal diffusion of
the material decreases when the Soret num-
ber increases and, thus, the temperature de-
creases. The effect of the Soret number on
concentration is analyzed in Fig. 10. Here
the concentration of the fluid rises for grow-
ing values of Soret number. In the Soret
phenomenon, temperature gradient affected
the concentration distribution. So, higher
values of the Soret number result in higher
convective flow and, hence, concentration
increases.

Table 1 shows the values of average
square residual error up to 30th order for ve-
locity, temperature and mass profiles. It is
noticed that the errors are continuously de-
creasing as we increase the order. Table 2
represents the optimal convergence control
parameter of various orders.

Table 3 shows that for a convergent
solution, the 40th order of approximations
is sufficient for the analysis under consid-
eration. It gives velocity, temperature and
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mass profiles at η = 0.
Table 4 explores the effects of vari-

ous dimensionless parameters, such as ve-
locity slip parameter, magnetic parameter,
porosity parameter, Dufour number, Soret
number and chemical reaction parameter
on skin friction coefficient, Nusselt number
and Sherwood number at injection and suc-
tion walls in the channel.

Fig. 2. Variation in f (η) with β1.

Fig. 3. Variation in f (η) with β2.

Fig. 4. Variation in f (η) with M .

Fig. 5. Variation in f (η) with Kp .

Fig. 6. Variation in θ (η) with D f .

Fig. 7. Variation in φ (η) with D f .

5. Conclusions
The relevant findings are summa-

rized as:

• Flow velocity rises due to increment
in slip parameter β1, while an incre-
ment in β2 causes the flow velocity to
reduce.
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Fig. 8. Variation in φ (η) with K .

Fig. 9. Variation in θ (η) with Sr .

Fig. 10. Variation in φ (η) with Sr .

• The fluid velocity drops as we in-
crease the intensity of the magnetic
parameter and porosity parameter.

• Temperature increases while the con-
centration profile decreases as Du-
four parameter increases.

Table 1. Numerical values of average square
residual errors.

Order of

E f ,m Eθ,m Eφ,mapproxi-

mations

4 8.925 × 10−2 2.242 × 10−2 7.462 × 10−3

8 4.165 × 10−4 1.974 × 10−4 6.945 × 10−5

12 5.698 × 10−6 1.477 × 10−6 3.194 × 10−7

16 5.443 × 10−8 1.627 × 10−8 1.545 × 10−9

20 9.413 × 10−10 1.761 × 10−10 1.657 × 10−11

24 1.207 × 10−11 2.198 × 10−12 1.192 × 10−13

28 1.950 × 10−13 2.844 × 10−14 1.268 × 10−15

30 3.263 × 10−14 2.419 × 10−15 9.029 × 10−17

Table 2. Optimal values of h f , hθ , and hφ for
velocity, temperature and mass field.

Order h f hθ hφ (Em)Total

2 -0.5723 -0.6899 -0.9831 3.4782

4 -0.6521 -0.5553 -0.4719 1.5378 × 10−1

6 -0.7313 -0.8041 -0.7760 3.8231 × 10−3

8 -0.7162 -0.8411 -0.5869 2.8743 × 10−4

10 -0.6877 -0.8606 -0.8549 1.9020 × 10−5

Table 3. Convergence of OHAM results for
various order of estimates.

Order of

f (0) θ(0) φ(0)approxi-

mations

5 0.54332646 0.17601286 0.38118324

10 0.50702556 0.16334275 0.38370966

15 0.50568563 0.16302570 0.38404566

20 0.50570518 0.16304248 0.38405935

30 0.50571253 0.16304535 0.38405901

40 0.50571254 0.16304536 0.38405901

50 0.50571254 0.16304536 0.38405901

• Due to the increment in chemical
reaction parameter the concentration
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Table 4. Effects of skin friction coefficient, Nusselt number and Sherwood number for different
values of β1, β2, Sr , D f , K , M and Kp .

