

Note on Recent Fixed Point Results in Graphical Rectangular *b*-Metric Spaces

Pravin Baradol, Dhananjay Gopal*

Department of Applied Mathematics and Humanities, Sardar Vallabhbhai National Institute of Technology, Surat, India

> Received 19 April 2020; Received in revised form 5 June 2020 Accepted 5 June 2020; Available online 24 December 2020

ABSTRACT

This paper aims to rectify the recent fixed point results on graphical rectangular *b*-metric spaces due to Mudasir Younis et al. (J. Fixed Point Theory Appl., doi:10.1007/s11784-019-0673-3, 2019). Moreover, we also give the answer of some open problem in the mentioned research related to the Kannan contraction mapping in the space described above with its fixed point theorems.

Keywords: Fixed point; Graph; Graphical rectangular b-metric; Kannan G'-contraction

1. Introduction

Throughout this paper, unless otherwise specified, let the diagonal of $X \times X$ be denoted by Δ for a nonempty set X. Furthermore, let $G = (\mathfrak{U}(G), \mathfrak{E}(G))$ be a directed graph possessing no parallel edges, where $\mathfrak{U}(G)$ is the set of all vertices such that $\mathfrak{U}(G) \subseteq X$ and $\mathfrak{E}(G)$ is the set of all the edges of G containing all loops, that is, $\Delta \subseteq \mathfrak{E}(G)$. A path (or directed path) of length m between points $v, w \in \mathfrak{U}(G)$ is defined as a sequence $\{x_j\}_{j=0}^m$ of (m + 1) vertices with $v = x_0, w = x_m$ and $(x_{j-1}, x_j) \in \mathfrak{E}(G)$ for all $j = 1, 2, \ldots, m$. Consistent with Shukla [1], we denote

 $[u]_G^l = \{v \in X : \exists a \text{ path directing from } u\}$

v having length l}.

In addition, a relation *P* on *X* is such that $(uPv)_G$ if there exists a path directing from *u* to *v* in *G* and the notion $w \in (uPv)G$ is used whenever *w* is contained in the path $(uPv)_G$. A sequence $\{x_n\}$ in *X* is called a *G*-termwise connected (briefly, G-TWC) if $(x_nPx_{n+1})_G$ for all $n \in \mathbb{N}$.

To avoid repetition, we assume the same terminology, notations and basic facts as having been utilized in [2]. For more details, one can also refer to [1,3-5]. The idea of a graphical rectangular *b*-metric space is a generalization of a rectangular *b*-metric space.

Definition 1.1 ([6]). *Let X be a non-empty*

set and $d : X \times X \rightarrow [0, \infty)$ be a function. If d satisfies the following conditions:

- (*i*) d(x, y) = 0 iff x = y;
- (ii) d(x, y) = d(y, x) for all $x, y \in X$;
- (iii) for each $x, y \in X$ and distinct points $u, v \in X \setminus \{x, y\}$, we have

$$d(x, y) \le d(x, u) + d(u, v) + d(v, y),$$

then d is called a rectangular metric on X and (X,d) is called a rectangular metric space (briefly, a RMS).

Definition 1.2 ([7, 8]). Let X be a nonempty set, $d: X \times X \rightarrow [0, \infty)$ be a function and $s \ge 1$. If d satisfies the following conditions:

- (*i*) d(x, y) = 0 *iff* x = y;
- (ii) d(x, y) = d(y, x) for all $x, y \in X$;
- (iii) for each $x, y \in X$ and distinct points $u, v \in X \setminus \{x, y\}$, we have

$$d(x, y) \le s[d(x, u) + d(u, v) + d(v, y)],$$

then *d* is called a rectangular *b*-metric on *X* and (X, d) is called a rectangular *b*-metric space (briefly, a R_bMS).

Definition 1.3 ([1]). Let X be a non-empty set, G be a graph endowed with X, and d_G : $X \times X \rightarrow [0, \infty)$ be a function satisfying the following conditions:

- (*i*) $d_G(x, y) = 0$ iff x = y;
- (ii) $d_G(x, y) = d_G(y, x)$ for all $x, y \in X$;
- (iii) for each $x, y \in X$ with $(xPy)_G$ and $z \in (xPy)_G$, we have

$$d_G(x, y) \le d_G(x, z) + d_G(z, y).$$

Then d_G is called a graphical metric on X and (X, d_G) is called a graphical metric space (briefly, a GMS).

Definition 1.4 ([2]). Let X be a non-empty set, G be a graph endowed with X, $s \ge 1$, and $r_{G_b} : X \times X \rightarrow [0, \infty)$ be a function satisfying the following conditions:

 $(GR_bM - 1) r_{G_b}(x, y) = 0$ iff x = y;

- $(GR_bM 2) \ r_{G_b}(x, y) = r_{G_b}(y, x) \ for \ all$ $x, y \in X;$
- $(GR_bM 3)$ for each $x, y \in X$ and distinct points $u, v \in X \setminus \{x, y\}$ with $(xPy)_G$ and $u, v \in (xPy)_G$, we have

$$r_{G_b}(x, y) \le s[r_{G_b}(x, u) + r_{G_b}(u, v) + r_{G_b}(v, y)].$$

Then r_{G_b} is called a graphical rectangular b-metric on X and (X, r_{G_b}) is called a graphical rectangular b-metric space (briefly, a GR_bMS).

Definition 1.5 ([2]). If s = 1 in Definition 1.4, we call the resultant space a graphical rectangular metric space (briefly, GRMS) and denote it by (X, r_G) , which is the graphical version of a rectangular metric space.

Remark 1.6. It is easy to see that a GR_bMS is a *GRMS* with s = 1.

Definition 1.7 ([2]). Let (X, r_{G_b}) be a graphical rectangular b-metric space. A sequence $\{x_n\}$ in X is said to be

i) a Cauchy sequence if for given $\epsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that

 $r_{G_b}(x_n, x_m) < \epsilon$ for all $n, m \ge n_0$

i.e., $\lim_{n,m\to\infty} r_{G_b}(x_n, x_m) = 0.$

ii) converges to $x \in X$ if for given $\epsilon > 0$, there exist $m \in \mathbb{N}$ such that

 $r_{G_b}(x_n, x) < \epsilon$ for all $n \ge m$

i.e., $\lim_{n\to\infty} r_{G_b}(x_n, x) = 0$.

