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ABSTRACT 
  This paper aims to study the Wald confidence intervals for the parameters in a Bernoulli 
component of the zero-inflated Poisson (ZIP) and zero-altered Poisson (ZAP) models. The 
effects of the model choices between ZIP and ZAP with three different link functions: logit, 
probit, and complementary log-log, are investigated. Akaike’s information criterion (AIC) is 
normally used for comparing models with different links in the literature. However, use of AIC 
is not advisable for the model comparison of non-nested models. To study the performance of 
the confidence intervals with different links, the coverage probability (CP) should be used 
because the AIC criterion can be misleading. The effects of the parameters in ZIP and ZAP 
distributions were also studied. The CPs are estimated from Monte-Carlo simulations, where 
the data are generated from both ZIP and ZAP distributions. The results show that when the 
employed model corresponds to the distribution of data, the link function and parameters of the 
distributions do not have much impact on the CPs. Conversely, if the wrong model is used, the 
components of the Bernoulli and the mean of count data are essential to determine the CPs of 
the intervals. Overall, the ZIP models tend to outperform the ZAP models, and the Wald 
confidence intervals with different links have approximately the same performance, regardless 
of any model used for fitting the data. If the mean of positive counts is large, both the ZAP and 
ZIP models tend to produce the same CPs or have the same performance. 
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P. Srisuradetchai and S. Junnumtuam | Science & Technology Asia | Vol.25 No.2 April - June 2020 

 2  
 

1. Introduction  
Count data are often applied in daily 

life, for example, the number of people who 
went to a certain hospital last year or the 
number of accidents that occurred at one 
intersection. These numbers are considered 
non-negative integer-valued random 
variables, and count models are typically 
employed for fitting such data. In recent 
years, many disciplines, including actuarial 
science, engineering, economics, and 
political science, have extensively used 
advanced statistical modelling methods, as a 
number of statistical programs are available, 
many of them at no cost. The most 
commonly used count models are Poisson 
and Negative binomial; however, when count 
data include excess zeros, these models may 
not be appropriate. Many models such as the 
zero-inflated Poisson model (ZIP) and the 
hurdle model (also called the zero-altered 
Poisson model, or ZAP) are more 
appropriate. The general form of hurdle 
regression models, consisting of two 
components: zero and non-zero parts, was 
proposed by Mullahy [1]. This assumes that 
all zero data are from one source and positive 
data follow either truncated Poisson 
distribution or truncated negative binomial 
distribution. In particular, when the “hurdle” 
is not crossed with probability p , we 
observe a count of zero, and if the hurdle is 
crossed, positive counts are observed with 
the count density ( )f y . In some situations, 
the ZAP predicts too few zeros [2]. The ZIP 
model, proposed by Lambert [3], is 
considered a finite mixture model that can be 
used for zero-inflated data.  

Choosing an appropriate model for a 
particular set of data is a challenging 
problem. This has led many researchers to 
compare and attempt to find an appropriate 
model for count data with excess zeros, such 
as the negative binomial model, the ZIP 
model, the zero-inflated negative binomial 
(ZINB) model, and the ZAP model. Ridout et 
al. [4] applied the ZIP and ZINB models to 

real data having an over-dispersion problem 
and used two criteria, namely AIC and BIC, 
for comparing the models; the results showed 
that the ZINB is the most appropriate model. 
Miller [5] employed the Poisson model, the 
ZAP model, and the ZIP model to fit count 
data with excess zeros generated from 
negatively skewed, positively skewed, and 
normal distributions and compared them by 
using the deviance statistic and Akaike’s 
Information Criterion (AIC) as the criteria. 
The results showed that the ZAP model tends 
to have the best performance among all 
skewed data; however, in some cases, other 
models are better. In addition, Yang [6] used 
the ordinary least-squares regression model, 
the Poisson regression model, the negative 
binomial regression model, ZIP, ZINB, ZAP 
models, and the zero-altered negative 
binomial regression model (ZANB) to fit 
simulated data and real data. The AICs were 
compared in order to show the effectiveness 
of the models under different conditions 
regarding the proportion of zeros and the 
over-dispersion of the data.  

In general, the ZIP and ZAP models 
have structures similar to GLMs, in which a 
link function connects a random component 
with linear predictors. The link function g  
that transforms the mean l  to the natural 
parameter h  is called the canonical link, 

where 
1

p
j jj
xh b

=
=å  and p  is the number 

of regressors. The canonical link function 
can be obtained from the exponential of the 
response’s density function [7]. For the 
Poisson distribution, the canonical link is a 
log link, and it is the logit link for the 
parameter p . However, the canonical link 
cannot guarantee a good fit for all data, as 
there are statistical tests to protect against 
link misspecification, and usually these are 
large sample tests such as the likelihood ratio 
test [8].  

