?

Original research article

Note on Recent Fixed Point Results in
 Graphical Rectangular b-Metric Spaces

Pravin Baradol, Dhananjay Gopal*
Department of Applied Mathematics and Humanities, Sardar Vallabhbhai National Institute of Technology, Surat, India

Received 19 April 2020; Received in revised form 5 June 2020
Accepted 5 June 2020; Available online 24 December 2020

Abstract

This paper aims to rectify the recent fixed point results on graphical rectangular b metric spaces due to Mudasir Younis et al. (J. Fixed Point Theory Appl., doi:10.1007/s11784-019-0673-3, 2019). Moreover, we also give the answer of some open problem in the mentioned research related to the Kannan contraction mapping in the space described above with its fixed point theorems.

Keywords: Fixed point; Graph; Graphical rectangular b-metric; Kannan G^{\prime}-contraction

1. Introduction

Throughout this paper, unless otherwise specified, let the diagonal of $X \times X$ be denoted by Δ for a nonempty set X. Furthermore, let $G=(\mathfrak{U}(G), \mathfrak{E}(G))$ be a directed graph possessing no parallel edges, where $\mathfrak{U}(G)$ is the set of all vertices such that $\mathfrak{l}(G) \subseteq X$ and $\mathscr{E}(G)$ is the set of all the edges of G containing all loops, that is, $\Delta \subseteq$ $\mathfrak{E}(G)$. A path (or directed path) of length m between points $v, w \in \mathfrak{l}(G)$ is defined as a sequence $\left\{x_{j}\right\}_{j=0}^{m}$ of $(m+1)$ vertices with $v=x_{0}, w=x_{m}$ and $\left(x_{j-1}, x_{j}\right) \in \mathfrak{E}(G)$ for all $j=1,2, \ldots, m$. Consistent with Shukla [1], we denote
$[u]_{G}^{l}=\{v \in X: \exists$ a path directing from u
v having length $l\}$.
In addition, a relation P on X is such that $(u P v)_{G}$ if there exists a path directing from u to v in G and the notion $w \in(u P v) G$ is used whenever w is contained in the path $(u P v)_{G}$. A sequence $\left\{x_{n}\right\}$ in X is called a G-termwise connected (briefly, G-TWC) if $\left(x_{n} P x_{n+1}\right)_{G}$ for all $n \in \mathbb{N}$.

To avoid repetition, we assume the same terminology, notations and basic facts as having been utilized in [2]. For more details, one can also refer to $[1,3-5]$. The idea of a graphical rectangular b-metric space is a generalization of a rectangular b-metric space.

Definition 1.1 ([6]). Let X be a non-empty
set and $d: X \times X \rightarrow[0, \infty)$ be a function. If d satisfies the following conditions:
(i) $d(x, y)=0$ iff $x=y$;
(ii) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(iii) for each $x, y \in X$ and distinct points $u, v \in X \backslash\{x, y\}$, we have

$$
d(x, y) \leq d(x, u)+d(u, v)+d(v, y)
$$

then d is called a rectangular metric on X and (X, d) is called a rectangular metric space (briefly, a RMS).

Definition 1.2 ([7, 8]). Let X be a nonempty set, $d: X \times X \rightarrow[0, \infty)$ be a function and $s \geq 1$. If d satisfies the following conditions:
(i) $d(x, y)=0$ iff $x=y$;
(ii) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(iii) for each $x, y \in X$ and distinct points $u, v \in X \backslash\{x, y\}$, we have

$$
d(x, y) \leq s[d(x, u)+d(u, v)+d(v, y)]
$$

then d is called a rectangular b-metric on X and (X, d) is called a rectangular b-metric space (briefly, a $R_{b} M S$).

Definition 1.3 ([1]). Let X be a non-empty set, G be a graph endowed with X, and d_{G} : $X \times X \rightarrow[0, \infty)$ be a function satisfying the following conditions:
(i) $d_{G}(x, y)=0$ iff $x=y$;
(ii) $d_{G}(x, y)=d_{G}(y, x)$ for all $x, y \in X$;
(iii) for each $x, y \in X$ with $(x P y)_{G}$ and $z \in(x P y)_{G}$, we have

$$
d_{G}(x, y) \leq d_{G}(x, z)+d_{G}(z, y) .
$$

Then d_{G} is called a graphical metric on X and $\left(X, d_{G}\right)$ is called a graphical metric space (briefly, a GMS).

Definition 1.4 ([2]). Let X be a non-empty set, G be a graph endowed with $X, s \geq 1$, and $r_{G_{b}}: X \times X \rightarrow[0, \infty)$ be a function satisfying the following conditions:
$\left(G R_{b} M-1\right) r_{G_{b}}(x, y)=0$ iff $x=y$;
$\left(G R_{b} M-2\right) r_{G_{b}}(x, y)=r_{G_{b}}(y, x)$ for all $x, y \in X$;
$\left(G R_{b} M-3\right)$ for each $x, y \in X$ and distinct points $u, v \in X \backslash\{x, y\}$ with $(x P y)_{G}$ and $u, v \in(x P y)_{G}$, we have

$$
\begin{aligned}
r_{G_{b}}(x, y) \leq & s\left[r_{G_{b}}(x, u)+r_{G_{b}}(u, v)\right. \\
& \left.+r_{G_{b}}(v, y)\right] .
\end{aligned}
$$

Then $r_{G_{b}}$ is called a graphical rectangular b-metric on X and $\left(X, r_{G_{b}}\right)$ is called a graphical rectangular b-metric space (briefly, a $G R_{b} M S$).