Definition 1.8 ([2]). Let (X, r_{G_b}) be a graphical rectangular b-metric space endowed with a graph $G = (\mathfrak{U}(G), \mathfrak{E}(G))$ and G' be a sub-graph of G with $\mathfrak{U}(G') = X$.

- *i)* X is said to be complete if every Cauchy sequence in X converges in X.
- *ii)* X is said to be G'-complete if every G'-termwise connected Cauchy sequence in X converges in X.

Definition 1.9 ([2]). Let A be a selfmapping on a graphical rectangular bmetric space (X, r_{G_b}) endowed with a graph G and the coefficient $s \ge 1$, and G' be a subgraph of G with $\Delta \subseteq \mathfrak{E}(G')$. Then A is called a (G, G')-contraction on X if it satisfies the following conditions:

(GC-1) for each $(x, y) \in \mathfrak{E}(G')$, we have $(Ax, Ay) \in \mathfrak{E}(G')$;

(GC-2) there exists $\lambda \in [0, \frac{1}{s})$ such that

$$r_{G_h}(Ax, Ay) \le \lambda r_{G_h}(x, y)$$

for all $x, y \in X$ with $(x, y) \in \mathfrak{E}(G')$.

Definition 1.10 ([2]). Let A be a selfmapping on a graphical rectangular bmetric space (X, r_{G_b}) endowed with a graph G and the coefficient $s \ge 1$, and G' be a subgraph of G with $\Delta \subseteq \mathfrak{E}(G')$. A graph G' is said to satisfy the property (\mathcal{P}), if a G'-termwise connected A-Picard sequence $\{x_n\}$ converges in X, then there exist a limit $\xi \in X$ of $\{x_n\}$ and $n_0 \in \mathbb{N}$ such that $(x_n, \xi) \in \mathfrak{E}(G')$ or $(\xi, x_n) \in \mathfrak{E}(G')$ for all $n > n_0$. **Theorem 1.11** ([2]). Let (X, r_{G_b}) be a graphical rectangular b-metric space endowed with a graph G and the coefficient $s \ge 1$ and G' be a subgraph of G with $\Delta \subseteq \mathfrak{E}(G')$. Suppose that X is G'-complete, $A: X \to X$ is a (G, G')-contraction mapping and the following conditions hold:

- (1) G' satisfies the property (\mathcal{P}) ;
- (II) there exist $x_0 \in X$ such that $Ax_0 \in [x_0]_{G'}^l$ for some $l \in \mathbb{N}$.

Then there exist $z^* \in X$ such that the A-Picard sequence $\{x_n\}$ with the initial value $x_0 \in X$ is G'-termwise connected and converges to both z^* and Az^* .

Definition 1.12 ([2]). Let (X, r_{G_b}) be a graphical rectangular metric space and A: $X \rightarrow X$ be a (G, G')-contraction mapping. The quadruple (X, r_{G_b}, G', A) is said to have the property S^* if for each G'-termwise connected A-Picard sequence $\{x_n\}$ in X has the unique limit.

In [2], authors also posed the following question.

• Question: Is it possible to establish analogous results of Edelstein [9], Hardy-Roger [10], Kannan [11] , Meir-Keeler [12], and Reich [13] type contractions in *GR*_b*MS*.

In this paper, we show that the conditions of Theorem 4.2 in [2] are not sufficient to prove the Cauchyness of the *G'*-termwise connected *A*-Picard sequence and hence it doesn't ensure the existence of fixed points in *GR_bMS*. In fact, we show that the inequality (4.4) of Theorem 4.2 in [2] (page 9-10) doesn't hold for even values $l \in \mathbb{N}$. To remedy this, we propose suitable conditions on the mentioned theorem (see condition (II) in Theorem 2.3 given below) and provide a corrected proof. Moreover, we provide a positive answer to the question of the existence of a fixed point for Kannan contraction mappings in the aforesaid space.

2. Main Results

We begin this section with the following example showing that the inequality (4.4) of Theorem 4.2 in [2] (page 9-10) doesn't hold for even values $l \in \mathbb{N}$.

Example 2.1. Let $X = \{0\} \cup \{\frac{1}{3^n} : n \in \mathbb{N}\}$ and $G = (\mathfrak{U}(G), \mathfrak{E}(G))$ be a graph associated with X, where $\mathfrak{U}(G) = X$ and $\mathfrak{E}(G) :=$ $\Delta \cup \{(\frac{1}{3^n}, \frac{1}{3^{n+1}}) \in X \times X : n \in \mathbb{N}\}$. Define a function $r_{G_b} : X \times X \to [0, \infty)$ by

$$\begin{aligned} r_{G_b}(x,y) &= 0 \text{ iff } x = y, \\ r_{G_b}\left(0,\frac{1}{3^n}\right) &= r_{G_b}\left(\frac{1}{3^n},0\right) = \frac{1}{2} \text{ for all } n \in \mathbb{N}, \\ r_{G_b}\left(\frac{1}{3^m},\frac{1}{3^n}\right) &= 1 \text{ for all } m, n \in \mathbb{N} \text{ with} \\ m \neq n \text{ and } 2 \text{ divides } |m-n|, \end{aligned}$$

$$r_{G_b}\left(\frac{1}{3^m},\frac{1}{3^n}\right) = \frac{1}{3^{n+m}}$$
 otherwise.

Then (X, r_{G_b}) is a graphical rectangular metric space (i.e., GR_bMS with s = 1). Define a mapping $A : X \to X$ by

$$Ax = \begin{cases} \frac{1}{3} & if \ x = 0\\ \frac{x}{3^4} & otherwise. \end{cases}$$

Then A is a (G, G')-contraction mapping on X with $\lambda = \frac{1}{3}$ and G' = G.

Now, we will prove that for any $x_0 \in X$ such that $Ax_0 \in [x_0]_{G'}^l$ for some $l \in \mathbb{N}$, the A-Picard sequence $\{x_n\}$ is not a Cauchy sequence. Note that the Property (\mathcal{P}) is not required to prove the Cauchyness of a a sequence $\{x_n\}$ (see the proof of Theorem 4.2 in [2]).