In the literature, all research studies 
involving comparisons of link functions have 
been conducted for binary data. Koenker and 
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Yoon [9] compared the Gosset link with the 
Pregibon link for binary data and explored 
the Bayesian and maximum likelihood 
methods for estimation and inference, and it 
was found that the misspecification of the 
link function can create serious bias. Li [10] 
compared three link functions: the logit, 
probit, and cloglog, and each link was used 
with different models; the information 
indices, including BIC and AIC, the posterior 
predictive distribution in a Bayesian 
approach, and the receiver operating 
characteristic (ROC), were considered as the 
criteria for the comparisons. The results 
showed that the probit and logit link 
functions are appropriate for symmetric data, 
while the cloglog link performs well for 
asymmetric data. Gunduz and Fokoue [11] 
proposed the definition of both structural and 
predictive equivalence of link functions-
based binary regression models and explored 
the various ways in which they are either 
similar or dissimilar. From the predictive 
view, it was shown that not only are the 
probit and logit links perfectly equivalent, 
but the other link functions such as Cauchit 
and cloglog also have a high percentage of 
predictive equivalence. Damisa et al. [12] 
compared the logit, probit, and cloglog link 
functions for binary data where the sample 
size is small (< 1000) under symmetric and 
asymmetric assumptions. When using the 
AIC as the criterion, the probit link is 
preferred under the symmetric assumption, 
while the cloglog should be used under the 
asymmetric assumption. Wu and Lord [13] 
examined the influence of link function 
misspecification in the regression models for 
real data and found that the misuse of the link 
function for one or more variables can result 
in biased estimates. 

However, there has been no research 
studying the proper link functions of p  (the 
probability of occurring zeros) for count data 
with excess zeros. It has also been found in 
the literature that AIC is generally used for 
model comparisons. Unfortunately, standard 
criteria, such as AIC or the likelihood ratio 

test, are not appropriate for model 
comparison of non-nested models [14]. 
Therefore, the AIC may not be sufficient to 
determine the accuracy of the estimates of 
,p which have never been studied in the 

literature. In this paper, the Wald confidence 
intervals of parameter p  will be constructed 
and the corresponding CPs will be 
investigated when only count responses are 
available. In addition, the ZIP and ZAP 
models will be compared with three different 
link functions, namely the logit, probit, and 
cloglog, by using the simulated data from 
ZIP and ZAP distributions. In the perspective 
of statistical theory, using the proper link 
function is equivalent to improving the 
quadratic approximation of the normalized 
log-likelihood around p̂ : 

 

( )( )2ˆ( ) 1 ˆ ˆlog
( ) 2
L I
L
p p p p
p

» - -           (1) 

 
by choosing the appropriate transformation 

( ),gy p=  e.g., the logit link that 

corresponds to ( ) ( )log (1 )g p p p= - . The 
“quality” of the Wald confidence interval is 
based on two levels of approximation; the 
log-likelihood is approximated by a 
quadratic function and the confidence level is 
approximate [15]. The Wald interval can be 
written in the form: 

 

( )( )2 2
1, (1 )

1 1ˆ ˆ
2 2
I ap p p p c -

ì ü
- - ³ -í ý

î þ
 

    ( ){ }1 2ˆ ˆI z ap p p p -= - £ ,                 (2) 
 

where ( )ˆI p  is the observed Fisher 
information. The familiar form of the Wald 

interval for p   is  ( )1
1 2ˆ ˆ ˆz Iap p p-
-± = ±  

( )1 2 ˆ. . .z s ea p-  If the transformation y =

( )g p  is used, the improved confidence 

interval for ( )g p  will be ( ) 1 2ˆg z ap -± ´  



P. Srisuradetchai and S. Junnumtuam | Science & Technology Asia | Vol.25 No.2 April - June 2020 

 4  
 

( )( )ˆ. .s e g p . To illustrate that the AIC and CP 
are not necessarily concordant, the CPs of the 
Wald confidence interval for p  and the 
AICs are estimated by Monte-Carlo 
simulations and then investigated. 
 

 

2. Materials and Methods  
A brief description of the hurdle model 

and the zero-inflated Poisson models when 
there is no independent variable will be 
presented. Thus, the models in this paper are 
in the forms of ( )1 1g p b=  and ( )2 2g l b=  
where p  and l  are the parameters in the 
Bernoulli and Poisson components, 
respectively. 

 
 

2.1 Zero-altered poisson models 
The ZAPs (hurdle models) are 

composed of two parts. The first component 
is responsible for generating all zeros and the 
second component generates positive counts. 
The hurdle model uses a binomial logistic 
regression model to assign a probability p  
that will determine whether a count will be 
zero or positive. If the positive count is 
recognized, then the ‘hurdle’ is crossed, and 
the counts are modelled by a truncated-at-
zero count model. The zero-truncated density 
is ( ) (1 (0))f y f- , and the unconditional 
probability mass function for Y  is 

 

  ( )
if 0

P 1 ( ) if 0
1 (0)

y
Y y f y y

f

p
p

ì
ï
í
ï
î

=
= = - >

-
. 

 

If the zero-truncated Poisson distribution is 
chosen, the unconditional probability mass 
function for Y is 
 

( ) (3)1 ,  
1

,  if 0
P

if 1
!

y y

e

y
Y y e y

yl

p

p
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-

ì
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If the logit link is used for p  and the log link 
is used for l , without independent variables, 

p  will be ( )1 11e eb b+  and l  will be 2eb .  