Definition 1.5 ([2]). If $s=1$ in Definition I.4., we call the resultant space a graphical rectangular metric space (briefly, GRMS) and denote it by $\left(X, r_{G}\right)$, which is the graphical version of a rectangular metric space.

Remark 1.6. It is easy to see that a $G R_{b} M S$ is a $G R M S$ with $s=1$.

Definition 1.7 ([2] $]$). Let $\left(X, r_{G_{b}}\right)$ be a graphical rectangular b-metric space. A sequence $\left\{x_{n}\right\}$ in X is said to be
i) a Cauchy sequence iffor given $\epsilon>0$, there exists $n_{0} \in \mathbb{N}$ such that

$$
r_{G_{b}}\left(x_{n}, x_{m}\right)<\epsilon \text { for all } n, m \geq n_{0}
$$

$$
\text { i.e., } \lim _{n, m \rightarrow \infty} r_{G_{b}}\left(x_{n}, x_{m}\right)=0
$$

ii) converges to $x \in X$ iffor given $\epsilon>0$, there exist $m \in \mathbb{N}$ such that

$$
\begin{aligned}
& \qquad r_{G_{b}}\left(x_{n}, x\right)<\epsilon \text { for all } n \geq m \\
& \text { i.e., } \lim _{n \rightarrow \infty} r_{G_{b}}\left(x_{n}, x\right)=0 \text {. }
\end{aligned}
$$

Definition 1.8 ([2]). Let $\left(X, r_{G_{b}}\right)$ be a graphical rectangular b-metric space endowed with a graph $G=(\mathfrak{U}(G), \mathfrak{E}(G))$ and G^{\prime} be a sub-graph of G with $\mathfrak{H}\left(G^{\prime}\right)=X$.
i) X is said to be complete if every Cauchy sequence in X converges in X.
ii) X is said to be G^{\prime}-complete if ev ery G^{\prime}-termwise connected Cauchy sequence in X converges in X.

Definition 1.9 ([2]). Let A be a selfmapping on a graphical rectangular b metric space $\left(X, r_{G_{b}}\right)$ endowed with a graph G and the coefficient $s \geq 1$, and G^{\prime} be a subgraph of G with $\Delta \subseteq \mathscr{E}\left(G^{\prime}\right)$. Then A is called $a\left(G, G^{\prime}\right)$-contraction on X if it satisfies the following conditions:
(GC-1) for each $(x, y) \in \mathfrak{E}\left(G^{\prime}\right)$, we have $(A x, A y) \in \mathfrak{E}\left(G^{\prime}\right) ;$
(GC-2) there exists $\lambda \in\left[0, \frac{1}{s}\right)$ such that

$$
\begin{gathered}
r_{G_{b}}(A x, A y) \leq \lambda r_{G_{b}}(x, y) \\
\text { for all } x, y \in X \text { with }(x, y) \in \mathfrak{E}\left(G^{\prime}\right) .
\end{gathered}
$$

Definition 1.10 ([2]). Let A be a selfmapping on a graphical rectangular b metric space $\left(X, r_{G_{b}}\right)$ endowed with a graph G and the coefficient $s \geq 1$, and G^{\prime} be a subgraph of G with $\Delta \subseteq \mathfrak{F}\left(G^{\prime}\right)$. A graph G^{\prime} is said to satisfy the property (\mathcal{P}), if a G^{\prime}-termwise connected A-Picard sequence $\left\{x_{n}\right\}$ converges in X, then there exist a limit $\xi \in X$ of $\left\{x_{n}\right\}$ and $n_{0} \in \mathbb{N}$ such that $\left(x_{n}, \xi\right) \in \mathscr{E}\left(G^{\prime}\right)$ or $\left(\xi, x_{n}\right) \in \mathscr{E}\left(G^{\prime}\right)$ for all $n>n_{0}$.

Theorem 1.11 ([[]]). Let $\left(X, r_{G_{b}}\right)$ be a graphical rectangular b-metric space endowed with a graph G and the coefficient $s \geq 1$ and G^{\prime} be a subgraph of G with $\Delta \subseteq \mathcal{E}\left(G^{\prime}\right)$. Suppose that X is G^{\prime}-complete, $A: X \rightarrow X$ is a $\left(G, G^{\prime}\right)$-contraction mapping and the following conditions hold:
(I) G^{\prime} satisfies the property (\mathcal{P});
(II) there exist $x_{0} \in X$ such that $A x_{0} \in$ $\left[x_{0}\right]_{G^{\prime}}^{l}$ for some $l \in \mathbb{N}$.

Then there exist $z^{*} \in X$ such that the A Picard sequence $\left\{x_{n}\right\}$ with the initial value $x_{0} \in X$ is G^{\prime}-termwise connected and converges to both z^{*} and $A z^{*}$.

Definition 1.12 ([2] $]$). Let $\left(X, r_{G_{b}}\right)$ be a graphical rectangular metric space and A : $X \rightarrow X$ be a $\left(G, G^{\prime}\right)$-contraction mapping. The quadruple $\left(X, r_{G_{b}}, G^{\prime}, A\right)$ is said to have the property S^{*} iffor each G^{\prime}-termwise connected A-Picard sequence $\left\{x_{n}\right\}$ in X has the unique limit.

In [2], authors also posed the following question.

- Question: Is it possible to establish analogous results of Edelstein [9], Hardy-Roger [10], Kannan [11] , Meir-Keeler [12], and Reich [13] type contractions in $G R_{b} M S$.