Case-I If $x_0 = 0$, then $Ax_0 = \frac{1}{3}$. But there is no path from 0 to $\frac{1}{3}$. Then $Ax_0 \notin$ $[x_0]_{G'}^l$ for all $l \in \mathbb{N}$. So we don't consider this case.

Case-II If $x_0 \in \{\frac{1}{3^n} : n \in \mathbb{N}\}$, then $Ax_0 \in [x_0]_{G'}^4$. Suppose that $x_0 = \frac{1}{3}$. Then $Ax_0 = x_1 = \frac{1}{3^5}$ and there exists a sequence $\{y_j\}_{j=0}^4$ such that $y_0 = x_0 = \frac{1}{3}$, $y_1 = \frac{1}{3^2}$, $y_2 = \frac{1}{3^3}$, $y_3 = \frac{1}{3^4}$, $y_4 = Ax_0 = \frac{1}{3^5}$ with $(y_{j-1}, y_j) \in \mathfrak{E}(G')$ for all j = 1, 2, 3, 4. This implies that $Ax_0 \in [x_0]_{G'}^4$. Since A is an edge preserving mapping, we can show that the sequence $\{x_n\}$ is a G'-termwise connected A-Picard sequence.

Now, we will show that the inequality (4.4) of Theorem 4.2 in [2] (page 9-10) is not true for m = 0:

$$\begin{split} r_{G_b}(x_0, x_1) &= r_{G_b}(y_0, y_4) \\ &= r_{G_b}\left(\frac{1}{3}, \frac{1}{3^5}\right) \\ &= 1 \\ &\not\leq \frac{1}{3^3} + \frac{1}{3^5} + \frac{1}{3^7} + \frac{1}{3^9} \\ &= r_{G_b}(y_0, y_1) + r_{G_b}(y_1, y_2) \\ &+ r_{G_b}(y_2, y_3) + r_{G_b}(y_3, y_4). \end{split}$$

Also, for any n = 0, 1, 2, ..., we *have*

$$r_{G_b}(x_n, x_{n+1}) = r_{G_b}\left(\frac{1}{3^{n+1}}, \frac{1}{3^{n+5}}\right) = 1.$$

This implies that $\{x_n\}$ is not a Cauchy sequence.

Remark 2.2. The above example demonstrates the technical difficulties in utilizing the path of even length between x_n and Ax_n .

To prove the next result, the following symbol is needed: for a graph $G = (\mathfrak{U}(G), \mathfrak{E}(G))$ and $u \in \mathfrak{U}(G)$, we denote

$$[\blacktriangle u]_G^l = \{ v \in X : \exists a \text{ path}\{x_j\}_{j=0}^l \text{ from } u \text{ to} \\ v \text{ with } x_{j-1} \neq x_j \forall j = 1, 2, \dots, l \}.$$

Theorem 2.3. Let (X, r_{G_b}) be a graphical rectangular b-metric space endowed with a graph G and the coefficient $s \ge 1$ and G' be a subgraph of G with $\Delta \subseteq \mathfrak{E}(G')$. Suppose that X is G'-complete, $A : X \to X$ is a one-to-one (G, G')-contraction mapping and the following conditions hold:

- (I) G' satisfies the property (\mathcal{P}) ;
- (II) There exists $x_0 \in X$ such that $Ax_0 \in [\blacktriangle x_0]_{G'}^l$ and $A^2x_0 \in [\blacktriangle x_0]_{G'}^m$, where l, m are odd positive integers.

Then there exist $z^* \in X$ such that the A-Picard sequence $\{x_n\}$ with the initial value $x_0 \in X$ is G'-termwise connected and converges to both z^* and Az^* .

Proof. Let $x_0 \in X$ be such that $Ax_0 \in [\blacktriangle x_0]_{G'}^l$ and $A^2x_0 \in [\blacktriangle x_0]_{G'}^m$, where l, m are odd integers. Define an A-Picard sequence $\{x_n\}$ by $x_n = Ax_{n-1}$ for all $n \in \mathbb{N}$. Since $Ax_0 \in [\blacktriangle x_0]_{G'}^l$ and $A^2x_0 \in [\bigstar x_0]_{G'}^m$, there exist a path $\{y_j\}_{j=0}^l$ such that $x_0 = y_0$, $Ax_0 = y_l$ and $(y_{j-1}, y_j) \in \mathfrak{E}(G')$ with $y_{j-1} \neq y_j$ for all $j = 1, 2, \ldots, l$ and a path $\{w_j\}_{j=0}^m$ such that $x_0 = w_0$, $A^2x_0 = w_m$ and $(w_{j-1}, w_j) \in \mathfrak{E}(G')$ with $w_{j-1} \neq w_j$ for all $j = 1, 2, \ldots, m$. Since A is a (G, G')-contraction mapping, by (GC-1), we have

$$(Ay_{j-1}, Ay_j) \in \mathfrak{E}(G')$$
 for all $j = 1, 2, ..., l$.

Therefore, $\{Ay_j\}_{j=0}^l$ is a path from $Ay_0 = Ax_0 = x_1$ to $Ay_l = A^2x_0 = x_2$ of length l and $x_2 \in [x_1]_{G'}^l$. Continuing this process, for all $n \in \mathbb{N}$, we obtain $\{A^n y_j\}_{j=0}^l$ is a path from $A^n y_0 = A^n x_0 = x_n$ to $A^n y_l = A^n Ax_0 = x_{n+1}$ of length l and $x_{n+1} \in [x_n]_{G'}^l$. Thus, $\{x_n\}$ is a G'-termwise connected sequence.

Since $(A^n y_{j-1}, A^n y_j) \in \mathfrak{E}(G')$ for $j = 1, 2, \ldots, l$ and $n \in \mathbb{N}$. By (GC-2), for each $j = 1, 2, \ldots, l$, we have

$$r_{G_b}(A^n y_{j-1}, A^n y_j) \le \lambda r_{G_b}(A^{n-1} y_{j-1}, A^{n-1} y_j)$$

$$: \leq \lambda^n r_{G_b}(y_{j-1}, y_j).$$

$$(2.1)$$

Similarly, we can show that $\{A^n w_j\}_{j=0}^m$ is a path from $A^n w_0 = A^n x_0 = x_n$ to $A^n w_m = A^n A^2 x_0 = x_{n+2}$ of length *m* and $x_{n+2} \in [x_n]_{G'}^m$ for all $n \in \mathbb{N}$.