Define a binary indicator as follows:  
 

0, if 0
1, if 1

i
i

i

y
d

y
=ì

= í ³î
. 

 

In general, 1
1 1( )gp b-=  and 1

2 2( )gl b-= . 
Thus, the log-likelihood function is 
 

    

 

Thus, the joint likelihood can be maximized 
by separately maximizing each component 
[2]. In this paper, the function ‘hurdle’ in the 
package ‘pscl’ in R [16] is used to find the 
maximum likelihood estimates of 1b   and 

2b . This package uses the method of Nelder 
and Mead [17] as a default method for 
optimization. 
 
2.2 Zero-inflated poisson models 

 Unlike hurdle models, the zero-
inflated Poisson models, or ZIPs, are finite 
mixture models with two components. The 
mixture weights for the two components are 
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p  and 1 p- . The probability mass function 
of the ZIP model can be expressed as 

0 , with Prob = 
~

Poisson( ) ,with Prob = 1 ,
Y

d p
l p

ìï
í
ïî -

 

where 0d  is a degenerate distribution at 0, or  
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!

y
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The joint log-likelihood function for the two 
parts of the ZIP model is  
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It can be seen that the log-likelihood function 
cannot be divided into two components as the 
ZAPs can. Thus, theoretically, both 
parameters are correlated. We use the 
function ‘zeroinfl’ in the package ‘pscl’ [16] 
in R to find the maximum likelihood 
estimates of 1b  and 1b . Similar to the 
function ‘hurdle’, the method of Nelder and 
Mead [17] is used.   
   

2.3 Link functions 
  A link function relates the expected 

value of the response to the linear predictors 
in generalized linear models. If there is no 
independent variable, the link function can 
be considered as the transformation ( )g p . 
In this study, the link functions are logit, 
probit, and cloglog links, as the following: 

 

logit link:  ( ) ( )log (1 )g p p p= -                         

probit link:  ( ) 1( )g p p-=F                            

cloglog link: ( ) log( log(1 ))g p p= - -  
 

 

2.4 Wald confidence intervals 
 To construct the Wald confidence 
intervals, the Fisher information matrix,  

( ) 11 12
1 2

21 22

ˆ ˆ( , )
I I

I
I I

b b
é ù

= ê ú
ë û

, is needed, where 

( )
2

ˆ ˆ,

1 2,
i i j j

ij
i j

I L
b b b b

b b
b b

= =

¶
= -

¶ ¶
 

and ( )1 2,L b b  can be either Eq. (4) or Eq.  

(6), and the inverse of the Fisher information 
matrix is   
 

( )
11 12

1
1 2 21 22
ˆ ˆ( , )

I I
I

I I
b b- é ù

= ê ú
ë û

.            (7) 

 

Because ( )1 1gb p=  is of interest, only 11I  
is required. Thus, the Wald (1 )100%a-  CI 

for 1b  is ( , )L U , where 11
1 1 2
ˆL z Iab -= -

and 11
1 1 2
ˆU z Iab -= +  [15]. If transforming 

1b  to the original scale of p , the 
(1 )100%a-  CI for p  will be  

 

                  ( )1 1( ), ( )g L g U- - .                  (8) 
 

3. Research Methodology 
In this section, the method of 

simulating the data and constructing the 
Wald confidence intervals will be described. 
 
3.1 Simulated data and models 
 Only the response values are 
generated. The p  value of the Bernoulli 
distribution and the mean l  of the Poisson 
distribution are varied. Lambert [3] used the 
sample sizes of 25, 50, and 100, but the 
sample sizes equal to 25 and 50 resulted in 
the occurrence of singularities of the Fisher 
information matrix. Thus, the sample sizes in 
this study were set at 100. The estimated 
intercepts in the ZIP and ZAP models were 
estimated from the function ‘zeroinfl’ and the 
function ‘hurdle’, respectively. This will give 
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the estimate of Eq. (7), so that the standard  
errors of 1̂b  and 2b̂  can be calculated  from 

the square root of 11I  and 22I , respectively. 
 The logit, probit, and cloglog link 
functions were applied in order to observe 
the effects of the link specification. The 
conditions of this study were as follows: (1) 
the parameter p  was set as 0.1, 0.2, …, 0.9; 
(2) the parameter l  was set as 1, 2, 5, and 
10; and (3) the number of simulated   data  
was set  at  3,000  for each combination of 
the p , l , link function, and distribution 
(ZIP or ZAP). 
  
3.2 Comparisons of the models 

The coverage probabilities of p  from 
the 95% Wald confidence intervals were 
estimated in order to study the effects of the 
links, models, parameters p  and l . The 
general form of the confidence intervals is as 
seen in Eq. (8). If ( ) ( )log (1 )g p p p= -  

1b= , the (1 )a- 100% Wald’s confidence 
interval for p  is  

 

   
( )
( )

11
1 1 2

11
1 1 2

ˆexp

ˆ1 exp

z I

z I

a

a

b

b

-

-

±

+ ±
,        (9) 

where 11I  is in Eq. (7). In the same manner, 
the (1 a- )100% Wald’s confidence interval 
for p  constructed using the probit link is  
 

11
1

2
1

,ˆ z Iab
-

é ù
ê ú
ë û

F ±             (10) 

where F  is the cumulative distribution 
function of the standard normal distribution. 
Also, the (1 a- )100% Wald’s confidence 
interval for p  constructed using the cloglog 
link is 

 ( )11
1 1 2
ˆ1 exp exp z Iab -

é ù
ê úë û

- - ±     (11).   