In this paper, we show that the conditions of Theorem 4.2 in [2] are not sufficient to prove the Cauchyness of the G^{\prime}-termwise connected A-Picard sequence and hence it doesn't ensure the existence of fixed points in $G R_{b} M S$. In fact, we show that the inequality (4.4) of Theorem 4.2 in [2] (page 9 -10) doesn't hold for even values $l \in \mathbb{N}$. To remedy this, we propose suitable conditions on the mentioned theorem (see condition (II) in Theorem 2.3 given below) and
provide a corrected proof. Moreover, we provide a positive answer to the question of the existence of a fixed point for Kannan contraction mappings in the aforesaid space.

2. Main Results

We begin this section with the following example showing that the inequality (4.4) of Theorem 4.2 in [2] (page 9-10) doesn't hold for even values $l \in \mathbb{N}$.

Example 2.1. Let $X=\{0\} \cup\left\{\frac{1}{3^{n}}: n \in \mathbb{N}\right\}$ and $G=(\mathfrak{l}(G), \mathfrak{E}(G))$ be a graph associated with X, where $\mathfrak{U}(G)=X$ and $\mathfrak{E}(G):=$ $\Delta \cup\left\{\left(\frac{1}{3^{n}}, \frac{1}{3^{n+1}}\right) \in X \times X: n \in \mathbb{N}\right\}$. Define a function $r_{G_{b}}: X \times X \rightarrow[0, \infty)$ by

$$
\begin{aligned}
r_{G_{b}}(x, y) & =0 \text { iff } x=y, \\
r_{G_{b}}\left(0, \frac{1}{3^{n}}\right) & =r_{G_{b}}\left(\frac{1}{3^{n}}, 0\right)=\frac{1}{2} \text { for all } n \in \mathbb{N}, \\
r_{G_{b}}\left(\frac{1}{3^{m}}, \frac{1}{3^{n}}\right) & =1 \text { for all } m, n \in \mathbb{N} \text { with } \\
& m \neq n \text { and } 2 \text { divides }|m-n|, \\
r_{G_{b}}\left(\frac{1}{3^{m}}, \frac{1}{3^{n}}\right) & =\frac{1}{3^{n+m}} \text { otherwise. }
\end{aligned}
$$

Then $\left(X, r_{G_{b}}\right)$ is a graphical rectangular metric space (i.e., $G R_{b} M S$ with $s=1$). Define a mapping $A: X \rightarrow X$ by

$$
A x= \begin{cases}\frac{1}{3} & \text { if } x=0 \\ \frac{x}{3^{4}} & \text { otherwise } .\end{cases}
$$

Then A is a $\left(G, G^{\prime}\right)$-contraction mapping on X with $\lambda=\frac{1}{3}$ and $G^{\prime}=G$.

Now, we will prove that for any $x_{0} \in$ X such that $A x_{0} \in\left[x_{0}\right]_{G^{\prime}}^{l}$ for some $l \in \mathbb{N}$, the A-Picard sequence $\left\{x_{n}\right\}$ is not a Cauchy sequence. Note that the Property (\mathcal{P}) is not required to prove the Cauchyness of a a sequence $\left\{x_{n}\right\}$ (see the proof of Theorem 4.2 in [2]).

Case-I If $x_{0}=0$, then $A x_{0}=\frac{1}{3}$. But there is no path from 0 to $\frac{1}{3}$. Then $A x_{0} \notin$
$\left[x_{0}\right]_{G^{\prime}}^{l}$ for all $l \in \mathbb{N}$. So we don't consider this case.

Case-II If $x_{0} \in\left\{\frac{1}{3^{n}}: n \in \mathbb{N}\right\}$, then $A x_{0} \in\left[x_{0}\right]_{G^{\prime}}^{4}$. Suppose that $x_{0}=\frac{1}{3}$. Then A $x_{0}=x_{1}=\frac{1}{3^{5}}$ and there exists a sequence $\left\{y_{j}\right\}_{j=0}^{4}$ such that $y_{0}=x_{0}=\frac{1}{3}, y_{1}=$ $\frac{1}{3^{2}}, y_{2}=\frac{1}{3^{3}}, y_{3}=\frac{1}{3^{4}}, y_{4}=A x_{0}=\frac{1}{3^{5}}$ with $\left(y_{j-1}, y_{j}\right) \in \mathscr{E}\left(G^{\prime}\right)$ for all $j=1,2,3,4$. This implies that $A x_{0} \in\left[x_{0}\right]_{G^{\prime}}^{4}$. Since A is an edge preserving mapping, we can show that the sequence $\left\{x_{n}\right\}$ is a G^{\prime}-termwise connected A-Picard sequence.

Now, we will show that the inequality (4.4) of Theorem 4.2 in [2] (page 9-10) is not true for $m=0$:

$$
\begin{aligned}
r_{G_{b}}\left(x_{0}, x_{1}\right)= & r_{G_{b}}\left(y_{0}, y_{4}\right) \\
= & r_{G_{b}}\left(\frac{1}{3}, \frac{1}{3^{5}}\right) \\
= & 1 \\
& \neq \frac{1}{3^{3}}+\frac{1}{3^{5}}+\frac{1}{3^{7}}+\frac{1}{3^{9}} \\
= & r_{G_{b}}\left(y_{0}, y_{1}\right)+r_{G_{b}}\left(y_{1}, y_{2}\right) \\
& +r_{G_{b}}\left(y_{2}, y_{3}\right)+r_{G_{b}}\left(y_{3}, y_{4}\right) .
\end{aligned}
$$

Also, for any $n=0,1,2, \ldots$, we have

$$
r_{G_{b}}\left(x_{n}, x_{n+1}\right)=r_{G_{b}}\left(\frac{1}{3^{n+1}}, \frac{1}{3^{n+5}}\right)=1 .
$$

This implies that $\left\{x_{n}\right\}$ is not a Cauchy sequence.