Since $(A^n w_{j-1}, A^n w_j) \in \mathfrak{E}(G')$ for j = 1, 2, ..., m and $n \in \mathbb{N}$. By (GC-2), for each j = 1, 2, ..., m, we have

$$r_{G_{b}}(A^{n}w_{j-1}, A^{n}w_{j}) \leq \lambda r_{G_{b}}(A^{n-1}w_{j-1}, A^{n-1}w_{j})$$

$$\vdots$$

$$\leq \lambda^{n} r_{G_{b}}(w_{j-1}, w_{j}).$$

(2.2)

Now, we obtain

$$\begin{aligned} r_{G_b}(x_0, x_1) &\leq s[r_{G_b}(y_0, y_1) + r_{G_b}(y_1, y_2) \\ &+ r_{G_b}(y_2, y_l)] \\ &\leq s[r_{G_b}(y_0, y_1) + r_{G_b}(y_1, y_2)] \\ &+ s^2[r_{G_b}(y_2, y_3) + r_{G_b}(y_3, y_4) \\ &+ r_{G_b}(y_4, y_l)] \\ &\vdots \\ &\leq s[r_{G_b}(y_0, y_1) + r_{G_b}(y_1, y_2)] \\ &+ s^2[r_{G_b}(y_2, y_3) + r_{G_b}(y_3, y_4)] \\ &+ \cdots + s^{\frac{l-1}{2}}[r_{G_b}(y_{l-3}, y_{l-2}) \\ &+ r_{G_b}(y_{l-2}, y_{l-1}) + r_{G_b}(y_{l-1}, y_l)] \\ &=: D_l \end{aligned}$$

and

$$\begin{aligned} r_{G_b}(x_0, x_2) &\leq s[r_{G_b}(w_0, w_1) + r_{G_b}(w_1, w_2) \\ &+ r_{G_b}(w_2, w_m)] \\ &\leq s[r_{G_b}(w_0, w_1) + r_{G_b}(w_1, w_2)] \\ &+ s^2[r_{G_b}(w_2, w_3) + r_{G_b}(w_3, w_4) \\ &+ r_{G_b}(w_4, w_m)] \end{aligned}$$

$$\leq s[r_{G_b}(w_0, w_1) + r_{G_b}(w_1, w_2)] + s^2[r_{G_b}(w_2, w_3) + r_{G_b}(w_3, w_4)] + \dots + s^{\frac{m-1}{2}}[r_{G_b}(w_{m-3}, w_{m-2}) + r_{G_b}(w_{m-2}, w_{m-1}) + r_{G_b}(w_{m-1}, w_m)] =: D_m.$$
(2.4)

By using $(GR_bM - 3)$ and (GC-1) and inequalities (2.1) and (2.3), we have

$$\begin{aligned} r_{G_b}(x_n, x_{n+1}) &= r_{G_b}(A^n x_0, A^n x_1) \\ &= r_{G_b}(A^n y_0, A^n y_l) \\ &\leq s[r_{G_b}(A^n y_0, A^n y_1) \\ &+ r_{G_b}(A^n y_1, A^n y_2) \\ &+ r_{G_b}(A^n y_0, A^n y_l)] \\ &\leq s[r_{G_b}(A^n y_0, A^n y_1) \\ &+ r_{G_b}(A^n y_1, A^n y_2)] \\ &+ s^2[r_{G_b}(A^n y_2, A^n y_3) \\ &+ r_{G_b}(A^n y_3, A^n y_4) \\ &+ r_{G_b}(A^n y_1, A^n y_l)] \\ &\vdots \\ &\leq s[r_{G_b}(A^n y_1, A^n y_2)] \\ &+ s^2[r_{G_b}(A^n y_2, A^n y_3) \\ &+ r_{G_b}(A^n y_1, A^n y_2)] \\ &+ s^2[r_{G_b}(A^n y_1, A^n y_2)] \\ &+ s^2[r_{G_b}(A^n y_1, A^n y_2)] \\ &+ s^2[r_{G_b}(A^n y_1, A^n y_1)] + \cdots \\ &+ s^{\frac{l-1}{2}}[r_{G_b}(A^n y_{l-3}, A^n y_{l-1}) \end{aligned}$$

$$+ s^{2} [r_{G_{b}}(A \ y_{l-3}, A \ y_{l-2}) + r_{G_{b}}(A^{n} y_{l-2}, A^{n} y_{l-1}) + r_{G_{b}}(A^{n} y_{l-1}, A^{n} y_{l})] \leq \lambda^{n} D_{l}.$$
(2.5)

Similarly, by using (GR_bM-3) and (GC-1) and inequalities (2.2) and (2.4), we have

$$\begin{aligned} r_{G_b}(x_n, x_{n+2}) &= r_{G_b}(A^n x_0, A^n x_2) \\ &= r_{G_b}(A^n w_0, A^n w_m) \\ &\leq s[r_{G_b}(A^n w_0, A^n w_1) \\ &+ r_{G_b}(A^n w_1, A^n w_2) \\ &+ r_{G_b}(A^n w_2, A^n w_m)] \end{aligned}$$

$$\leq s[r_{G_b}(A^n w_0, A^n w_1) + r_{G_b}(A^n w_1, A^n w_2)] + s^2[r_{G_b}(A^n w_2, A^n w_3) + r_{G_b}(A^n w_3, A^n w_4) + r_{G_b}(A^n w_4, A^n w_m)] \\ \vdots \\ \leq s[r_{G_b}(A^n w_0, A^n w_1) + r_{G_b}(A^n w_1, A^n w_2)] + s^2[r_{G_b}(A^n w_2, A^n w_3) + r_{G_b}(A^n w_3, A^n w_4)] + \cdots + s^{\frac{m-1}{2}}[r_{G_b}(A^n w_{m-3}, A^n w_{m-2}) + r_{G_b}(A^n w_{m-2}, A^n w_{m-1}) + r_{G_b}(A^n w_{m-1}, A^n w_m)] \\ = \lambda^n D_m. \qquad (2.6)$$

Now, we show that the sequence $\{x_n\}$ is a Cauchy sequence i.e., for all $p \ge 1$, $r_{G_b}(x_n, x_{n+p}) \to 0$ as $n \to \infty$. If $x_n = x_{n+1}$ for some $n \in \mathbb{N} \cup \{0\}$, then $r_{G_b}(x_n, x_{n+p}) \to 0$ as $n \to \infty$. So we may assume that $x_n \neq x_{n+1}$ for all $n \in \mathbb{N} \cup \{0\}$.

