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ABSTRACT
This paper aims to rectify the recent fixed point results on graphical rectangular b-

metric spaces due toMudasir Younis et al. (J. Fixed Point TheoryAppl., doi:10.1007/s11784-
019-0673-3, 2019). Moreover, we also give the answer of some open problem in the men-
tioned research related to the Kannan contraction mapping in the space described above with
its fixed point theorems.
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1. Introduction
Throughout this paper, unless other-

wise specified, let the diagonal of X × X be
denoted by ∆ for a nonempty set X . Fur-
thermore, let G = (U(G),E(G)) be a di-
rected graph possessing no parallel edges,
where U(G) is the set of all vertices such
that U(G) ⊆ X and E(G) is the set of all the
edges of G containing all loops, that is, ∆ ⊆
E(G). A path (or directed path) of length m
between points v,w ∈ U(G) is defined as a
sequence {xj}mj=0 of (m + 1) vertices with
v = x0, w = xm and (xj−1, xj) ∈ E(G) for
all j = 1,2, . . . ,m. Consistent with Shukla
[1], we denote

[u]lG = {v ∈ X : ∃ a path directing from u

v having length l}.
In addition, a relation P on X is such

that (uPv)G if there exists a path directing
from u to v in G and the notion w ∈ (uPv)G
is used whenever w is contained in the path
(uPv)G . A sequence {xn} in X is called a
G-termwise connected (briefly, G-TWC) if
(xnPxn+1)G for all n ∈ N.

To avoid repetition, we assume the
same terminology, notations and basic facts
as having been utilized in [2]. For more de-
tails, one can also refer to [1,3–5]. The idea
of a graphical rectangular b-metric space is
a generalization of a rectangular b-metric
space.

Definition 1.1 ([6]). Let X be a non-empty
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set and d : X × X → [0,∞) be a function.
If d satisfies the following conditions:

(i) d(x, y) = 0 iff x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) for each x, y ∈ X and distinct points
u, v ∈ X \ {x, y}, we have

d(x, y) ≤ d(x,u) + d(u, v) + d(v, y),

then d is called a rectangular metric on X
and (X, d) is called a rectangular metric
space (briefly, a RMS).

Definition 1.2 ([7, 8]). Let X be a non-
empty set, d : X × X → [0,∞) be a function
and s ≥ 1. If d satisfies the following con-
ditions:

(i) d(x, y) = 0 iff x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) for each x, y ∈ X and distinct points
u, v ∈ X \ {x, y}, we have

d(x, y) ≤ s[d(x,u)+d(u, v)+d(v, y)],

then d is called a rectangular b-metric on X
and (X, d) is called a rectangular b-metric
space (briefly, a RbMS).

Definition 1.3 ([1]). Let X be a non-empty
set, G be a graph endowed with X , and dG :
X × X → [0,∞) be a function satisfying the
following conditions:

(i) dG(x, y) = 0 iff x = y;

(ii) dG(x, y) = dG(y, x) for all x, y ∈ X;

(iii) for each x, y ∈ X with (xPy)G and
z ∈ (xPy)G , we have

dG(x, y) ≤ dG(x, z) + dG(z, y).

Then dG is called a graphical metric on
X and (X, dG) is called a graphical metric
space (briefly, a GMS).

Definition 1.4 ([2]). Let X be a non-empty
set, G be a graph endowed with X , s ≥ 1,
and rGb

: X × X → [0,∞) be a function
satisfying the following conditions:

(GRbM − 1) rGb
(x, y) = 0 iff x = y;

(GRbM − 2) rGb
(x, y) = rGb

(y, x) for all
x, y ∈ X;

(GRbM − 3) for each x, y ∈ X and distinct
points u, v ∈ X \ {x, y} with (xPy)G
and u, v ∈ (xPy)G , we have

rGb
(x, y) ≤ s[rGb

(x,u) + rGb
(u, v)

+ rGb
(v, y)].

Then rGb
is called a graphical rectangu-

lar b-metric on X and (X,rGb
) is called

a graphical rectangular b-metric space
(briefly, a GRbMS).

Definition 1.5 ([2]). If s = 1 in Definition
1.4, we call the resultant space a graphical
rectangular metric space (briefly, GRMS)
and denote it by (X,rG), which is the graph-
ical version of a rectangular metric space.