Remark 2.2. The above example demonstrates the technical difficulties in utilizing the path of even length between x_{n} and $A x_{n}$.

To prove the next result, the following symbol is needed: for a graph $G=$ $(\mathfrak{U}(G), \mathfrak{E}(G))$ and $u \in \mathfrak{l}(G)$, we denote
$[\mathbf{\Delta} u]_{G}^{l}=\left\{v \in X: \exists\right.$ a path $\left\{x_{j}\right\}_{j=0}^{l}$ from u to v with $\left.x_{j-1} \neq x_{j} \forall j=1,2, \ldots, l\right\}$.

Theorem 2.3. Let $\left(X, r_{G_{b}}\right)$ be a graphical rectangular b-metric space endowed with a graph G and the coefficient $s \geq 1$ and G^{\prime} be a subgraph of G with $\Delta \subseteq \mathfrak{E}\left(G^{\prime}\right)$. Suppose that X is G^{\prime}-complete, $A: X \rightarrow X$ is a one-to-one $\left(G, G^{\prime}\right)$-contraction mapping and the following conditions hold:
(I) G^{\prime} satisfies the property (\mathcal{P});
(II) There exists $x_{0} \in X$ such that $A x_{0} \in$ $\left[\mathbf{\Delta} x_{0}\right]_{G^{\prime}}^{l}$ and $A^{2} x_{0} \in\left[\mathbf{\Delta} x_{0}\right]_{G^{\prime}}^{m}$, where l, m are odd positive integers.

Then there exist $z^{*} \in X$ such that the A Picard sequence $\left\{x_{n}\right\}$ with the initial value $x_{0} \in X$ is G^{\prime}-termwise connected and converges to both z^{*} and $A z^{*}$.

Proof. Let $x_{0} \in X$ be such that $A x_{0} \in$ $\left[\boldsymbol{\Delta} x_{0}\right]_{G^{\prime}}^{l}$ and $A^{2} x_{0} \in\left[\boldsymbol{\Delta} x_{0}\right]_{G^{\prime}}^{m}$, where l, m are odd integers. Define an A-Picard sequence $\left\{x_{n}\right\}$ by $x_{n}=A x_{n-1}$ for all $n \in \mathbb{N}$. Since $A x_{0} \in\left[\boldsymbol{\Delta} x_{0}\right]_{G^{\prime}}^{l}$ and $A^{2} x_{0} \in\left[\boldsymbol{\Delta} x_{0}\right]_{G^{\prime}}^{m}$, there exist a path $\left\{y_{j}\right\}_{j=0}^{l}$ such that $x_{0}=$ $y_{0}, A x_{0}=y_{l}$ and $\left(y_{j-1}, y_{j}\right) \in \mathscr{E}\left(G^{\prime}\right)$ with $y_{j-1} \neq y_{j}$ for all $j=1,2, \ldots, l$ and a path $\left\{w_{j}\right\}_{j=0}^{m}$ such that $x_{0}=w_{0}, A^{2} x_{0}=w_{m}$ and $\left(w_{j-1}, w_{j}\right) \in \mathfrak{E}\left(G^{\prime}\right)$ with $w_{j-1} \neq w_{j}$ for all $j=1,2, \ldots, m$. Since A is a $\left(G, G^{\prime}\right)$ contraction mapping, by (GC-1), we have
$\left(A y_{j-1}, A y_{j}\right) \in \mathfrak{E}\left(G^{\prime}\right)$ for all $j=1,2, \ldots, l$.
Therefore, $\left\{A y_{j}\right\}_{j=0}^{l}$ is a path from $A y_{0}=$ $A x_{0}=x_{1}$ to $A y_{l}=A^{2} x_{0}=x_{2}$ of length l and $x_{2} \in\left[x_{1}\right]_{G^{\prime}}^{l}$. Continuing this process, for all $n \in \mathbb{N}$, we obtain $\left\{A^{n} y_{j}\right\}_{j=0}^{l}$ is a path from $A^{n} y_{0}=A^{n} x_{0}=x_{n}$ to $A^{n} y_{l}=A^{n} A x_{0}=x_{n+1}$ of length l and $x_{n+1} \in\left[x_{n}\right]_{G^{\prime}}^{l}$. Thus, $\left\{x_{n}\right\}$ is a G^{\prime}-termwise connected sequence.

Since $\left(A^{n} y_{j-1}, A^{n} y_{j}\right) \in \mathscr{E}\left(G^{\prime}\right)$ for $j=$ $1,2, \ldots, l$ and $n \in \mathbb{N}$. By (GC-2), for each $j=1,2, \ldots, l$, we have $r_{G_{b}}\left(A^{n} y_{j-1}, A^{n} y_{j}\right) \leq \lambda r_{G_{b}}\left(A^{n-1} y_{j-1}, A^{n-1} y_{j}\right)$

$$
\begin{align*}
& \vdots \\
& \leq \lambda^{n} r_{G_{b}}\left(y_{j-1}, y_{j}\right) \tag{2.1}
\end{align*}
$$

Similarly, we can show that $\left\{A^{n} w_{j}\right\}_{j=0}^{m}$ is a path from $A^{n} w_{0}=$ $A^{n} x_{0}=x_{n}$ to $A^{n} w_{m}=A^{n} A^{2} x_{0}=x_{n+2}$ of length m and $x_{n+2} \in\left[x_{n}\right]_{G^{\prime}}^{m}$, for all $n \in \mathbb{N}$.

