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ABSTRACT
In this paper, the influence of arbitrary poling direction on a cracked piezoelectric

medium is studied. For this purpose, an infinite piezoelectric plate cut along to equal semi-
permeable collinear cracks is considered. Stroh’s formalism and complex variable technique
are used to formulate the problem. The closed-form analytical expressions are derived for the
various fracture parameters viz. crack opening displacement, crack opening potential drop,
intensity factors, and energy release rate. Moreover, the quadratic equation is derived to find
the electric displacement inside the crack gap media. For a poled PZT-5H ceramic plate,
an illustrative numerical investigation is implemented to demonstrate the effect of arbitrary
polarization on the various fracture parameters.

Keywords: Multiple cracks; Piezoelectric ceramics; Polarization; Semi-permeable; Stroh’s
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1. Introduction
Piezoelectric materials have been

widely used in electromechanical gadgets,
such as sensors, actuators or transducers,
due to the coupling effect between mechan-
ical and electrical characteristics. More and
more consideration has been given to inves-
tigating deformities in piezoelectric media
and structures. However, the presence of

cracks is seen to reduce the strength of the
ceramics considerably. And the effect of
mechanical and electrical loading on crack
opening is noticeable.

Many researchers [1–9] have ex-
plored a wide variety of crack problems for
piezoelectric ceramics with impermeable,
permeable electrical conditions on the crack
face. These conditions give a higher and

*Corresponding author: jagdevsinghrathore@gmail.com doi: 10.14456/scitechasia.2020.2



K. Jangid et al. | Science & Technology Asia | Vol.25 No.1 January - March 2020

lower estimate of the rate of release of en-
ergy. In any case, semi-permeable crack
face boundary condition is observed to give
progressively precise results. These can
be characterized within the crack gap with
non-zero permittivity air/dielectricmedia as

D+2 = D−
2 = D = −γc

∆ϕ(x1)
∆u(x1)

, (1.1)

where superscripts + and − represent, re-
spectively, values on the upper and lower
crack surfaces. Consider a crack along the
x1-axis; γc = γrγ0 (γ0 = 8.85×10−12 F/m)
is the electric permittivity of the medium
between the crack faces; ∆ϕ and ∆u are the
jumps of electric potential and crack open-
ing displacement across the crack, respec-
tively.

Many researchers [10–15] in their
analysis used the semi-permeable bound-
ary conditions. For the most part, for
a single crack as it were, detailed semi-
permeable crack problems have been re-
searched. Hence, we considered in this
paper two equal collinear crack cuts in
an infinite piezoelectric plate with semi-
permeable crack facing the prevailing elec-
trical boundary conditions on crack faces.

It is also remarkable that in the ma-
terial microstructure below Curie tempera-
ture a wide range of poled piezoelectric ce-
ramics retain their aligned electrical dipole
field. This direction of electrical poling af-
fects the properties of the material and the
behavior of fractures.

This paper addresses the question
of arbitrary poling direction on a cracked
piezoelectric media under semi-permeable
crack boundary condition.

2. Fundamental formulation and so-
lution methodology

The fundamental equations for linear
piezoelectric media are defined as below:

• constitutive equations

σi j = Ci jksϵks − esi jEs,

Di = ekisϵks + κisEs; (2.1)

• kinematic equations

ϵi j =
1

2
(ui, j + u j,i),

Ei = ϕ,i; (2.2)

• equilibrium equations for stresses
and electric displacements in the ab-
sence of body forces and free electric
charges, may, respectively, be writ-
ten as

σi j = 0, Di = 0, (2.3)

where σi j , ϵi j , Di and Ei denote the compo-
nents of the stress, strain, electric displace-
ment and electric field, respectively; Ci jks

and eiks denote the elastic and piezoelec-
tric constants; and κis denotes the dielec-
tric permittivities. Comma denotes partial
differentiation with respect to argument fol-
lowing it; ϕ is the electric potential; where
i, j, k, s = 1, 2, 3.