Remark 1.6. It is easy to see that aGRbMS
is a GRMS with s = 1.

Definition 1.7 ([2]). Let (X,rGb
) be a

graphical rectangular b-metric space. A se-
quence {xn} in X is said to be

i) a Cauchy sequence if for given ϵ > 0,
there exists n0 ∈ N such that

rGb
(xn, xm) < ϵ for all n,m ≥ n0

i.e., limn,m→∞ rGb
(xn, xm) = 0.
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ii) converges to x ∈ X if for given ϵ > 0,
there exist m ∈ N such that

rGb
(xn, x) < ϵ for all n ≥ m

i.e., limn→∞ rGb
(xn, x) = 0.

Definition 1.8 ([2]). Let (X,rGb
) be a

graphical rectangular b-metric space en-
dowed with a graph G = (U(G),E(G)) and
G′ be a sub-graph of G with U(G′) = X .

i) X is said to be complete if every
Cauchy sequence in X converges in
X .

ii) X is said to be G′-complete if ev-
ery G′-termwise connected Cauchy
sequence in X converges in X .

Definition 1.9 ([2]). Let A be a self-
mapping on a graphical rectangular b-
metric space (X,rGb

) endowedwith a graph
G and the coefficient s ≥ 1, and G′ be a
subgraph of G with ∆ ⊆ E(G′). Then A is
called a (G,G′)-contraction on X if it satis-
fies the following conditions:

(GC-1) for each (x, y) ∈ E(G′), we have
(Ax, Ay) ∈ E(G′);

(GC-2) there exists λ ∈ [0, 1s ) such that

rGb
(Ax, Ay) ≤ λrGb

(x, y)

for all x, y ∈ X with (x, y) ∈ E(G′).

Definition 1.10 ([2]). Let A be a self-
mapping on a graphical rectangular b-
metric space (X,rGb

) endowedwith a graph
G and the coefficient s ≥ 1, and G′ be a
subgraph of G with ∆ ⊆ E(G′). A graph
G′ is said to satisfy the property (P), if a
G′-termwise connected A-Picard sequence
{xn} converges in X , then there exist a limit
ξ ∈ X of {xn} and n0 ∈ N such that
(xn, ξ) ∈ E(G′) or (ξ, xn) ∈ E(G′) for all
n > n0.

Theorem 1.11 ([2]). Let (X,rGb
) be a

graphical rectangular b-metric space en-
dowed with a graph G and the coefficient
s ≥ 1 and G′ be a subgraph of G with
∆ ⊆ E(G′). Suppose that X is G′-complete,
A : X → X is a (G,G′)-contraction map-
ping and the following conditions hold:

(I) G′ satisfies the property (P);

(II) there exist x0 ∈ X such that Ax0 ∈
[x0]lG′ for some l ∈ N.

Then there exist z∗ ∈ X such that the A-
Picard sequence {xn} with the initial value
x0 ∈ X is G′-termwise connected and con-
verges to both z∗ and Az∗.

Definition 1.12 ([2]). Let (X,rGb
) be a

graphical rectangular metric space and A :
X → X be a (G,G′)-contraction mapping.
The quadruple (X,rGb

,G′, A) is said to have
the property S∗ if for each G′-termwise con-
nected A-Picard sequence {xn} in X has the
unique limit.

In [2], authors also posed the follow-
ing question.

• Question: Is it possible to estab-
lish analogous results of Edelstein
[9], Hardy-Roger [10], Kannan [11]
, Meir-Keeler [12], and Reich [13]
type contractions in GRbMS.

In this paper, we show that the condi-
tions of Theorem 4.2 in [2] are not sufficient
to prove the Cauchyness of theG′-termwise
connected A-Picard sequence and hence it
doesn’t ensure the existence of fixed points
in GRbMS. In fact, we show that the in-
equality (4.4) of Theorem 4.2 in [2] (page
9-10) doesn’t hold for even values l ∈ N.
To remedy this, we propose suitable condi-
tions on the mentioned theorem (see condi-
tion (II) in Theorem 2.3 given below) and
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provide a corrected proof. Moreover, we
provide a positive answer to the question
of the existence of a fixed point for Kan-
nan contraction mappings in the aforesaid
space.

2. Main Results
We begin this section with the fol-

lowing example showing that the inequal-
ity (4.4) of Theorem 4.2 in [2] (page 9-10)
doesn’t hold for even values l ∈ N.