Since $\quad\left(A^{n} w_{j-1}, A^{n} w_{j}\right) \quad \in$ $\mathscr{E}\left(G^{\prime}\right)$ for $j=1,2, \ldots, m$ and $n \in \mathbb{N}$. By (GC-2), for each $j=1,2, \ldots, m$, we have

$$
\begin{align*}
r_{G_{b}}\left(A^{n} w_{j-1}, A^{n} w_{j}\right) & \leq \lambda r_{G_{b}}\left(A^{n-1} w_{j-1}, A^{n-1} w_{j}\right) \\
& \vdots \\
& \leq \lambda^{n} r_{G_{b}}\left(w_{j-1}, w_{j}\right) \tag{2.2}
\end{align*}
$$

Now, we obtain

$$
\begin{align*}
& r_{G_{b}}\left(x_{0}, x_{1}\right) \leq s\left[r_{G_{b}}\left(y_{0}, y_{1}\right)+r_{G_{b}}\left(y_{1}, y_{2}\right)\right. \\
&\left.+r_{G_{b}}\left(y_{2}, y_{l}\right)\right] \\
& \leq s\left[r_{G_{b}}\left(y_{0}, y_{1}\right)+r_{G_{b}}\left(y_{1}, y_{2}\right)\right] \\
&+s^{2}\left[r_{G_{b}}\left(y_{2}, y_{3}\right)+r_{G_{b}}\left(y_{3}, y_{4}\right)\right. \\
&\left.+r_{G_{b}}\left(y_{4}, y_{l}\right)\right] \\
& \vdots \\
& \leq s\left[r_{G_{b}}\left(y_{0}, y_{1}\right)+r_{G_{b}}\left(y_{1}, y_{2}\right)\right] \\
&+s^{2}\left[r_{G_{b}}\left(y_{2}, y_{3}\right)+r_{G_{b}}\left(y_{3}, y_{4}\right)\right] \\
&+\cdots+s^{\frac{l-1}{2}}\left[r_{G_{b}}\left(y_{l-3}, y_{l-2}\right)\right. \\
&\left.+r_{G_{b}}\left(y_{l-2}, y_{l-1}\right)+r_{G_{b}}\left(y_{l-1}, y_{l}\right)\right] \\
&= D_{l} \tag{2.3}
\end{align*}
$$

and

$$
\begin{aligned}
r_{G_{b}}\left(x_{0}, x_{2}\right) \leq & s\left[r_{G_{b}}\left(w_{0}, w_{1}\right)+r_{G_{b}}\left(w_{1}, w_{2}\right)\right. \\
& \left.+r_{G_{b}}\left(w_{2}, w_{m}\right)\right] \\
\leq & s\left[r_{G_{b}}\left(w_{0}, w_{1}\right)+r_{G_{b}}\left(w_{1}, w_{2}\right)\right] \\
& +s^{2}\left[r_{G_{b}}\left(w_{2}, w_{3}\right)+r_{G_{b}}\left(w_{3}, w_{4}\right)\right. \\
& \left.+r_{G_{b}}\left(w_{4}, w_{m}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
\leq & s\left[r_{G_{b}}\left(w_{0}, w_{1}\right)+r_{G_{b}}\left(w_{1}, w_{2}\right)\right] \\
& +s^{2}\left[r_{G_{b}}\left(w_{2}, w_{3}\right)+r_{G_{b}}\left(w_{3}, w_{4}\right)\right] \\
& +\cdots+s^{\frac{m-1}{2}}\left[r_{G_{b}}\left(w_{m-3}, w_{m-2}\right)\right. \\
& +r_{G_{b}}\left(w_{m-2}, w_{m-1}\right) \\
& \left.+r_{G_{b}}\left(w_{m-1}, w_{m}\right)\right] \\
= & D_{m} . \tag{2.4}
\end{align*}
$$

By using $\left(G R_{b} M-3\right)$ and (GC-1) and inequalities (2.1) and (2.3), we have

$$
\begin{aligned}
r_{G_{b}}\left(x_{n}, x_{n+1}\right)= & r_{G_{b}}\left(A^{n} x_{0}, A^{n} x_{1}\right) \\
= & r_{G_{b}}\left(A^{n} y_{0}, A^{n} y_{l}\right) \\
\leq & s\left[r_{G_{b}}\left(A^{n} y_{0}, A^{n} y_{1}\right)\right. \\
& +r_{G_{b}}\left(A^{n} y_{1}, A^{n} y_{2}\right) \\
& \left.+r_{G_{b}}\left(A^{n} y_{2}, A^{n} y_{l}\right)\right] \\
\leq & s\left[r_{G_{b}}\left(A^{n} y_{0}, A^{n} y_{1}\right)\right. \\
& \left.+r_{G_{b}}\left(A^{n} y_{1}, A^{n} y_{2}\right)\right] \\
& +s^{2}\left[r_{G_{b}}\left(A^{n} y_{2}, A^{n} y_{3}\right)\right. \\
& +r_{G_{b}}\left(A^{n} y_{3}, A^{n} y_{4}\right) \\
& \left.+r_{G_{b}}\left(A^{n} y_{4}, A^{n} y_{l}\right)\right]
\end{aligned}
$$

$$
\vdots
$$

$$
\leq s\left[r_{G_{b}}\left(A^{n} y_{0}, A^{n} y_{1}\right)\right.
$$

$$
\left.+r_{G_{b}}\left(A^{n} y_{1}, A^{n} y_{2}\right)\right]
$$

$$
+s^{2}\left[r_{G_{b}}\left(A^{n} y_{2}, A^{n} y_{3}\right)\right.
$$

$$
\left.+r_{G_{b}}\left(A^{n} y_{3}, A^{n} y_{4}\right)\right]+\cdots
$$

$$
+s^{\frac{l-1}{2}}\left[r_{G_{b}}\left(A^{n} y_{l-3}, A^{n} y_{l-2}\right)\right.
$$