And, the coverage probability was estimated 

from [ ]

3000

,
1

( ) 3000
i iL U

i
CP I p

=

=å , where 

( ),i iL U  is a CI in the ith iteration. To show 
that AIC and CP are not necessarily in 
agreement, it was necessary to calculate 
 

( )AIC 2log likelihood 2k= - + , 

where k is the number of parameters to be 
estimated. The model that gives the lowest 
AIC value will be considered the best model. 
Note that the use of this criterion is not 
advisable for comparisons of non-nested 
models [14].  

4. Results and Discussion 
 The CPs of p ’s in the ZAP models are 
presented in Tables 1 and 2, and the 
corresponding AICs are shown respectively  
in Tables 5 and 6, whereas the CPs and AICs 
of  the  ZIP models are shown in Tables 3, 4, 
7, and 8. It can be seen that the different link 
functions give nearly the same estimated 
CPs, especially when the distribution 
generating the data and the model used to fit 
are the same. For example, in Table 1 when 
p  equals 0.8 and l  equals 2, the CPs are 
approximately 0.95, and  in Table 4 when p  
equals 0.1 and l  equals 1, the CPs are all 
near  0.91.  The differences among  the  links 
will be noticeable if the model is wrong or 
does not correspond to the distribution 
generating the data. For example, in Table 2 
when p  equals 0.8 and l  equals 1, both the 
logit and probit links have a CP close to 0.49, 
while the cloglog gives 0.64. These are much 
lower than the desired confidence level, 0.95. 
In many cases, the CP values are not very 
different, especially when l  is increasingly 
higher. 
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Table 1. The estimated coverage probabilities of ip  in ZAP models when the data are 
generated from ZAP distribution. 
 

π  
 

l = 1 l = 2 l = 5 l = 10 
logit probit cloglog logit probit cloglog logit probit cloglog logit probit cloglog 

0.1 0.953 0.958 0.951 0.957 0.958 0.957 0.953 0.953 0.959 0.955 0.959 0.962 
0.2 0.938 0.958 0.964 0.948 0.954 0.955 0.943 0.946 0.951 0.939 0.950 0.953 
0.3 0.958 0.947 0.951 0.960 0.949 0.950 0.969 0.953 0.949 0.960 0.947 0.950 
0.4 0.951 0.943 0.960 0.947 0.950 0.961 0.943 0.948 0.959 0.945 0.939 0.961 
0.5 0.939 0.945 0.956 0.938 0.937 0.954 0.947 0.939 0.953 0.942 0.942 0.950 
0.6 0.945 0.953 0.952 0.947 0.947 0.959 0.951 0.948 0.960 0.952 0.948 0.957 
0.7 0.957 0.954 0.953 0.961 0.954 0.953 0.965 0.953 0.954 0.961 0.952 0.956 
0.8 0.944 0.954 0.953 0.940 0.952 0.955 0.932 0.964 0.952 0.946 0.956 0.953 
0.9 0.953 0.958 0.957 0.954 0.961 0.947 0.954 0.953 0.954 0.960 0.954 0.954 

 
Table 2. The estimated coverage probabilities of ip  in ZAP models when the data are generated 
from ZIP distribution. 
 

π  
 

l = 1 l = 2 l = 5 l = 10 
logit probit cloglog logit probit cloglog logit probit cloglog logit probit cloglog 

0.1 0.000 0.000 0.000 0.048 0.082 0.081 0.934 0.956 0.941 0.956 0.953 0.953 
0.2 0.000 0.000 0.000 0.247 0.325 0.300 0.938 0.952 0.951 0.941 0.952 0.953 
0.3 0.001 0.000 0.002 0.507 0.500 0.510 0.962 0.953 0.950 0.966 0.943 0.950 
0.4 0.004 0.006 0.009 0.596 0.614 0.686 0.943 0.942 0.962 0.951 0.947 0.960 
0.5 0.031 0.031 0.041 0.708 0.697 0.774 0.944 0.944 0.961 0.942 0.945 0.950 
0.6 0.121 0.116 0.170 0.802 0.805 0.863 0.948 0.948 0.957 0.948 0.950 0.959 
0.7 0.335 0.248 0.349 0.893 0.854 0.882 0.960 0.950 0.959 0.959 0.950 0.957 
0.8 0.498 0.491 0.643 0.893 0.901 0.936 0.944 0.954 0.952 0.937 0.956 0.951 
0.9 0.885 0.762 0.875 0.973 0.929 0.957 0.947 0.956 0.959 0.954 0.954 0.948 

Table 3. The estimated coverage probabilities of ip  in ZIP models when the data are generated 
from ZAP distribution. 
 