Case-I: If *p* is odd integer, then

$$\begin{split} r_{G_b}(x_n, x_{n+p}) &\leq s[r_{G_b}(x_n, x_{n+1}) \\ &+ r_{G_b}(x_{n+1}, x_{n+2})] \\ &+ s^2[r_{G_b}(x_{n+2}, x_{n+3}) \\ &+ r_{G_b}(x_{n+3}, x_{n+4})] + \cdots \\ &+ s^{\frac{p-1}{2}}[r_{G_b}(x_{n+p-3}, x_{n+p-2}) \\ &+ r_{G_b}(x_{n+p-2}, x_{n+p-1}) \\ &+ r_{G_b}(x_{n+p-1}, y_{n+p})]. \end{split}$$

By using inequality (2.5), we have

$$\begin{aligned} r_{G_b}(x_n, x_{n+p}) &\leq s[\lambda^n D_l + \lambda^{n+1} D_l] \\ &+ s^2 [\lambda^{n+2} D_l + \lambda^{n+3} D_l] + \cdots \\ &+ s^{\frac{p-1}{2}} [\lambda^{n+p-3} D_l \\ &+ \lambda^{n+p-2} D_l + \lambda^{n+p-1} D_l] \\ &\leq s^{\frac{p-1}{2}} \left(\frac{\lambda^n}{1-\lambda}\right) D_l \end{aligned}$$

 $\rightarrow 0 \text{ as } n \rightarrow \infty.$

Case-II: If *p* is even integer, then

$$\begin{split} r_{G_b}(x_n, x_{n+p}) &\leq s[r_{G_b}(x_n, x_{n+1}) \\ &+ r_{G_b}(x_{n+1}, x_{n+2})] \\ &+ s^2[r_{G_b}(x_{n+2}, x_{n+3}) \\ &+ r_{G_b}(x_{n+3}, x_{n+4})] + \cdots \\ &+ s^{\frac{p-2}{2}}[r_{G_b}(x_{n+p-4}, x_{n+p-3}) \\ &+ r_{G_b}(x_{n+p-3}, x_{n+p-2}) \\ &+ r_{G_b}(x_{n+p-2}, y_{n+p})]. \end{split}$$

By using inequality (2.5) and (2.6), we have

$$\begin{aligned} r_{G_b}(x_n, x_{n+p}) &\leq s[\lambda^n D_l + \lambda^{n+1} D_l] \\ &+ s^2 [\lambda^{n+2} D_l + \lambda^{n+3} D_l] + \cdots \\ &+ s^{\frac{p-2}{2}} [\lambda^{n+p-4} D_l \\ &+ \lambda^{n+p-3} D_l + \lambda^{n+p-2} D_m] \\ &\leq s^{\frac{p-2}{2}} \left(\frac{\lambda^n}{1-\lambda}\right) (D_l + D_m) \\ &\to 0 \text{ as } n \to \infty. \end{aligned}$$

From Case-I and Case-II, we can say that $\{x_n\}$ is a Cauchy sequence. Since *X* is *G'*-complete, $\{x_n\}$ is a convergent sequence. By our assumption, there exist $z^* \in X$ and $n_0 \in \mathbb{N}$ such that $x_n \to z^*$ as $n \to \infty$ and $(x_n, z^*) \in \mathfrak{E}(G')$ or $(z^*, x_n) \in \mathfrak{E}(G')$ for all $n > n_0$. Suppose that $(x_n, z^*) \in \mathfrak{E}(G')$ for all $n > n_0$. By (GC-2), we have

$$r_{G_b}(Ax_n, Az^*) \le \lambda r_{G_b}(x_n, z^*)$$

for all $n > n_0$. This implies that

$$r_{G_h}(Ax_n, Az^*) \to 0 \text{ as } n \to \infty$$

i.e., $x_{n+1} \rightarrow Az^*$. So, Az^* is also a limit of $\{x_n\}$.

Similarly, we can prove this for the case $(z^*, x_n) \in \mathfrak{E}(G')$ for all $n > n_0$. This completes the proof. \Box

Theorem 2.4. Assume that all hypotheses of Theorem 2.3 hold and further suppose that the quadruple (X, r_{G_b}, G', A) has the property S^* . Then A has a fixed point in X.

Proof. From the proof of Theorem 2.3 and Property S^* , we get this result. \Box

Theorem 2.5. Assume that all hypotheses of Theorem 2.4 hold and further suppose that $(z^*, w^*) \in \mathfrak{E}(G')$ for all $z^*, w^* \in Fix(A)$, where Fix(A) is the set of all fixed points of A. Then A has the unique fixed point.

Proof. From Theorem 2.4, *A* has a fixed point. Now, we will show the uniqueness of a fixed point. Assume that z^* and w^* are two distinct fixed points of *A*. By the assumption, we obtain $(z^*, w^*) \in \mathfrak{E}(G')$. By (GC-1), we have $(Az^*, Aw^*) \in \mathfrak{E}(G')$. Now, by (GC-2), we have

$$\begin{split} r_{G_b}(Az^*, Aw^*) &\leq \lambda r_{G_b}(z^*, w^*) \\ \Rightarrow r_{G_b}(z^*, w^*) &\leq \lambda r_{G_b}(z^*, w^*) \\ \Rightarrow \lambda &\geq 1, \end{split}$$

which is a contradiction to $\lambda < 1$. Hence, *A* has the unique fixed point. \Box

Now, in order to provide a positive answer to the question of the existence of fixed points for Kannan contraction mappings in GR_bMS , we first define the following definition:

Definition 2.6. Let *A* be a self-mapping on a graphical rectangular *b*-metric space (X, r_{G_b}) endowed with a graph *G* and the coefficient $s \ge 1$, and *G'* be a subgraph of *G* with $\Delta \subseteq \mathfrak{E}(G')$. Then *A* is called a Kannan *G'*-contraction on *X* if it satisfies the following conditions:

(KGC-1) for each $(x, y) \in \mathfrak{E}(G')$, we have $(Ax, Ay) \in \mathfrak{E}(G')$.