$$
+r_{G_{b}}\left(A^{n} y_{l-2}, A^{n} y_{l-1}\right)
$$

$$
\left.+r_{G_{b}}\left(A^{n} y_{l-1}, A^{n} y_{l}\right)\right]
$$

$$
\begin{equation*}
\leq \lambda^{n} D_{l} \tag{2.5}
\end{equation*}
$$

Similarly, by using $\left(G R_{b} M-3\right)$ and (GC-1) and inequalities (2.2) and (2.4), we have

$$
\begin{aligned}
r_{G_{b}}\left(x_{n}, x_{n+2}\right)= & r_{G_{b}}\left(A^{n} x_{0}, A^{n} x_{2}\right) \\
= & r_{G_{b}}\left(A^{n} w_{0}, A^{n} w_{m}\right) \\
\leq & s\left[r_{G_{b}}\left(A^{n} w_{0}, A^{n} w_{1}\right)\right. \\
& +r_{G_{b}}\left(A^{n} w_{1}, A^{n} w_{2}\right) \\
& \left.+r_{G_{b}}\left(A^{n} w_{2}, A^{n} w_{m}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
& \leq s\left[r_{G_{b}}\left(A^{n} w_{0}, A^{n} w_{1}\right)\right. \\
&\left.+r_{G_{b}}\left(A^{n} w_{1}, A^{n} w_{2}\right)\right] \\
&+s^{2}\left[r_{G_{b}}\left(A^{n} w_{2}, A^{n} w_{3}\right)\right. \\
&+r_{G_{b}}\left(A^{n} w_{3}, A^{n} w_{4}\right) \\
&\left.+r_{G_{b}}\left(A^{n} w_{4}, A^{n} w_{m}\right)\right] \\
& \vdots \\
& \leq s\left[r_{G_{b}}\left(A^{n} w_{0}, A^{n} w_{1}\right)\right. \\
&\left.+r_{G_{b}}\left(A^{n} w_{1}, A^{n} w_{2}\right)\right] \\
&+s^{2}\left[r_{G_{b}}\left(A^{n} w_{2}, A^{n} w_{3}\right)\right. \\
&\left.+r_{G_{b}}\left(A^{n} w_{3}, A^{n} w_{4}\right)\right]+\cdots \\
&+s^{\frac{m-1}{2}}\left[r_{G_{b}}\left(A^{n} w_{m-3}, A^{n} w_{m-2}\right)\right. \\
&+r_{G_{b}}\left(A^{n} w_{m-2}, A^{n} w_{m-1}\right) \\
&\left.+r_{G_{b}}\left(A^{n} w_{m-1}, A^{n} w_{m}\right)\right] \\
&= \lambda^{n} D_{m} . \tag{2.6}
\end{align*}
$$

Now, we show that the sequence $\left\{x_{n}\right\}$ is a Cauchy sequence i.e., for all $p \geq 1$, $r_{G_{b}}\left(x_{n}, x_{n+p}\right) \rightarrow 0$ as $n \rightarrow \infty$. If $x_{n}=x_{n+1}$ for some $n \in \mathbb{N} \cup\{0\}$, then $r_{G_{b}}\left(x_{n}, x_{n+p}\right) \rightarrow$ 0 as $n \rightarrow \infty$. So we may assume that $x_{n} \neq x_{n+1}$ for all $n \in \mathbb{N} \cup\{0\}$.

Case-I: If p is odd integer, then

$$
\begin{aligned}
r_{G_{b}}\left(x_{n}, x_{n+p}\right) \leq & s\left[r_{G_{b}}\left(x_{n}, x_{n+1}\right)\right. \\
& \left.+r_{G_{b}}\left(x_{n+1}, x_{n+2}\right)\right] \\
& +s^{2}\left[r_{G_{b}}\left(x_{n+2}, x_{n+3}\right)\right. \\
& \left.+r_{G_{b}}\left(x_{n+3}, x_{n+4}\right)\right]+\cdots \\
& +s^{\frac{p-1}{2}}\left[r_{G_{b}}\left(x_{n+p-3}, x_{n+p-2}\right)\right. \\
& +r_{G_{b}}\left(x_{n+p-2}, x_{n+p-1}\right) \\
& \left.+r_{G_{b}}\left(x_{n+p-1}, y_{n+p}\right)\right] .
\end{aligned}
$$

By using inequality (2.5), we have

$$
\begin{aligned}
r_{G_{b}}\left(x_{n}, x_{n+p}\right) \leq & s\left[\lambda^{n} D_{l}+\lambda^{n+1} D_{l}\right] \\
& +s^{2}\left[\lambda^{n+2} D_{l}+\lambda^{n+3} D_{l}\right]+\cdots \\
& +s^{\frac{p-1}{2}}\left[\lambda^{n+p-3} D_{l}\right. \\
& \left.+\lambda^{n+p-2} D_{l}+\lambda^{n+p-1} D_{l}\right] \\
\leq & s^{\frac{p-1}{2}}\left(\frac{\lambda^{n}}{1-\lambda}\right) D_{l}
\end{aligned}
$$

$$
\rightarrow 0 \text { as } n \rightarrow \infty .
$$

Case-II: If p is even integer, then

$$
\begin{aligned}
r_{G_{b}}\left(x_{n}, x_{n+p}\right) \leq & s\left[r_{G_{b}}\left(x_{n}, x_{n+1}\right)\right. \\
& \left.+r_{G_{b}}\left(x_{n+1}, x_{n+2}\right)\right] \\
& +s^{2}\left[r_{G_{b}}\left(x_{n+2}, x_{n+3}\right)\right. \\
& \left.+r_{G_{b}}\left(x_{n+3}, x_{n+4}\right)\right]+\cdots \\
& +s^{\frac{p-2}{2}}\left[r_{G_{b}}\left(x_{n+p-4}, x_{n+p-3}\right)\right. \\
& +r_{G_{b}}\left(x_{n+p-3}, x_{n+p-2}\right) \\
& \left.+r_{G_{b}}\left(x_{n+p-2}, y_{n+p}\right)\right] .
\end{aligned}
$$