π  
 

l = 1 l = 2 l = 5 l = 10 
logit probit cloglog logit probit cloglog logit probit cloglog logit probit cloglog 

0.1 1.000 1.000 1.000 1.000 1.000 1.000 0.973 0.966 0.975 0.947 0.956 0.955 
0.2 1.000 1.000 1.000 1.000 0.999 1.000 0.959 0.957 0.948 0.935 0.959 0.953 
0.3 1.000 1.000 1.000 0.795 0.707 0.876 0.951 0.949 0.951 0.964 0.951 0.940 
0.4 0.989 0.965 0.998 0.750 0.708 0.782 0.956 0.955 0.952 0.947 0.949 0.959 
0.5 0.732 0.638 0.893 0.784 0.770 0.814 0.947 0.953 0.946 0.940 0.946 0.953 
0.6 0.521 0.475 0.701 0.816 0.811 0.855 0.949 0.950 0.952 0.950 0.955 0.966 
0.7 0.540 0.556 0.698 0.844 0.856 0.895 0.950 0.953 0.954 0.959 0.951 0.958 
0.8 0.666 0.692 0.782 0.888 0.896 0.913 0.959 0.937 0.954 0.937 0.954 0.956 
0.9 0.824 0.847 0.901 0.918 0.920 0.928 0.955 0.958 0.959 0.953 0.950 0.962 
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Table 4. The estimated coverage probabilities of ip  in ZIP models when the data are generated 
from ZIP distribution. 
 

π  
 

l = 1 l = 2 l = 5 l = 10 
logit probit cloglog logit probit cloglog logit probit cloglog logit probit cloglog 

0.1 0.913 0.918 0.902 0.953 0.954 0.940 0.965 0.951 0.966 0.946 0.954 0.956 
0.2 0.943 0.951 0.931 0.963 0.967 0.960 0.954 0.957 0.953 0.934 0.950 0.948 
0.3 0.958 0.959 0.943 0.958 0.965 0.964 0.947 0.948 0.953 0.961 0.951 0.954 
0.4 0.957 0.962 0.956 0.962 0.958 0.961 0.953 0.955 0.947 0.949 0.942 0.961 
0.5 0.965 0.964 0.950 0.960 0.946 0.946 0.958 0.953 0.943 0.944 0.941 0.955 
0.6 0.971 0.965 0.956 0.948 0.953 0.953 0.956 0.944 0.950 0.948 0.952 0.961 
0.7 0.970 0.968 0.955 0.959 0.954 0.953 0.944 0.957 0.943 0.959 0.956 0.946 
0.8 0.973 0.974 0.962 0.956 0.959 0.949 0.955 0.949 0.955 0.942 0.959 0.954 
0.9 0.978 0.971 0.973 0.960 0.960 0.966 0.954 0.957 0.959 0.951 0.958 0.959 

 
Table 5. The average AICs of ZAP models when the data are generated from ZAP distribution. 
 

π  
 

l = 1 l = 2 l = 5 l = 10 
logit probit cloglog logit probit cloglog logit probit cloglog logit probit cloglog 

0.1 251.24 251.06 251.49 339.45 339.29 339.05 459.32 459.25 458.89 527.84 528.20 528.17 
0.2 265.52 265.78 265.80 344.35 344.28 344.36 450.73 450.69 450.83 511.87 511.92 511.89 
0.3 267.25 267.29 267.28 336.25 335.82 335.56 429.54 428.92 429.39 482.85 482.75 482.99 
0.4 259.55 259.46 259.21 318.20 317.99 318.12 397.69 397.73 398.19 443.33 443.73 444.19 
0.5 243.21 242.73 243.08 292.39 291.69 291.71 359.45 358.18 358.51 396.79 396.94 396.99 
0.6 218.27 218.83 217.99 257.12 257.03 257.50 310.76 311.60 310.81 341.18 341.81 341.15 
0.7 185.11 185.47 185.90 215.34 215.08 214.93 255.29 255.63 254.69 278.07 277.80 278.25 
0.8 143.13 143.01 142.59 162.42 162.25 162.90 189.01 189.21 188.52 205.47 203.57 204.96 
0.9 87.20 87.45 87.23 96.81 97.49 97.03 110.65 111.31 110.81 118.23 117.81 118.33 

 

 
Table 6. The average AICs of ZAP models when the data are generated from ZIP distribution. 
 

π  
 

l = 1 l = 2 l = 5 l = 10 
logit probit cloglog logit probit cloglog logit probit cloglog logit probit cloglog 

0.1 255.23 255.00 255.90 343.59 343.37 343.36 458.86 458.90 459.00 527.82 527.95 527.93 
0.2 244.56 243.74 243.81 335.41 335.15 334.75 449.27 450.02 449.80 511.91 511.84 512.04 
0.3 230.20 229.99 229.68 319.25 319.49 319.33 428.00 427.89 427.77 482.80 482.10 482.65 
0.4 212.44 212.77 212.27 296.90 297.65 297.28 396.65 395.88 395.99 444.31 443.40 444.46 
0.5 191.32 191.62 191.09 269.48 269.19 269.68 357.68 356.54 357.42 396.56 395.64 396.30 
0.6 167.02 167.00 166.78 235.52 235.91 235.79 309.02 310.25 309.73 341.39 341.15 340.91 
0.7 137.69 137.34 138.37 194.63 195.14 194.09 253.36 254.11 253.37 277.79 277.03 277.67 
0.8 103.37 103.10 104.10 146.59 146.78 146.57 188.91 187.85 188.73 204.09 204.47 204.32 
0.9 62.68 62.10 61.25 87.29 86.03 86.57 110.01 110.05 109.73 119.29 118.09 118.39 
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Table 7. The average AICs of ZIP models when the data are generated from ZAP distribution. 
 