The constitutive equations above can
be written as compact

Ξi, j = Ci jkluk, j, (2.4)

where

Ξi, j =

{
σi j , i, j, k = 3
Dj , i = 4

and material constant matrix [Ci jkl] is de-
fined in [16].

For the case of a ‘θ’ angle oriented
poling direction with x1-axis, the constitu-
tive equations can be expressed as

Ξi, j = ci jkluk, j, (2.5)
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where

ci jkl = mCi jklmT , m =
(
m1 0
0 m2

)
,

m1, m2 are taken from [16].
In accordance with Stroh’s formal-

ism, the general solution satisfying Eqs.
((2.1), (2.2) and (2.5)) can be written as

u,1 = MG(z) +MG(z), (2.6)
Φ,1 = NG(z) + NG(z), (2.7)

where

M = (m1,m2,m3,m4),
N = (n1, n2, n3, n4),

G(z) = dg(z)/dz,

g(zα) = [g1(z1), g2(z2), g3(z3), g4(z4)]T ,
zα = x1 + qαx2,

qα is a non-real root of

|J + q(K +KT ) + q2L| = 0 (2.8)

and the matrices J, K and L are given by

J = ci1k1, K = ci1k2, L = ci2k2,

for all i, k = 1, 2, 3 andΦ is the generalized
stress function such that

σ2 = [σ2j,D2]T = Φ,1,
σ1 = [σ1j,D1]T = −Φ,2.

3. Statement of the problem
Let us consider that the whole plane

x1ox2 is occupied by an infinite trans-
versely isotropic piezoelectric plate, and the
poling direction makes an angle with x1-
axis. The plate is cut along two equal L1

and L2 straight collinear cracks that occupy
[d, c] and [−c,−d] on x1-axis at the cor-
responding intervals. It is presumed that
the crack surfaces are traction-free and that
the semi-permeable boundary condition is

presumed to be kept inside cracks. The
mechanical stressand σ∞

22 and the electri-
cal displacement load D∞

2 are prescribed at
the remote boundary of the plate. Fig. 1.
shows the schematic representation of the
problem.

Fig. 1. Schematic representation of the prob-
lem.

Mathematically, the conditions of the
physical boundary may be as follows:

(i) σ+2j = σ
−
2j = 0, D2 = D, on L =

L1 ∪ L2;

(ii) σ22 = σ∞
22, D2 = D∞

2 , for |x2 | → ∞;

(iii) u+j = u−j , σ
+
2j = σ

−
2j , D+2 = D−

2 , ϕ
+ =

ϕ−, for |x1 | < d, |x1 | > c;

(iv) Φ+,1 = Φ−
,1 = −V , V =

[0, σ∞
22, 0, D∞

2 ]
T for d < |x1 | < c,

where D is the electric flux through the
crack regions, which can be determined
with the help of the Eq. (1.1).

4. Solution of the problem
The continuity of generalized stress

on the whole real x1-axis implies that

[NG(x1) − NG(x1)]
+−[NG(x1) − NG(x1)]

−
= 0.

(4.1)
According to Muskhelishvili [17], its solu-
tion may be written as

NG(z) − NG(z) =: I(z). (4.2)
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Using the principle of superposition,
boundary conditions (i) and (iv) together
with Eqs. (2.7) and (4.2) yield the following
vector Hilbert problem

I+(x1) + I−(x1) = V 0 − V,

V 0 = [0, 0, 0,D]T , d < |x1 | < c. (4.3)

Introducing a complex function vector

Ψ(z) = [Ψ1, Ψ2 , Ψ3 ,Ψ4]T

as
Ψ(z) = HRNG(z) (4.4)

which together with Eq. (4.2) leads to the
relation

I(z) = ΥΨ(z), (4.5)

where

Υ = [HR]−1, HR = 2ReY, Y = Im(MN−1).