Example 2.1. Let X = {0} ∪ { 1
3n : n ∈ N}

and G = (U(G),E(G)) be a graph associ-
ated with X , where U(G) = X and E(G) :=
∆ ∪ {( 1

3n ,
1

3n+1
) ∈ X × X : n ∈ N}. Define a

function rGb
: X × X → [0,∞) by

rGb
(x, y) = 0 iff x = y,

rGb

(
0,

1

3n

)
= rGb

(
1

3n
,0

)
=

1

2
for all n ∈ N,

rGb

(
1

3m
,
1

3n

)
= 1 for all m,n ∈ N with

m , n and 2 divides |m − n|,

rGb

(
1

3m
,
1

3n

)
=

1

3n+m
otherwise.

Then (X,rGb
) is a graphical rectangular

metric space (i.e., GRbMS with s = 1). De-
fine a mapping A : X → X by

Ax =

{
1
3 if x = 0

x
34

otherwise.

Then A is a (G,G′)-contraction mapping on
X with λ = 1

3 and G′ = G.
Now, we will prove that for any x0 ∈

X such that Ax0 ∈ [x0]lG′ for some l ∈ N,
the A-Picard sequence {xn} is not a Cauchy
sequence. Note that the Property (P) is not
required to prove the Cauchyness of a a se-
quence {xn} (see the proof of Theorem 4.2
in [2]).

Case-I If x0 = 0, then Ax0 = 1
3 . But

there is no path from 0 to 1
3 . Then Ax0 <

[x0]lG′ for all l ∈ N. So we don’t consider
this case.

Case-II If x0 ∈ { 1
3n : n ∈ N}, then

Ax0 ∈ [x0]4G′. Suppose that x0 = 1
3 . Then

Ax0 = x1 = 1
35

and there exists a sequence
{yj}4j=0 such that y0 = x0 = 1

3, y1 =
1
32
, y2 =

1
33
, y3 =

1
34
, y4 = Ax0 = 1

35
with

(yj−1, yj) ∈ E(G′) for all j = 1,2,3,4. This
implies that Ax0 ∈ [x0]4G′. Since A is an
edge preserving mapping, we can show that
the sequence {xn} is a G′-termwise con-
nected A-Picard sequence.

Now, we will show that the inequality
(4.4) of Theorem 4.2 in [2] (page 9-10) is
not true for m = 0:

rGb
(x0, x1) = rGb

(y0, y4)

= rGb

(
1

3
,
1

35

)
= 1

≰
1

33
+

1

35
+

1

37
+

1

39

= rGb
(y0, y1) + rGb

(y1, y2)
+ rGb

(y2, y3) + rGb
(y3, y4).

Also, for any n = 0,1,2, ..., we have

rGb
(xn, xn+1) = rGb

(
1

3n+1
,

1

3n+5

)
= 1.

This implies that {xn} is not a Cauchy se-
quence.

Remark 2.2. The above example demon-
strates the technical difficulties in utilizing
the path of even length between xn and Axn.

To prove the next result, the follow-
ing symbol is needed: for a graph G =

(U(G),E(G)) and u ∈ U(G), we denote

[▲u]lG = {v ∈ X : ∃ a path{xj}lj=0from u to

v with xj−1 , xj ∀ j = 1,2, . . . , l}.
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Theorem 2.3. Let (X,rGb
) be a graphical

rectangular b-metric space endowed with a
graph G and the coefficient s ≥ 1 and G′ be
a subgraph of G with ∆ ⊆ E(G′). Suppose
that X is G′-complete, A : X → X is a one-
to-one (G,G′)-contraction mapping and the
following conditions hold:

(I) G′ satisfies the property (P);

(II) There exists x0 ∈ X such that Ax0 ∈
[▲x0]lG′ and A2x0 ∈ [▲x0]mG′, where
l,m are odd positive integers.

Then there exist z∗ ∈ X such that the A-
Picard sequence {xn} with the initial value
x0 ∈ X is G′-termwise connected and con-
verges to both z∗ and Az∗.