(KGC-2) there exists $\lambda \in [0, \frac{1}{s+1})$ such that

$$\begin{aligned} r_{G_b}(Ax, Ay) &\leq \lambda [r_{G_b}(x, Ax) \\ &+ r_{G_b}(y, Ay)] \end{aligned}$$

for all $x, y \in X$ with $(x, y) \in \mathfrak{E}(G')$.

Lemma 2.7. Let (X, r_{G_b}) be a graphical rectangular b-metric space endowed with a graph G and the coefficient $s \ge 1$ and G' be a subgraph of G with $\Delta \subseteq \mathfrak{E}(G')$. Suppose that $A : X \to X$ is a Kannan G'-contraction mapping. If $(x, Ax) \in \mathfrak{E}(G')$ for every $x \in X$, then

$$r_{G_b}(A^n x, A^n y) \le \frac{\lambda^n}{1 - \lambda} [r_{G_b}(x, Ax) + r_{G_b}(y, Ay)]$$

for all $n \in \mathbb{N}$ whenever $(x, y) \in \mathfrak{E}(G')$.

Proof. Let $(x, y) \in \mathfrak{E}(G')$. By (KGC-1), we have

$$(A^n x, A^n y) \in \mathfrak{E}(G') \tag{2.7}$$

for all $n \in \mathbb{N}$. Define $\psi(x, y) := r_{G_b}(x, Ax) + r_{G_b}(y, Ay)$ for each $(x, y) \in \mathfrak{E}(G')$. Then

$$\begin{split} \psi(Ax, Ay) &= r_{G_b}(Ax, A^2x) + r_{G_b}(Ay, A^2y) \\ &\leq \lambda [r_{G_b}(x, Ax) + r_{G_b}(Ax, A^2x)] \\ &+ \lambda [r_{G_b}(y, Ay) + r_{G_b}(Ay, A^2y)] \\ &= \lambda [\psi(x, y) + \psi(Ax, Ay)]. \end{split}$$

This implies that

$$\psi(Ax, Ay) \le \frac{\lambda}{1-\lambda}\psi(x, y).$$
(2.8)

By repeating this process, we have

$$\psi(A^n x, A^n y) \le \frac{\lambda^n}{1 - \lambda} \psi(x, y) \qquad (2.9)$$

for all $n \in \mathbb{N}$. By the Kannan *G*'-contractive condition, we get

$$r_{G_b}(Ax, Ay) \le \lambda [r_{G_b}(x, Ax) + r_{G_b}(y, Ay)]$$

$$= \lambda \psi(x, y). \tag{2.10}$$

Now, we obtain

$$\begin{split} r_{G_b}(A^2x, A^2y) &\leq \lambda [r_{G_b}(Ax, A^2x) + r_{G_b}(Ay, A^2y)] \\ &\leq \lambda \{\lambda [r_{G_b}(x, Ax) + r_{G_b}(Ax, A^2x)] \\ &+ \lambda [r_{G_b}(y, Ay) + r_{G_b}(Ay, A^2y)] \} \\ &= \lambda^2 [\psi(x, y) + \psi(Ax, Ay)] \\ &\leq \lambda^2 \left[\psi(x, y) + \frac{\lambda}{1 - \lambda} \psi(x, y) \right] \\ &= \frac{\lambda^2}{1 - \lambda} \psi(x, y). \end{split}$$

In the same way, one can show that

$$r_{G_b}(A^n x, A^n y) \le \frac{\lambda^n}{1 - \lambda} \psi(x, y), \quad (2.11)$$

that is,

$$r_{G_b}(A^n x, A^n y) \le \frac{\lambda^n}{1 - \lambda} [r_{G_b}(x, Ax) + r_{G_b}(y, Ay)]$$

(2.12)

This completes the proof.

The following theorem ensures the existence of fixed points for Kannan contraction mappings in GR_bMS .

Theorem 2.8. Let (X, r_{G_b}) be a graphical rectangular b-metric space endowed with a graph G and the coefficient $s \ge 1$ and G' be a subgraph of G with $\Delta \subseteq \mathfrak{E}(G')$. Suppose that X is G'-complete, $A : X \to X$ is a one-to-one Kannan G'-contraction mapping and the following conditions hold:

(1) there exist $x_0 \in X$ such that $Ax_0 \in [\blacktriangle x_0]_{G'}^l$ and $A^2x_0 \in [\blacktriangle x_0]_{G'}^m$, where *l*, *m* are odd positive integers;

(II)
$$(x, Ax) \in \mathfrak{E}(G')$$
 for every $x \in X$;

(III) A is sequentially continuous, i.e., if $\{x_n\}$ is a sequence in X and $z \in X$ with $r_{G_b}(x_n, z) \to 0$, then $r_{G_b}(Ax_n, Az) \to 0$. Then there exist $z^* \in X$ such that the A-Picard sequence $\{x_n\}$ with the initial value $x_0 \in X$ is G'-termwise connected and converges to both z^* and Az^* .