Writing the second and fourth components
of Eq. (4.3), the following two scalar
Hilbert problems are obtained

Υ22[Ψ+2 (x1) + Ψ−
2 (x1)]

+ Υ24[Ψ+4 (x1) + Ψ−
4 (x1)] = −σ∞

22, (4.6)

Υ42[Ψ+2 (x1) + Ψ−
2 (x1)]

+ Υ44[Ψ+4 (x1) + Ψ−
4 (x1)] = D − D∞

2

(4.7)

The solutions of the above Hilbert problems
are written (using Muskhelishvili [17]) as

Ψ2(z) =
1

2Θ

(
Υ44σ

∞
22 + (D − D∞

2 )Υ24
)(

z2 − c2λ2

X1(z)
− 1

)
, (4.8)

Ψ4(z) =
1

2Θ

(
Υ42σ

∞
22 + (D − D∞

2 )Υ22
)(

1 − z2 − c2λ2

X1(z)

)
, (4.9)

where

X1(z) =
√
(z2 − d2)(z2 − c2),

Θ = Υ22Υ44 − Υ24Υ42,
k2 = 1 − (d/c)2,
λ2 = E(k)/F(k),

F(k) and E(k) are the complete elliptic inte-
grals of first and second kinds, respectively.

5. Applications
The terms for crack opening dis-

placement (COD), crack opening potential
drop (COP), stress and electrical displace-
ment intensity factors, mechanical and to-
tal release rates of energy are derived in this
section.

We introduced the jump displace-
ment vector, ∆u,1 as

i∆u,1 = i[u+1,1−u−1,1, u
+
2,1−u−2,1, u

+
3,1−u−3,1, ϕ

+−ϕ−]T ,
(5.1)

where the symbol ‘∆’ indicates the differ-
ence between the values on the upper and
lower crack surfaces.

5.1 Crack opening displacement (COD)
The relative opening of the crack

faces is obtained using the second compo-
nent of Eq. (5.1), and substituting the value
ofΨ2(z) from Eq. (4.8) and integrating, one
obtains

∆u2(x) = − c
Θ

(
Υ44σ

∞
22 + (D − D∞

2 )Υ24
)(

λ2F(τ, k) − E(τ, k)
)
, (5.2)

where sin2 τ = (c2 − y2)/(c2 − d2).
5.2 Crack opening potential drop (COP)

Comparing the fourth component of
Eq. (5.1) and using the value of Ψ2(z) from
Eq. (4.9) and integrating, one obtains the
COP drop as

∆ϕ(x) = − c
Θ

(
Υ42σ

∞
22 + (D − D∞

2 )Υ22
)(

λ2F(τ, k) − E(τ, k)
)
. (5.3)
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Remark 5.1. The value of electric flux D is
obtained by substituting the required values
from Eq. (5.2) and Eq. (5.3) into Eq. (1.1)
and solving the quadratic equation

η1D2 + η2D + η3 = 0, (5.4)

where η1 = Υ24, η2 = Υ44σ∞
22

− Υ24D∞
2 −

Υ22γc, η3 = −γc(Υ42σ∞
22 − Υ22D∞

2 ). For
the required value of D, the root should be
chosen for which COD is positive.

5.3 Intensity factors (IFs)
Stress intensity factor, KI, and elec-

tric displacement intensity factor, KIV, at
the crack tips x = d and x = c are given as

KI (d) = −
√

π

d(c2 − d2)

(
σ∞22 + (D − D∞

2 )Υ24
Υ44

)
(d2 − c2λ2), (5.5)

KI (c) =

√
π

c(c2 − d2)

(
σ∞22 + (D − D∞

2 )Υ24
Υ44

)
(c2 − c2λ2), (5.6)

KIV (d), =
√

π

d(c2 − d2)

(
(D − D∞

2 ) + σ∞22
Υ42

Υ22

)
(d2 − c2λ2), (5.7)

KIV (c) = −
√

π

c(c2 − d2)

(
(D − D∞

2 ) + σ∞22
Υ42

Υ22

)
(c2 − c2λ2). (5.8)