Proof. Let x0 ∈ X be such that Ax0 ∈
[▲x0]lG′ and A2x0 ∈ [▲x0]mG′, where l,m
are odd integers. Define an A-Picard se-
quence {xn} by xn = Axn−1 for all n ∈ N.
Since Ax0 ∈ [▲x0]lG′ and A2x0 ∈ [▲x0]mG′,
there exist a path {yj}lj=0 such that x0 =
y0, Ax0 = yl and (yj−1, yj) ∈ E(G′) with
yj−1 , yj for all j = 1,2, . . . , l and a path
{wj}mj=0 such that x0 = w0, A2x0 = wm

and (wj−1,wj) ∈ E(G′) with wj−1 , wj for
all j = 1,2, . . . ,m. Since A is a (G,G′)-
contraction mapping, by (GC-1), we have

(Ayj−1, Ayj) ∈ E(G′) for all j = 1,2, . . . , l .

Therefore, {Ayj}lj=0 is a path from Ay0 =
Ax0 = x1 to Ayl = A2x0 = x2 of length
l and x2 ∈ [x1]lG′. Continuing this pro-
cess, for all n ∈ N, we obtain {Anyj}lj=0
is a path from Any0 = Anx0 = xn to
Anyl = AnAx0 = xn+1 of length l and
xn+1 ∈ [xn]lG′. Thus, {xn} is a G′-termwise
connected sequence.

Since (Anyj−1, Anyj) ∈ E(G′) for j =
1,2, . . . , l and n ∈ N. By (GC-2), for each
j = 1,2, . . . , l, we have

rGb
(Anyj−1, Anyj) ≤ λrGb

(An−1yj−1, An−1yj)

...

≤ λnrGb
(yj−1, yj).

(2.1)

Similarly, we can show that
{Anwj}mj=0 is a path from Anw0 =

Anx0 = xn to Anwm = AnA2x0 = xn+2 of
length m and xn+2 ∈ [xn]mG′ for all n ∈ N.

Since (Anwj−1, Anwj) ∈
E(G′) for j = 1,2, . . . ,m and n ∈ N.
By (GC-2), for each j = 1,2, . . . ,m, we
have

rGb
(Anwj−1, Anwj) ≤ λrGb

(An−1wj−1, An−1wj)
...

≤ λnrGb
(wj−1,wj).

(2.2)

Now, we obtain

rGb
(x0, x1) ≤ s[rGb

(y0, y1) + rGb
(y1, y2)

+ rGb
(y2, yl)]

≤ s[rGb
(y0, y1) + rGb

(y1, y2)]
+ s2[rGb

(y2, y3) + rGb
(y3, y4)

+ rGb
(y4, yl)]

...

≤ s[rGb
(y0, y1) + rGb

(y1, y2)]
+ s2[rGb

(y2, y3) + rGb
(y3, y4)]

+ · · · + s
l−1
2 [rGb

(yl−3, yl−2)
+ rGb

(yl−2, yl−1) + rGb
(yl−1, yl)]

=: Dl (2.3)

and

rGb
(x0, x2) ≤ s[rGb

(w0,w1) + rGb
(w1,w2)

+ rGb
(w2,wm)]

≤ s[rGb
(w0,w1) + rGb

(w1,w2)]
+ s2[rGb

(w2,w3) + rGb
(w3,w4)

+ rGb
(w4,wm)]

...

5



P. Baradol et al. | Science & Technology Asia | Vol.25 No.4 October - December 2020

≤ s[rGb
(w0,w1) + rGb

(w1,w2)]
+ s2[rGb

(w2,w3) + rGb
(w3,w4)]

+ · · · + s
m−1
2 [rGb

(wm−3,wm−2)
+ rGb

(wm−2,wm−1)
+ rGb

(wm−1,wm)]
=: Dm. (2.4)

By using (GRbM − 3) and (GC-1) and in-
equalities (2.1) and (2.3), we have

rGb
(xn, xn+1) = rGb

(Anx0, Anx1)
= rGb

(Any0, Anyl)
≤ s[rGb

(Any0, Any1)
+ rGb

(Any1, Any2)
+ rGb

(Any2, Anyl)]
≤ s[rGb

(Any0, Any1)
+ rGb

(Any1, Any2)]
+ s2[rGb

(Any2, Any3)
+ rGb

(Any3, Any4)
+ rGb

(Any4, Anyl)]
...