Proof. Let $x_0 \in X$ be such that $Ax_0 \in [\blacktriangle x_0]_{G'}^l$ and $A^2x_0 \in [\backsim x_0]_{G'}^m$, where l, m are odd integers. Define an A-Picard sequence $\{x_n\}$ by $x_n = Ax_{n-1}$ for all $n \in \mathbb{N}$. Since $Ax_0 \in [\blacktriangle x_0]_{G'}^l$ and $A^2x_0 \in [\bigstar x_0]_{G'}^m$, there exist a path $\{y_j\}_{j=0}^l$ such that $x_0 = y_0$, $Ax_0 = y_l$ and $(y_{j-1}, y_j) \in \mathfrak{E}(G')$ with $\{y_{j-1} \neq y_j\}$ for all $j = 1, 2, \ldots, l$ and a path $\{w_j\}_{j=0}^m$ such that $x_0 = w_0$, $A^2x_0 = w_m$ and $(w_{j-1}, w_j) \in \mathfrak{E}(G')$ with $w_{j-1} \neq w_j$ for all $j = 1, 2, \ldots, m$. Since A is a Kannan G'-contraction mapping, by (KGC-1), we get

$$(Ay_{j-1}, Ay_j) \in \mathfrak{E}(G')$$
 for $j = 1, 2, ..., l$.

Therefore, $\{Ay_j\}_{j=0}^l$ is a path from $Ay_0 = Ax_0 = x_1$ to $Ay_l = A^2x_0 = x_2$ of length land $x_2 \in [x_1]_{G'}^l$. Continuing this process, we obtain $\{A^n y_j\}_{j=0}^l$ is a path from $A^n y_0 = A^n x_0 = x_n$ to $A^n y_l = A^n A x_0 = x_{n+1}$ of length l and $x_{n+1} \in [x_n]_{G'}^l$ for all $n \in \mathbb{N}$. Thus, $\{x_n\}$ is a G'-termwise connected sequence. Now, we have

$$\begin{aligned} r_{G_b}(x_n, x_{n+1}) &= r_{G_b}(A^n y_0, A^n y_l) \\ &\leq s[r_{G_b}(A^n y_0, A^n y_1) \\ &+ r_{G_b}(A^n y_1, A^n y_2) \\ &+ r_{G_b}(A^n y_2, A^n y_l)] \\ &\leq s[r_{G_b}(A^n y_0, A^n y_1) \\ &+ r_{G_b}(A^n y_1, A^n y_2)] \\ &+ s^2[r_{G_b}(A^n y_3, A^n y_4) \\ &+ r_{G_b}(A^n y_4, A^n y_l)] \\ &\vdots \\ &\leq s[r_{G_b}(A^n y_1, A^n y_2)] \\ &+ r_{G_b}(A^n y_1, A^n y_2)] \\ &+ s^2[r_{G_b}(A^n y_1, A^n y_2)] \\ &+ s^2[r_{G_b}(A^n y_1, A^n y_2)] \\ &+ s^2[r_{G_b}(A^n y_2, A^n y_3)] \end{aligned}$$

$$+ r_{G_b}(A^n y_3, A^n y_4)] + \cdots + s^{\frac{l-1}{2}} [r_{G_b}(A^n y_{l-3}, A^n y_{l-2}) + r_{G_b}(A^n y_{l-2}, A^n y_{l-1}) + r_{G_b}(A^n y_{l-1}, A^n y_l)].$$
(2.13)

Since $(y_{j-1}, y_j) \in \mathfrak{E}(G')$, we have $(A^n y_{j-1}, A^n y_j) \in \mathfrak{E}(G')$ for all $j = 1, 2, \ldots, l$ and for all $n \in \mathbb{N}$. By using Lemma 2.7, the inequality (2.13) becomes

$$r_{G_b}(x_n, x_{n+1}) \leq \frac{\lambda^n}{1-\lambda} \{ s[\psi(y_0, y_1) + \psi(y_1, y_2)] \\ + s^2 [\psi(y_2, y_3) + \psi(y_3, y_4)] + \cdots \\ + s^{\frac{l-1}{2}} [\psi(y_{l-3}, y_{l-2}) \\ + \psi(y_{l-2}, y_{l-1}) + \psi(y_{l-1}, y_l)] \}.$$
(2.14)

Similarly, we have

$$\begin{aligned} r_{G_b}(x_n, x_{n+2}) &= r_{G_b}(A^n w_0, A^n w_m) \\ &\leq s[r_{G_b}(A^n w_0, A^n w_1) \\ &+ r_{G_b}(A^n w_1, A^n w_2)] \\ &+ s^2[r_{G_b}(A^n w_2, A^n w_3) \\ &+ r_{G_b}(A^n w_3, A^n w_4)] + \cdots \\ &+ s^{\frac{m-1}{2}}[r_{G_b}(A^n w_{m-3}, A^n w_{m-2}) \\ &+ r_{G_b}(A^n w_{m-2}, A^n w_{m-1}) \\ &+ r_{G_b}(A^n w_{m-1}, A^n y_m)]. \end{aligned}$$

$$(2.15)$$

Since $(w_{j-1}, w_j) \in \mathfrak{E}(G')$, we have $(A^n w_{j-1}, A^n w_j) \in \mathfrak{E}(G')$ for all $j = 1, 2, \ldots, m$ and for all $n \in \mathbb{N}$. By using Lemma 2.7, the inequality (2.15) becomes

$$\begin{aligned} r_{G_b}(x_n, x_{n+2}) &\leq \frac{\lambda^n}{1 - \lambda} \{ s[\psi(w_0, w_1) \\ &+ \psi(w_1, w_2)] \\ &+ s^2[\psi(w_2, w_3) \\ &+ \psi(w_3, w_4)] + \cdots \\ &+ s^{\frac{m-1}{2}}[\psi(w_{m-3}, w_{m-2}) \end{aligned}$$

$$+ \psi(w_{m-2}, w_{m-1}) + \psi(w_{m-1}, w_m)]. \quad (2.16)$$

Now, we will show that the *G'*-termwise connected *A*-Picard sequence $\{x_n\}$ is a Cauchy sequence i.e., for $p \ge 1$, $r_{G_b}(x_n, x_{n+p}) \rightarrow 0$ as $n \rightarrow \infty$. If $x_n = x_{n+1}$ for some $n \in \mathbb{N} \cup \{0\}$, then $r_{G_b}(x_n, x_{n+p}) \rightarrow 0$ as $n \rightarrow \infty$. So we may assume that $x_n \neq x_{n+1}$ for all $n \in \mathbb{N} \cup \{0\}$.