5.4 Energy release rate (ERR)
Mechanical energy release rate

(MERR), GM , and total energy release rate
(TERR), GT , at the inner and outer crack
tips x = d and x = c calculated using
formulae

GM =
1

2
(H22K2

I + H24KIV ),

GT =
1

2
(H22K2

I + 2H24KIV + H44K2
IV ).
(5.9)

6. Case study
An illustrative numerical case study

is presented for PZT-5H ceramic plate to
investigate the behaviour of poling direc-
tion on the fracture parameters viz. COD,

COP, SIF, MEER and TERR. The mate-
rial constants are given in Table 1. We
assume the length of cracks, prescribed
tension and electrical displacement load is
10mm, σ∞

22 = 1MPa and D∞
2 = 0.001

C/m2 respectively.

Table 1. Material parameters of PZT-5H

Material constants PZT-5H
c11 (1010 N/m2) 12.60
c12 (1010 N/m2) 7.95
c13 (1010 N/m2) 8.41
c33 (1010 N/m2) 11.70
c44 (1010 N/m2) 2.30

e13 (C/m2) -6.50
e33 (C/m2) 23.30
e15 (C/m2) 17.44

k11 (10−10 C/(Vm)) 150.30
k33 (10−10 C/(Vm)) 130

Fig. 2. shows the variation of COD
for distinct poling angles over the crack sur-
face. As the poling angle ‘θ ′ increases from
0◦ to 90◦, it is observed from the figure
that COD increases. COD attainsmaximum
value for 90◦ (if the direction of poling is
perpendicular to the surface of the crack)
and minimum value for 0◦ (if the direction
of poling is parallel to the surface of the
crack).
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Fig. 2. COD versus θ

Fig. 3 shows the variation of COP
drop over the crack surface for different
poling angles. The figure shows that COP
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drop increases as the poling angle increases.
COP drop attains maximum value for 90◦
and minimal value for 0◦.

Fig. 3. COP versus θ

Fig. 4 and Fig. 5 depict the varia-
tion of KIV and KI for distinct poling angle
at the internal and outer ends of the crack
with regard to the electrical displacement
load D∞

2 . It is observed that as D∞
2 in-

creases, KIV and KI also increase at both of
the crack tips. Also KIV and KI are higher
at the inner crack tip d as compared to that
at outer crack tip c, as expected. It may also
be noted from the figures that KIV and KI

are maximum when poling direction is per-
pendicular to the crack face i.e., 90◦. And it
attains minimum value when poling direc-
tion is parallel to the crack face i.e., 0◦.

Fig. 4. KIV versus D∞
2 for different θ

Fig. 6 and Fig. 7, respectively, depict
the behavior of MERR and TERR with re-
spect to the variation in the non dimensional
electric loading coefficient λd for different
poling angles. It is observed that TERR and
MERR are higher at the inner tip than those
at the outer tip. It is noted from Fig. 6 that
the MERR always increases by increasing

Fig. 5. KI versus D∞
2 for different θ

electrical loadings λd, and decreases with
respect to the decrease in electrical load-
ings. It may also be noted from Fig. 7(a)
that the TERR decreases symmetrically for
λd = 0. This shows that the TERR is in-
dependent of the direction of the applied
electrical loading. This symmetrical point
varies as poling angle changes.

Fig. 6. GM versus λd for different θ

Fig. 7. GT versus λd for different θ

7. Conclusion
The following conclusions are made

from the analytical and numerical stud-
ies presented for the proposed two equal
collinear semi-permeable cracks model
with arbitrarily oriented electric poling in
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piezoelectric media:

• The various fracture parameters viz.
COD, COP, IFs, MERR and TERR
attained maximum values when the
direction of poling was perpendicular
to the crack faces. And these param-
eters attained minimum values when
the direction of poling was moved
along the length of the crack face.

• The IFs and MERR increase as
the displacement of electric load in-
creases and decrease as the displace-
ment of electric load decreases.
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