≤ s[rGb
(Any0, Any1)

+ rGb
(Any1, Any2)]

+ s2[rGb
(Any2, Any3)

+ rGb
(Any3, Any4)] + · · ·

+ s
l−1
2 [rGb

(Anyl−3, Anyl−2)
+ rGb

(Anyl−2, Anyl−1)
+ rGb

(Anyl−1, Anyl)]
≤ λnDl . (2.5)

Similarly, by using (GRbM−3) and (GC-1)
and inequalities (2.2) and (2.4), we have

rGb
(xn, xn+2) = rGb

(Anx0, Anx2)
= rGb

(Anw0, Anwm)
≤ s[rGb

(Anw0, Anw1)
+ rGb

(Anw1, Anw2)
+ rGb

(Anw2, Anwm)]

≤ s[rGb
(Anw0, Anw1)

+ rGb
(Anw1, Anw2)]

+ s2[rGb
(Anw2, Anw3)

+ rGb
(Anw3, Anw4)

+ rGb
(Anw4, Anwm)]

...

≤ s[rGb
(Anw0, Anw1)

+ rGb
(Anw1, Anw2)]

+ s2[rGb
(Anw2, Anw3)

+ rGb
(Anw3, Anw4)] + · · ·

+ s
m−1
2 [rGb

(Anwm−3, Anwm−2)
+ rGb

(Anwm−2, Anwm−1)
+ rGb

(Anwm−1, Anwm)]
= λnDm. (2.6)

Now, we show that the sequence {xn} is
a Cauchy sequence i.e., for all p ≥ 1,
rGb

(xn, xn+p) → 0 as n → ∞. If xn = xn+1
for some n ∈ N∪{0}, then rGb

(xn, xn+p) →
0 as n → ∞. So we may assume that
xn , xn+1 for all n ∈ N ∪ {0}.

Case-I: If p is odd integer, then

rGb
(xn, xn+p) ≤ s[rGb

(xn, xn+1)
+ rGb

(xn+1, xn+2)]
+ s2[rGb

(xn+2, xn+3)
+ rGb

(xn+3, xn+4)] + · · ·

+ s
p−1
2 [rGb

(xn+p−3, xn+p−2)
+ rGb

(xn+p−2, xn+p−1)
+ rGb

(xn+p−1, yn+p)].

By using inequality (2.5), we have

rGb
(xn, xn+p) ≤ s[λnDl + λ

n+1Dl]
+ s2[λn+2Dl + λ

n+3Dl] + · · ·

+ s
p−1
2 [λn+p−3Dl

+ λn+p−2Dl + λ
n+p−1Dl]

≤ s
p−1
2

(
λn

1 − λ

)
Dl

6
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→ 0 as n → ∞.

Case-II: If p is even integer, then

rGb
(xn, xn+p) ≤ s[rGb

(xn, xn+1)
+ rGb

(xn+1, xn+2)]
+ s2[rGb

(xn+2, xn+3)
+ rGb

(xn+3, xn+4)] + · · ·

+ s
p−2
2 [rGb

(xn+p−4, xn+p−3)
+ rGb

(xn+p−3, xn+p−2)
+ rGb

(xn+p−2, yn+p)].

By using inequality (2.5) and (2.6), we have

rGb
(xn, xn+p) ≤ s[λnDl + λ

n+1Dl]
+ s2[λn+2Dl + λ

n+3Dl] + · · ·

+ s
p−2
2 [λn+p−4Dl

+ λn+p−3Dl + λ
n+p−2Dm]

≤ s
p−2
2

(
λn

1 − λ

)
(Dl + Dm)

→ 0 as n → ∞.

From Case-I and Case-II, we can say that
{xn} is a Cauchy sequence. Since X is G′-
complete, {xn} is a convergent sequence.
By our assumption, there exist z∗ ∈ X and
n0 ∈ N such that xn → z∗ as n → ∞ and
(xn, z∗) ∈ E(G′) or (z∗, xn) ∈ E(G′) for all
n > n0. Suppose that (xn, z∗) ∈ E(G′) for
all n > n0. By (GC-2), we have

rGb
(Axn, Az∗) ≤ λrGb

(xn, z∗)

for all n > n0. This implies that

rGb
(Axn, Az∗) → 0 as n → ∞

i.e., xn+1 → Az∗. So, Az∗ is also a limit of
{xn}.

Similarly, we can prove this for the
case (z∗, xn) ∈ E(G′) for all n > n0. This
completes the proof. □

Theorem 2.4. Assume that all hypotheses
of Theorem 2.3 hold and further suppose
that the quadruple (X,rGb

,G′, A) has the
property S∗. Then A has a fixed point in X .