π  
 

l = 1 l = 2 l = 5 l = 10 
logit probit cloglog logit probit cloglog logit probit cloglog logit probit cloglog 

0.1 274.07 274.55 274.46 341.56 341.26 341.17 459.45 459.00 459.10 527.77 527.77 528.52 
0.2 274.28 273.81 273.65 344.48 344.06 343.88 450.15 450.68 450.28 511.64 511.36 511.89 
0.3 269.36 269.82 269.26 335.92 335.82 336.04 429.16 429.02 428.96 483.11 482.73 482.80 
0.4 259.78 259.88 259.56 318.11 317.82 318.49 397.88 398.73 398.04 443.80 443.09 443.97 
0.5 242.81 242.75 242.82 291.83 292.00 291.62 358.96 358.89 359.21 396.25 397.08 397.46 
0.6 217.84 218.54 218.74 257.49 257.74 257.73 310.68 311.21 311.64 341.31 341.00 341.51 
0.7 185.82 185.82 185.18 215.49 215.05 214.76 255.03 254.38 254.98 278.71 277.66 277.04 
0.8 143.99 142.94 142.74 161.46 162.20 162.71 189.09 190.74 189.69 205.18 204.12 204.33 
0.9 87.61 87.68 87.60 97.32 97.98 97.67 110.33 111.08 110.51 119.37 117.74 117.66 
 
Table 8. The average AICs of ZIP models when the data are generated from ZIP distribution. 
 

π  
 

l = 1 l = 2 l = 5 l = 10 
logit probit cloglog logit probit cloglog logit probit cloglog logit probit cloglog 

0.1 255.76 255.65 255.04 343.63 342.89 343.52 459.20 458.86 459.38 527.96 528.11 527.93 
0.2 244.38 244.30 244.36 335.03 334.46 334.78 450.22 449.52 449.72 511.94 511.53 511.54 
0.3 230.31 230.29 229.35 319.30 319.42 319.60 428.31 427.56 427.78 482.88 482.60 481.88 
0.4 212.22 212.01 211.97 297.92 297.42 297.27 396.53 395.79 396.40 443.60 443.50 444.20 
0.5 191.43 191.78 191.84 269.46 269.53 268.71 357.18 357.33 356.77 397.41 396.66 397.11 
0.6 166.86 167.46 166.28 235.80 235.38 235.59 309.54 310.32 309.45 341.40 341.74 340.64 
0.7 138.09 137.93 137.53 194.95 195.46 195.40 253.19 254.28 253.27 278.26 277.13 278.53 
0.8 103.74 104.28 103.67 146.01 146.30 147.22 187.97 188.52 188.12 203.93 204.81 204.25 
0.9 62.24 62.00 62.19 86.33 86.47 87.06 110.15 109.66 109.50 119.47 118.42 118.71 

Table 9. Proportions of zeros in the data generated from the ZAP and ZIP models. 
 

π  ZAP ZIP 
l = 1 l = 2 l = 5 l = 10 l = 1 l = 2 l = 5 l = 10 

0.1 0.10 0.10 0.10 0.10 0.43 0.22 0.11 0.10 
0.2 0.20 0.20 0.20 0.20 0.50 0.31 0.20 0.20 
0.3 0.30 0.30 0.30 0.30 0.57 0.40 0.30 0.30 
0.4 0.40 0.40 0.40 0.40 0.63 0.49 0.41 0.40 
0.5 0.50 0.50 0.50 0.50 0.69 0.58 0.51 0.51 
0.6 0.60 0.60 0.60 0.60 0.76 0.66 0.61 0.61 
0.7 0.70 0.70 0.70 0.70 0.82 0.75 0.71 0.71 
0.8 0.80 0.80 0.80 0.80 0.88 0.83 0.81 0.81 
0.9 0.90 0.90 0.90 0.90 0.94 0.92 0.91 0.91 
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Considering the AIC values, they may 
not be in agreement with the CPs. Having a 
low value of AIC does not mean that there is 
a high value in the CP. The differences in 
CPs can be significant, but corresponding 
AIC values are only slightly different. For 
example, in Table 2, when p  equals 0.8 and 
l  equals 1, the CPs of the logit, probit, and 
cloglog links are 0.50, 0.49, and 0.64, 
respectively, but the corresponding AICs 
(seen in Table 6) are 103.37, 103.10, and 
104.10, respectively. In Table 3, when p  
equals 0.9 and l  equals 1, the CPs of the 
logit, probit, and cloglog links are 0.82, 0.85, 
and 0.90, respectively, but the corresponding 
AIC values (shown in Table 7) are nearly the 
same, which is approximately 87.6. 
Therefore, the AIC does not represent the 
performance of the intervals or coverage 
probabilities, and this suggests that the AIC 
should not be used to evaluate the fitted 
models with different links. 