Case-I. If *p* is an odd integer, then

$$\begin{aligned} r_{G_b}(x_n, x_{n+p}) &\leq s[r_{G_b}(x_n, x_{n+1}) \\ &+ r_{G_b}(x_{n+1}, x_{n+2})] \\ &+ s^2[r_{G_b}(x_{n+2}, x_{n+3}) \\ &+ r_{G_b}(x_{n+3}, x_{n+4})] + \cdots \\ &+ s^{\frac{p-1}{2}}[r_{G_b}(x_{n+p-3}, x_{n+p-2}) \\ &+ r_{G_b}(x_{n+p-2}, x_{n+p-1}) \\ &+ r_{G_b}(x_{n+p-1}, x_{n+p})]. \end{aligned}$$

From inequality (2.14), we can say that

$$r_{G_b}(x_n, x_{n+p}) \to 0 \text{ as } n \to \infty.$$
 (2.17)

Case-II. If *p* is an even integer, then

$$\begin{split} r_{G_b}(x_n, x_{n+p}) &\leq s[r_{G_b}(x_n, x_{n+1}) \\ &\quad + r_{G_b}(x_{n+1}, x_{n+2})] \\ &\quad + s^2[r_{G_b}(x_{n+2}, x_{n+3}) \\ &\quad + r_{G_b}(x_{n+3}, x_{n+4})] + \cdots \\ &\quad + s^{\frac{p-2}{2}}[r_{G_b}(x_{n+p-4}, x_{n+p-3}) \\ &\quad + r_{G_b}(x_{n+p-3}, x_{n+p-2}) \\ &\quad + r_{G_b}(x_{n+p-2}, x_{n+p})]. \end{split}$$

From inequality (2.14) and (2.16), we have

$$r_{G_b}(x_n, x_{n+p}) \to 0 \text{ as } n \to \infty.$$
 (2.18)

From Case-(I) and Case-(II), one can say that $\{x_n\}$ is a Cauchy sequence. Since *X* is *G'*-complete, there exist $z^* \in X$ such that $x_n \to z^*$ as $n \to \infty$. Since *A* is sequentially continuous, we obtain $x_{n+1} = Ax_n \to Az^*$ as $n \to \infty$. This completes the proof. \Box **Theorem 2.9.** Assume that all hypotheses of Theorem 2.8 hold and further suppose that the quadruple (X, r_{G_b}, G', A) has the property S^* . Then A has a fixed point in X.

Proof. From the proof of Theorem 2.8 and Property S^* , we get this result. \Box

Theorem 2.10. Assume that all hypotheses of Theorem 2.9 hold and further suppose that $(z^*, w^*) \in \mathfrak{E}(G')$ for all $z^*, w^* \in Fix(A)$, where Fix(A) is the set of all fixed points of A. Then A has the unique fixed point.

Proof. From Theorem 2.9, *A* has a fixed point. Now, we will show the uniqueness of a fixed point. Assume that z^* and w^* are two fixed points of *A*. By the assumption, we obtain $(z^*, w^*) \in \mathfrak{E}(G')$. By (KGC-1), we have $(Az^*, Aw^*) \in \mathfrak{E}(G')$. Now, by (KGC-2), we have

$$\begin{aligned} r_{G_b}(z^*, w^*) &= r_{G_b}(Az^*, Aw^*) \\ &\leq \lambda [r_{G_b}(z^*, Az^*) \\ &+ r_{G_b}(w^*, Aw^*)] = 0. \end{aligned}$$

This implies that $z^* = w^*$. Hence, *A* has the unique fixed point. \Box

3. Conclusion

In this work we presented an example of a graphical rectangular *b*-metric space in which a *A*-Picard sequence in the sense of Mudasir Younis et.al.[2] is not Cauchy. To overcome this drawback, we formulated suitable conditions and made appropriate corrections to Theorem 4.2 given in [2]. Moreover, we provided a positive answer to the question of the existence of a fixed point for Kannan contraction mappings in the aforesaid space.

Acknowledgements

The authors are grateful to Referees and Editor-in-Chief of Science & Technology Asia for their constructive suggestions, which greatly helped us to improve the paper significantly

References

- [1] Shukla, S., Radenović, S., Vetro, C. Graphical metric space: a generalized setting in fixed point theory. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 2017;111(3): 641-655.
- [2] Younis, M., Singh, D. and Goyal, A. A novel approach of graphical rectangular b-metric spaces with an application to the vibrations of a vertical heavy hanging cable. Journal of Fixed Point Theory and Applications 2019;21(1):33.
- [3] Baradol, P., Gopal, D. and Radenovic', S. Computational fixed points in graphical rectangular metric spaces with application. Journal of Computational and Applied Mathematics 2020;112805.
- [4] Chuensupantharat, N., Kumam, P., Chauhan, V., Singh, D. and Menon, R. Graphic contraction mappings via graphical b-metric spaces with applications. Bulletin of the Malaysian Mathematical Sciences Society 2018;1-17.
- [5] Shukla, S., Mlaiki, N. and Aydi, H. On (G, G')-Prešić -Ćirić Operators in Graphical Metric Spaces. Mathematics 2019;7(5):445.

- [6] Branciari, A. A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. Debrecen 2000;57(1-2):31-37.
- [7] George, R., Radenovic, S., Reshma, K.P. and Shukla, S. Rectangular b-metric spaces and contraction principle. J. Nonlinear Sci. Appl. 2015;8(6):1005-1013.
- [8] Roshan, J.R., Parvaneh, V., Kadelburg, Z. and Hussain, N. New fixed point results in b-rectangular metric spaces. Nonlinear Anal. Model. Control 2016;21(5):614-634.
- [9] Edelstein, M. An extension of Banach contraction principle. Proc. Am. Math. Soc. 1961;12:7–10.
- [10] Hardy, G.E., Rogers, T.D. A generalization of a fixed point theorem of Reich. Canadian Mathematical Bulletin 1973;16(2):201-206.
- [11] Kannan, R. Some results on fixed points. Bull. Cal. Math. Soc. 1960;60: 71-76.
- [12] Meir, A. and Keeler, E. A theorem on contraction mappings. Journal of Mathematical Analysis and Applications 1969;28(2):326-329.
- [13] Reich, S. Some remarks concerning contraction mappings. Canadian Mathematical Bulletin 1971;14(1):121-124.