Proof. From the proof of Theorem 2.3 and
Property S∗, we get this result. □

Theorem 2.5. Assume that all hypothe-
ses of Theorem 2.4 hold and further sup-
pose that (z∗,w∗) ∈ E(G′) for all z∗,w∗ ∈
Fix(A), where Fix(A) is the set of all fixed
points of A. Then A has the unique fixed
point.

Proof. From Theorem 2.4, A has a fixed
point. Now, we will show the uniqueness
of a fixed point. Assume that z∗ and w∗ are
two distinct fixed points of A. By the as-
sumption, we obtain (z∗,w∗) ∈ E(G′). By
(GC-1), we have (Az∗, Aw∗) ∈ E(G′). Now,
by (GC-2), we have

rGb
(Az∗, Aw∗) ≤ λrGb

(z∗,w∗)
⇒ rGb

(z∗,w∗) ≤ λrGb
(z∗,w∗)

⇒ λ ≥ 1,

which is a contradiction to λ < 1. Hence, A
has the unique fixed point. □

Now, in order to provide a positive
answer to the question of the existence of
fixed points for Kannan contraction map-
pings inGRbMS, we first define the follow-
ing definition:

Definition 2.6. Let A be a self-mapping
on a graphical rectangular b-metric space
(X,rGb

) endowed with a graph G and the
coefficient s ≥ 1, and G′ be a subgraph of
G with ∆ ⊆ E(G′). Then A is called a Kan-
nan G′-contraction on X if it satisfies the
following conditions:

(KGC-1) for each (x, y) ∈ E(G′), we have
(Ax, Ay) ∈ E(G′).
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(KGC-2) there exists λ ∈ [0, 1
s+1 ) such that

rGb
(Ax, Ay) ≤ λ[rGb

(x, Ax)
+ rGb

(y, Ay)]

for all x, y ∈ X with (x, y) ∈ E(G′).

Lemma 2.7. Let (X,rGb
) be a graphical

rectangular b-metric space endowed with a
graph G and the coefficient s ≥ 1 and G′

be a subgraph of G with ∆ ⊆ E(G′). Sup-
pose that A : X → X is a Kannan G′-
contraction mapping. If (x, Ax) ∈ E(G′) for
every x ∈ X , then

rGb
(Anx, Any) ≤ λn

1 − λ [rGb
(x, Ax)

+ rGb
(y, Ay)]

for all n ∈ N whenever (x, y) ∈ E(G′).

Proof. Let (x, y) ∈ E(G′). By (KGC-1), we
have

(Anx, Any) ∈ E(G′) (2.7)

for all n ∈ N. Define ψ(x, y) :=
rGb

(x, Ax) + rGb
(y, Ay) for each (x, y) ∈

E(G′). Then

ψ(Ax, Ay) = rGb
(Ax, A2x) + rGb

(Ay, A2y)
≤ λ[rGb

(x, Ax) + rGb
(Ax, A2x)]

+ λ[rGb
(y, Ay) + rGb

(Ay, A2y)]
= λ[ψ(x, y) + ψ(Ax, Ay)].

This implies that

ψ(Ax, Ay) ≤ λ

1 − λψ(x, y). (2.8)

By repeating this process, we have

ψ(Anx, Any) ≤ λn

1 − λψ(x, y) (2.9)

for all n ∈ N. By theKannanG′-contractive
condition, we get

rGb
(Ax, Ay) ≤ λ[rGb

(x, Ax) + rGb
(y, Ay)]

= λψ(x, y). (2.10)

Now, we obtain

rGb
(A2x, A2y) ≤ λ[rGb

(Ax, A2x) + rGb
(Ay, A2y)]

≤ λ{λ[rGb
(x, Ax) + rGb

(Ax, A2x)]
+ λ[rGb

(y, Ay) + rGb
(Ay, A2y)]}

= λ2[ψ(x, y) + ψ(Ax, Ay)]

≤ λ2
[
ψ(x, y) + λ

1 − λψ(x, y)
]

=
λ2

1 − λψ(x, y).