When the model corresponds to the 
distribution, the CP values (as shown in 
Tables 1 and 4) are approximately 0.95 
regardless of the l  values, p  values, and 
link functions, except in the case where l  
equals 1 and p  equals 0.1, as seen in Table 
4. In this case, the CPs are approximately 
0.91, less than 0.95. In conclusion, if the 

model is correct (or agrees with the 
distribution), the link functions and values of 
l  and p  do not significantly affect the 
coverage probabilities. 

When the model used to fit the data is 
incorrect, the value of l  has a greatly 
significant effect on both the CP and AIC 
values. As seen in Table 2, when l  equals 1, 
the Wald confidence interval cannot contain 
the true p , especially when p  is of a low 
value, i.e., p = 0.1, 0.2, or 0.3. This is 
because the average length of the intervals of 
ZAP is very short for all values of p  and .l
Note that the value of parameter p  is the 
same as the proportion of zeros in the 
population, as shown Table 9. This 
characteristic likely makes the ZAP model 

have a low value of 11I , which appears in 
Eq. (9), Eq. (10), and Eq. (11). The ZIP 
distribution has two sources of zeros, so the 
ZIP tends to have a higher percentage of 
zeros than the ZAP, especially in cases with 
low values of l . The proportion of zeros in 
the ZAP model is represented by p , but this 
is not true for ZIP distribution. For example, 
in Table 9, the ZIP distribution in which 

1l =   and 0.1p =  has zeros of about 43%   
while the ZAP has only 10%, which 
corresponds to 0.1p =  . Moreover, it is also 

 

 
Table 10. The average length of interval of ip  in ZAP models when the data are obtained from 
ZIP distribution. 
 

π  
 

l = 1 l = 2 l = 5 l = 10 
logit probit cloglog logit probit cloglog logit probit cloglog logit probit cloglog 

0.1 0.191 0.191 0.191 0.162 0.161 0.160 0.123 0.120 0.118 0.120 0.117 0.115 
0.2 0.193 0.193 0.193 0.178 0.178 0.178 0.157 0.156 0.155 0.156 0.156 0.154 
0.3 0.191 0.192 0.193 0.189 0.189 0.189 0.178 0.178 0.178 0.177 0.177 0.177 
0.4 0.187 0.187 0.188 0.192 0.193 0.193 0.189 0.190 0.189 0.189 0.189 0.189 
0.5 0.180 0.180 0.182 0.191 0.191 0.192 0.193 0.193 0.193 0.193 0.193 0.193 
0.6 0.168 0.168 0.170 0.183 0.184 0.185 0.189 0.189 0.190 0.189 0.189 0.190 
0.7 0.153 0.152 0.154 0.170 0.170 0.171 0.177 0.177 0.178 0.177 0.177 0.178 
0.8 0.131 0.129 0.134 0.148 0.147 0.150 0.155 0.155 0.158 0.156 0.155 0.158 
0.9 0.101 0.097 0.102 0.114 0.111 0.115 0.120 0.117 0.121 0.120 0.117 0.121 
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Table 11.  The average length of interval of ip  in ZIP models when the data are obtained from 
ZAP distribution. 
 

π  
 

l = 1 l = 2 l = 5 l = 10 
logit probit cloglog logit probit cloglog logit probit cloglog logit probit cloglog 

0.1 1.000 1.000 1.000 0.939 0.926 0.956 0.122 0.120 0.124 0.119 0.117 0.121 
0.2 0.999 0.999 1.000 0.402 0.361 0.429 0.157 0.157 0.160 0.156 0.155 0.158 
0.3 0.970 0.952 0.977 0.238 0.231 0.249 0.178 0.179 0.181 0.177 0.177 0.179 
0.4 0.757 0.723 0.787 0.238 0.237 0.241 0.191 0.191 0.192 0.189 0.189 0.190 
0.5 0.533 0.520 0.582 0.237 0.238 0.240 0.194 0.195 0.195 0.193 0.193 0.194 
0.6 0.432 0.421 0.455 0.231 0.232 0.233 0.190 0.191 0.190 0.189 0.189 0.189 
0.7 0.382 0.388 0.399 0.217 0.217 0.216 0.178 0.179 0.178 0.178 0.178 0.176 
0.8 0.343 0.352 0.341 0.191 0.190 0.190 0.157 0.156 0.155 0.156 0.155 0.153 
0.9 0.294 0.298 0.296 0.155 0.151 0.148 0.121 0.119 0.117 0.120 0.117 0.116 

 
observed that when l   equals 5, as seen in 
Table 2, the CPs are not  very far from 0.95 
for all 'p s. A plausible explanation is that 
the proportions of zeros from the ZIP and 
ZAP distributions are nearly the same. When 
this occurs, the ZAP model can be used for 
the data generated from the ZIP distribution. 