β1 β2 M Kp D f Sr K f ′ (−1) f ′ (1) Nu−
1 Nu+2 Sh−1 Sh+2

0.2 0.1 0.5 0.5 0.5 0.5 0.5 0.33097 -6.16883 -0.10639 -1.32746 -0.33695 -0.72324

0.3 0.1 0.5 0.5 0.5 0.5 0.5 0.32603 -6.22319 -0.11045 -1.31384 -0.34253 -0.72507

0.4 0.1 0.5 0.5 0.5 0.5 0.5 0.32062 -6.27427 -0.11432 -1.30054 -0.34788 -0.72683

0.2 0.12 0.5 0.5 0.5 0.5 0.5 0.32506 -6.58247 -0.10434 -1.24713 -0.33603 -0.73227

0.2 0.15 0.5 0.5 0.5 0.5 0.5 0.31437 -7.32518 -0.10132 -1.08517 -0.33359 -0.74978

0.2 0.18 0.5 0.5 0.5 0.5 0.5 0.30185 -8.26722 -0.09913 -0.85013 -0.33012 -0.77455

0.2 0.1 0.6 0.5 0.5 0.5 0.5 0.31903 -6.07882 -0.10320 -1.34946 -0.33469 -0.72066

0.2 0.1 0.7 0.5 0.5 0.5 0.5 0.30512 -5.97897 -0.09965 -1.37348 -0.33206 -0.71777

0.2 0.1 0.8 0.5 0.5 0.5 0.5 0.28939 -5.87163 -0.09588 1.39884 -0.32928 -0.71466

0.2 0.1 0.5 0.4 0.5 0.5 0.5 0.34102 -6.24829 -0.10781 -1.31290 -0.33737 -0.72446

0.2 0.1 0.5 0.6 0.5 0.5 0.5 0.32098 -6.09322 -0.10457 -1.34132 -0.33614 -0.72197

0.2 0.1 0.5 0.8 0.5 0.5 0.5 0.30110 -5.95211 -0.10011 -1.36729 -0.33347 -0.71915

0.2 0.1 0.5 0.5 0.1 0.5 0.5 0.31594 -6.02845 -0.06749 -1.49322 -0.37550 -0.71603

0.2 0.1 0.5 0.5 0.4 0.5 0.5 0.32997 -6.13273 -0.09933 -1.37058 -0.34482 -0.72063

0.2 0.1 0.5 0.5 0.7 0.5 0.5 0.33164 -6.24456 -0.11877 -1.23799 -0.32753 -0.73119

0.2 0.1 0.5 0.5 0.5 0.1 0.5 0.32228 -6.08080 -0.12964 1.30077 -0.37755 -0.81998

0.2 0.1 0.5 0.5 0.5 0.2 0.5 0.32655 6.10197 -0.12112 -1.30669 -0.35750 -0.79453

0.2 0.1 0.5 0.5 0.5 0.3 0.5 0.32905 -6.12363 -0.11475 -1.31320 -0.34541 -0.77010

0.2 0.1 0.5 0.5 0.5 0.5 0.1 0.35481 -6.24170 -0.11828 -1.34743 -0.37945 -0.66193

0.2 0.1 0.5 0.5 0.5 0.5 0.3 0.34187 -6.20420 -0.11128 -1.33756 -0.35530 -0.69309

0.2 0.1 0.5 0.5 0.5 0.5 0.6 0.32615 -6.15184 -0.10453 -1.32236 -0.32932 -0.73800

profile decreases.

• The concentration of the fluid grows
and temperature declines for a rise in
the Soret parameter.

Nomenclature
B0 magnetic field

(
A m−1)

C mass concentration
(
mol m−3)

Cf skin friction coefficient

Cp specific heat
Cs concentration susceptibility
C1, C2 mass of both plates

(
mol m−3)

D mass diffusivity
(
m2 s−1

)
D f Dufour number
Ec Eckert number
f dimensionless velocity
g acceleration in behalf of gravity

(
m s−2

)
K chemical reaction parameter K f thermal
diffusion

(
m2 s−1

)
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Kp porosity parameter
KT thermal diffusion ratio
K1 rate of chemical reaction
M magnetic parameter
Nu Nusselt number
Pr Prandtl number
qm surface mass flux
qw surface heat flux
R suction/injection parameter
Re Reynolds number
Sc Schmidt number
Sh Sherwood number
Sr Soret number
T fluid temperature (K)
Tm mean fluid temperature (K)
T1, T2 temperature of both plates (K)
u velocity component in x-direction

(
m s−1

)
v velocity component in y-direction

(
m s−1

)
v0 suction/injection velocity

(
m s−1

)
Greek Symbols
α thermal diffusivity

(
m2 s−1

)
β buoyancy ratio
βC coefficient of solutal expansion
βT coefficient of thermal expansion
β1, β2 slip parameters
γ1, γ2 slip coefficients
θ dimensionless temperature
κ permeability of porous medium
λ mixed convection parameter
µ viscosity coefficient

(
kg m−1 s−1

)
ρ fluid density

(
kg m−3)

σ fluid conductivity
(
S m−1)

τw shearing stress
φ dimensionless concentration
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