In the same way, one can show that

rGb
(Anx, Any) ≤ λn

1 − λψ(x, y), (2.11)

that is,

rGb
(Anx, Any) ≤ λn

1 − λ [rGb
(x, Ax) + rGb

(y, Ay)].
(2.12)

This completes the proof. □

The following theorem ensures the
existence of fixed points for Kannan con-
traction mappings in GRbMS.

Theorem 2.8. Let (X,rGb
) be a graphical

rectangular b-metric space endowed with a
graph G and the coefficient s ≥ 1 and G′

be a subgraph of G with ∆ ⊆ E(G′). Sup-
pose that X is G′-complete, A : X → X is
a one-to-one Kannan G′-contraction map-
ping and the following conditions hold:

(I) there exist x0 ∈ X such that Ax0 ∈
[▲x0]lG′ and A2x0 ∈ [▲x0]mG′, where
l,m are odd positive integers;

(II) (x, Ax) ∈ E(G′) for every x ∈ X;

(III) A is sequentially continuous, i.e.,
if {xn} is a sequence in X and
z ∈ X with rGb

(xn, z) → 0, then
rGb

(Axn, Az) → 0.

8
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Then there exist z∗ ∈ X such that the A-
Picard sequence {xn} with the initial value
x0 ∈ X is G′-termwise connected and con-
verges to both z∗ and Az∗.

Proof. Let x0 ∈ X be such that Ax0 ∈
[▲x0]lG′ and A2x0 ∈ [▲x0]mG′, where l,m
are odd integers. Define an A-Picard se-
quence {xn} by xn = Axn−1 for all n ∈ N.
Since Ax0 ∈ [▲x0]lG′ and A2x0 ∈ [▲x0]mG′,
there exist a path {yj}lj=0 such that x0 =
y0, Ax0 = yl and (yj−1, yj) ∈ E(G′) with
yj−1 , yj for all j = 1,2, . . . , l and a path
{wj}mj=0 such that x0 = w0, A2x0 = wm and
(wj−1,wj) ∈ E(G′) with wj−1 , wj for all
j = 1,2, . . . ,m. Since A is a Kannan G′-
contraction mapping, by (KGC-1), we get

(Ayj−1, Ayj) ∈ E(G′) for j = 1,2, . . . , l .

Therefore, {Ayj}lj=0 is a path from Ay0 =
Ax0 = x1 to Ayl = A2x0 = x2 of length l
and x2 ∈ [x1]lG′. Continuing this process,
we obtain {Anyj}lj=0 is a path from Any0 =

Anx0 = xn to Anyl = AnAx0 = xn+1 of
length l and xn+1 ∈ [xn]lG′ for all n ∈ N.
Thus, {xn} is a G′-termwise connected se-
quence. Now, we have

rGb
(xn, xn+1) = rGb

(Any0, Anyl)
≤ s[rGb

(Any0, Any1)
+ rGb

(Any1, Any2)
+ rGb

(Any2, Anyl)]
≤ s[rGb

(Any0, Any1)
+ rGb

(Any1, Any2)]
+ s2[rGb

(Any2, Any3)
+ rGb

(Any3, Any4)
+ rGb

(Any4, Anyl)]
...

≤ s[rGb
(Any0, Any1)

+ rGb
(Any1, Any2)]

+ s2[rGb
(Any2, Any3)

+ rGb
(Any3, Any4)] + · · ·

+ s
l−1
2 [rGb

(Anyl−3, Anyl−2)
+ rGb

(Anyl−2, Anyl−1)
+ rGb

(Anyl−1, Anyl)].
(2.13)

Since (yj−1, yj) ∈ E(G′), we have
(Anyj−1, Anyj) ∈ E(G′) for all j =

1,2, . . . , l and for all n ∈ N. By using
Lemma 2.7, the inequality (2.13) becomes

rGb
(xn, xn+1) ≤

λn

1 − λ {s[ψ(y0, y1) + ψ(y1, y2)]

+ s2[ψ(y2, y3) + ψ(y3, y4)] + · · ·

+ s
l−1
2 [ψ(yl−3, yl−2)

+ ψ(yl−2, yl−1) + ψ(yl−1, yl)]}.
(2.14)

Similarly, we have

rGb
(xn, xn+2) = rGb

(Anw0, Anwm)
≤ s[rGb

(Anw0, Anw1)
+ rGb

(Anw1, Anw2)]
+ s2[rGb

(Anw2, Anw3)
+ rGb

(Anw3, Anw4)] + · · ·
+ s

m−1
2 [rGb

(Anwm−3, Anwm−2)
+ rGb

(Anwm−2, Anwm−1)
+ rGb

(Anwm−1, Anym)].
(2.15)