Conversely, if the ZIP model is used 
when the data comes from the ZAP 
distribution, the CPs tend to be higher than 
0.95 in many situations. In Table 3, when l  
equals 1 and p  equals 0.1, 0.2, 0.3, or 0.4, 
the CPs are approximately 1 for all link 
functions, which is much higher than 0.95. 
When p  is greater than 0.4, the CP starts 
decreasing until p  is about 0.6 and begins 
increasing again. Thus, it can be concluded 
that the ZIP model tends to give excessively 
conservative confidence intervals when p  
and l  are of low values. Such problems may 
result from the differences in the proportions 
of zeros, as the proportions of zeros in the 
data generated from the ZAP distribution are 
much lower than those from the ZIP 
distribution, especially when l  equals 1 and 
p  is at a low value. Again, when the 
proportions of zeros from ZIP and ZAP 
distributions are nearly the same, e.g., ZAP 
and ZIP with 5,10l = , the ZIP model can be 
used for data generated from the ZAP 
distribution. For example, with 5l = and 

.3p = , the percentage of zeros in the ZIP and  

 
ZAP distributions are approximately 30%, as 
seen in Table 9, and the corresponding CPs 
are approximately 0.95 for all links.  

When examining further, the average 
length of intervals from the ZAP models 
tends be much smaller than that from the ZIP 
models, as shown in Tables 10 and 11. 
However, when l  is large, i.e., l  equals 5 
or  10,  the  difference  between  the  interval 
length of the ZIP and ZAP models is very 
small, regardless of the p  values. In 
addition, there is less variability of the 
average length from the ZAP than that from 
the ZIP.  
 
5. Real Data 

To illustrate the applications of the 
Wald confidence intervals, the beetle egg-
laying data is used as the example to 
calculate the CIs. Tauber et al. [18] observed 
a particular response called diapause in the 
females. They expected that the females 
might enter diapause  and  produce no eggs 
with a higher  probability for some 
conditions than for others. One of the 
responses in the experiment was the number 
of eggs laid by the females not in diapause. 
The data were provided by Bilder and 
Loughin  [19]  and  are  presented  in  Fig.  1. 
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Fig. 1. The number of eggs laid by the females 
not in diapause. 
 
The number of zeros in the data is too high to 
be a regular Poisson distribution. The 
proportion of zeros is approximately 40%, 
and the mean of positive counts is 6.4. From 
the simulation results in Section 4, when the 
value of l  is high, both the ZIP and ZAP 
models will have nearly the same 
performance. This can help predict the result 
of the real data. Here, if the ZIP is used, the 
CIs using logit, probit, and cloglog links will 
be (0.2784, 0.5032), (0.2769, 0.5023), 
(0.2821, 0.5092), respectively, and if the 
ZAP is applied, the CIs using the logit, 
probit, and cloglog links will produce 
(0.2796, 0.5040), (0.2780, 0.5030), and 
(0.2727, 0.4973), respectively. Both the ZIP 
and ZAP models result in similar CIs, and all 
three link functions do not seem to affect the 
CIs.  
 

6. Conclusion  
If the model used to fit the data is 

correct or corresponds to the distribution of 
the data, the link functions, proportion of 
zeros, probability ,p  and mean l  do not 
have a very significant effect on the coverage 
probabilities. However, when the model is 
incorrect, the values of l  and p  play an 
important role in determining the coverage 
probabilities. If any combination of l  and 
p  values results in the ZAP and ZIP 
distributions having nearly the same 
proportions of zeros, both the ZAP and ZIP 
models can be used for fitting the data. This 
especially occurs when l  equals 5 or 10. For 
example, in Fig. 2 and Fig. 3, when l  equals 

5, the CPs can achieve a confidence level of 
0.95 for all p  values, even though the 
models are wrong. In Table 9, it can be seen 
that the proportions (for both ZIP and ZAP) 
of zeros in each p  are approximately the 
same. However, when l  equals 1 or 2, the 
proportions of zeros are different. In such 
situations, using the wrong model will give a 
CP below the desirable confidence level, 
0.95. Overall, the Wald-type confidence 
intervals with different link functions have 
nearly the same coverage probabilities 
whether the model used for fitting the data is 
correct or not. In addition, the AIC and CP 
do not necessarily agree, so the AIC should 
not be used as the criterion for selecting a 
model to construct the Wald confidence 
interval. 
 

 
Fig. 2. The estimated coverage probabilities of 
ip  in ZAP models using the logit link when the 

data are obtained from ZIP distribution. 
 
 

 
Fig. 3. The estimated coverage probabilities of 
ip  in ZIP models using the logit link when the 

data are obtained from ZAP distribution. 
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In practice, analysts do not know the 
distribution of data in advance, so in this 
study, the ZIP would be recommended, as it 
tends to give higher CPs than the ZAP.  Also, 
the descriptive statistics such the proportion 
of zeros, p̂ , and the mean of positive counts, 
ˆ,l should be calculated to help select 

between the ZIP and ZAP models. When l̂  
is large, both models will be usable, and if l̂  
is small, the ZIP would be recommended as 
it is conservative.  
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