Since (wj−1,wj) ∈ E(G′), we have
(Anwj−1, Anwj) ∈ E(G′) for all j =

1,2, . . . ,m and for all n ∈ N. By using
Lemma 2.7, the inequality (2.15) becomes

rGb
(xn, xn+2) ≤

λn

1 − λ {s[ψ(w0,w1)

+ ψ(w1,w2)]
+ s2[ψ(w2,w3)
+ ψ(w3,w4)] + · · ·
+ s

m−1
2 [ψ(wm−3,wm−2)

9
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+ ψ(wm−2,wm−1)
+ ψ(wm−1,wm)]. (2.16)

Now, we will show that the G′-termwise
connected A-Picard sequence {xn} is a
Cauchy sequence i.e., for p ≥ 1,
rGb

(xn, xn+p) → 0 as n → ∞. If xn = xn+1
for some n ∈ N∪{0}, then rGb

(xn, xn+p) →
0 as n → ∞. So we may assume that
xn , xn+1 for all n ∈ N ∪ {0}.

Case-I. If p is an odd integer, then

rGb
(xn, xn+p) ≤ s[rGb

(xn, xn+1)
+ rGb

(xn+1, xn+2)]
+ s2[rGb

(xn+2, xn+3)
+ rGb

(xn+3, xn+4)] + · · ·

+ s
p−1
2 [rGb

(xn+p−3, xn+p−2)
+ rGb

(xn+p−2, xn+p−1)
+ rGb

(xn+p−1, xn+p)].

From inequality (2.14), we can say that

rGb
(xn, xn+p) → 0 as n → ∞. (2.17)

Case-II. If p is an even integer, then

rGb
(xn, xn+p) ≤ s[rGb

(xn, xn+1)
+ rGb

(xn+1, xn+2)]
+ s2[rGb

(xn+2, xn+3)
+ rGb

(xn+3, xn+4)] + · · ·

+ s
p−2
2 [rGb

(xn+p−4, xn+p−3)
+ rGb

(xn+p−3, xn+p−2)
+ rGb

(xn+p−2, xn+p)].

From inequality (2.14) and (2.16), we have

rGb
(xn, xn+p) → 0 as n → ∞. (2.18)

From Case-(I) and Case-(II), one can say
that {xn} is a Cauchy sequence. Since X
is G′-complete, there exist z∗ ∈ X such that
xn → z∗ as n → ∞. Since A is sequentially
continuous, we obtain xn+1 = Axn → Az∗

as n → ∞. This completes the proof. □

Theorem 2.9. Assume that all hypotheses
of Theorem 2.8 hold and further suppose
that the quadruple (X,rGb

,G′, A) has the
property S∗. Then A has a fixed point in X .

Proof. From the proof of Theorem 2.8 and
Property S∗, we get this result. □

Theorem 2.10. Assume that all hypothe-
ses of Theorem 2.9 hold and further sup-
pose that (z∗,w∗) ∈ E(G′) for all z∗,w∗ ∈
Fix(A), where Fix(A) is the set of all fixed
points of A. Then A has the unique fixed
point.

Proof. From Theorem 2.9, A has a fixed
point. Now, we will show the uniqueness of
a fixed point. Assume that z∗ andw∗ are two
fixed points of A. By the assumption, we
obtain (z∗,w∗) ∈ E(G′). By (KGC-1), we
have (Az∗, Aw∗) ∈ E(G′). Now, by (KGC-
2), we have

rGb
(z∗,w∗) = rGb

(Az∗, Aw∗)
≤ λ[rGb

(z∗, Az∗)
+ rGb

(w∗, Aw∗)] = 0.

This implies that z∗ = w∗. Hence, A has the
unique fixed point. □

3. Conclusion
In this workwe presented an example

of a graphical rectangular b-metric space
in which a A-Picard sequence in the sense
of Mudasir Younis et.al.[2] is not Cauchy.
To overcome this drawback, we formulated
suitable conditions and made appropriate
corrections to Theorem 4.2 given in [2].
Moreover, we provided a positive answer
to the question of the existence of a fixed
point for Kannan contraction mappings in
the aforesaid space.
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