By using inequality (2.5) and (2.6), we have

$$
\begin{aligned}
r_{G_{b}}\left(x_{n}, x_{n+p}\right) \leq & s\left[\lambda^{n} D_{l}+\lambda^{n+1} D_{l}\right] \\
& +s^{2}\left[\lambda^{n+2} D_{l}+\lambda^{n+3} D_{l}\right]+\cdots \\
& +s^{\frac{p-2}{2}}\left[\lambda^{n+p-4} D_{l}\right. \\
& \left.+\lambda^{n+p-3} D_{l}+\lambda^{n+p-2} D_{m}\right] \\
\leq & s^{\frac{p-2}{2}}\left(\frac{\lambda^{n}}{1-\lambda}\right)\left(D_{l}+D_{m}\right) \\
& \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

From Case-I and Case-II, we can say that $\left\{x_{n}\right\}$ is a Cauchy sequence. Since X is G^{\prime} complete, $\left\{x_{n}\right\}$ is a convergent sequence. By our assumption, there exist $z^{*} \in X$ and $n_{0} \in \mathbb{N}$ such that $x_{n} \rightarrow z^{*}$ as $n \rightarrow \infty$ and $\left(x_{n}, z^{*}\right) \in \mathfrak{E}\left(G^{\prime}\right)$ or $\left(z^{*}, x_{n}\right) \in \mathfrak{E}\left(G^{\prime}\right)$ for all $n>n_{0}$. Suppose that $\left(x_{n}, z^{*}\right) \in \mathscr{E}\left(G^{\prime}\right)$ for all $n>n_{0}$. By (GC-2), we have

$$
r_{G_{b}}\left(A x_{n}, A z^{*}\right) \leq \lambda r_{G_{b}}\left(x_{n}, z^{*}\right)
$$

for all $n>n_{0}$. This implies that

$$
r_{G_{b}}\left(A x_{n}, A z^{*}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

i.e., $x_{n+1} \rightarrow A z^{*}$. So, $A z^{*}$ is also a limit of $\left\{x_{n}\right\}$.

Similarly, we can prove this for the case $\left(z^{*}, x_{n}\right) \in \mathscr{E}\left(G^{\prime}\right)$ for all $n>n_{0}$. This completes the proof.

Theorem 2.4. Assume that all hypotheses of Theorem 2.3 hold and further suppose that the quadruple $\left(X, r_{G_{b}}, G^{\prime}, A\right)$ has the property S^{*}. Then A has a fixed point in X.

Proof. From the proof of Theorem 2.3 and Property S^{*}, we get this result.

Theorem 2.5. Assume that all hypotheses of Theorem 2.4 hold and further suppose that $\left(z^{*}, w^{*}\right) \in \mathfrak{E}\left(G^{\prime}\right)$ for all $z^{*}, w^{*} \in$ Fix (A), where Fix (A) is the set of all fixed points of A. Then A has the unique fixed point.

Proof. From Theorem 2.4, A has a fixed point. Now, we will show the uniqueness of a fixed point. Assume that z^{*} and w^{*} are two distinct fixed points of A. By the assumption, we obtain $\left(z^{*}, w^{*}\right) \in \mathfrak{E}\left(G^{\prime}\right)$. By (GC-1), we have $\left(A z^{*}, A w^{*}\right) \in \mathfrak{E}\left(G^{\prime}\right)$. Now, by (GC-2), we have

$$
\begin{aligned}
r_{G_{b}}\left(A z^{*}, A w^{*}\right) & \leq \lambda r_{G_{b}}\left(z^{*}, w^{*}\right) \\
\Rightarrow r_{G_{b}}\left(z^{*}, w^{*}\right) & \leq \lambda r_{G_{b}}\left(z^{*}, w^{*}\right) \\
\Rightarrow \lambda & \geq 1,
\end{aligned}
$$

which is a contradiction to $\lambda<1$. Hence, A has the unique fixed point.

Now, in order to provide a positive answer to the question of the existence of fixed points for Kannan contraction mappings in $G R_{b} M S$, we first define the following definition:

Definition 2.6. Let A be a self-mapping on a graphical rectangular b-metric space $\left(X, r_{G_{b}}\right)$ endowed with a graph G and the coefficient $s \geq 1$, and G^{\prime} be a subgraph of G with $\Delta \subseteq \mathfrak{E}\left(G^{\prime}\right)$. Then A is called a Kannan G^{\prime}-contraction on X if it satisfies the following conditions:
(KGC-1) for each $(x, y) \in \mathscr{E}\left(G^{\prime}\right)$, we have $(A x, A y) \in \mathfrak{E}\left(G^{\prime}\right)$.
(KGC-2) there exists $\lambda \in\left[0, \frac{1}{s+1}\right)$ such that

$$
\begin{aligned}
r_{G_{b}}(A x, A y) \leq & \lambda\left[r_{G_{b}}(x, A x)\right. \\
& \left.+r_{G_{b}}(y, A y)\right]
\end{aligned}
$$

for all $x, y \in X$ with $(x, y) \in \mathscr{E}\left(G^{\prime}\right)$.
Lemma 2.7. Let $\left(X, r_{G_{b}}\right)$ be a graphical rectangular b-metric space endowed with a graph G and the coefficient $s \geq 1$ and G^{\prime} be a subgraph of G with $\Delta \subseteq \mathfrak{E}\left(G^{\prime}\right)$. Suppose that $A: X \rightarrow X$ is a Kannan G^{\prime} contraction mapping. If $(x, A x) \in \mathscr{E}\left(G^{\prime}\right)$ for every $x \in X$, then

$$
\begin{array}{r}
r_{G_{b}}\left(A^{n} x, A^{n} y\right) \leq \frac{\lambda^{n}}{1-\lambda}\left[r_{G_{b}}(x, A x)\right. \\
\left.+r_{G_{b}}(y, A y)\right]
\end{array}
$$

for all $n \in \mathbb{N}$ whenever $(x, y) \in \mathscr{E}\left(G^{\prime}\right)$.
Proof. Let $(x, y) \in \mathscr{E}\left(G^{\prime}\right)$. By (KGC-1), we have

$$
\begin{equation*}
\left(A^{n} x, A^{n} y\right) \in \mathscr{E}\left(G^{\prime}\right) \tag{2.7}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Define $\psi(x, y) \quad:=$ $r_{G_{b}}(x, A x)+r_{G_{b}}(y, A y)$ for each $(x, y) \in$ $\mathfrak{E}\left(G^{\prime}\right)$. Then

$$
\begin{aligned}
\psi(A x, A y)= & r_{G_{b}}\left(A x, A^{2} x\right)+r_{G_{b}}\left(A y, A^{2} y\right) \\
\leq & \lambda\left[r_{G_{b}}(x, A x)+r_{G_{b}}\left(A x, A^{2} x\right)\right] \\
& +\lambda\left[r_{G_{b}}(y, A y)+r_{G_{b}}\left(A y, A^{2} y\right)\right] \\
= & \lambda[\psi(x, y)+\psi(A x, A y)] .
\end{aligned}
$$

This implies that

$$
\begin{equation*}
\psi(A x, A y) \leq \frac{\lambda}{1-\lambda} \psi(x, y) \tag{2.8}
\end{equation*}
$$

By repeating this process, we have

$$
\begin{equation*}
\psi\left(A^{n} x, A^{n} y\right) \leq \frac{\lambda^{n}}{1-\lambda} \psi(x, y) \tag{2.9}
\end{equation*}
$$

for all $n \in \mathbb{N}$. By the Kannan G^{\prime}-contractive condition, we get

$$
r_{G_{b}}(A x, A y) \leq \lambda\left[r_{G_{b}}(x, A x)+r_{G_{b}}(y, A y)\right]
$$

$$
\begin{equation*}
=\lambda \psi(x, y) . \tag{2.10}
\end{equation*}
$$

Now, we obtain

$$
\begin{aligned}
r_{G_{b}}\left(A^{2} x, A^{2} y\right) & \leq \lambda\left[r_{G_{b}}\left(A x, A^{2} x\right)+r_{G_{b}}\left(A y, A^{2} y\right)\right] \\
& \leq \lambda\left\{\lambda\left[r_{G_{b}}(x, A x)+r_{G_{b}}\left(A x, A^{2} x\right)\right]\right. \\
& \left.+\lambda\left[r_{G_{b}}(y, A y)+r_{G_{b}}\left(A y, A^{2} y\right)\right]\right\} \\
& =\lambda^{2}[\psi(x, y)+\psi(A x, A y)] \\
& \leq \lambda^{2}\left[\psi(x, y)+\frac{\lambda}{1-\lambda} \psi(x, y)\right] \\
& =\frac{\lambda^{2}}{1-\lambda} \psi(x, y) .
\end{aligned}
$$

In the same way, one can show that

$$
\begin{equation*}
r_{G_{b}}\left(A^{n} x, A^{n} y\right) \leq \frac{\lambda^{n}}{1-\lambda} \psi(x, y) \tag{2.11}
\end{equation*}
$$

that is,
$r_{G_{b}}\left(A^{n} x, A^{n} y\right) \leq \frac{\lambda^{n}}{1-\lambda}\left[r_{G_{b}}(x, A x)+r_{G_{b}}(y, A y)\right]$.

This completes the proof.
The following theorem ensures the existence of fixed points for Kannan contraction mappings in $G R_{b} M S$.

Theorem 2.8. Let $\left(X, r_{G_{b}}\right)$ be a graphical rectangular b-metric space endowed with a graph G and the coefficient $s \geq 1$ and G^{\prime} be a subgraph of G with $\Delta \subseteq \mathfrak{E}\left(G^{\prime}\right)$. Suppose that X is G^{\prime}-complete, $A: X \rightarrow X$ is a one-to-one Kannan G^{\prime}-contraction mapping and the following conditions hold:
(I) there exist $x_{0} \in X$ such that $A x_{0} \in$ $\left[\mathbf{\Delta} x_{0}\right]_{G^{\prime}}^{l}$ and $A^{2} x_{0} \in\left[\mathbf{\Delta} x_{0}\right]_{G^{\prime}}^{m}$, where l, m are odd positive integers;
(II) $(x, A x) \in \mathfrak{E}\left(G^{\prime}\right)$ for every $x \in X$;
(III) A is sequentially continuous, i.e., if $\left\{x_{n}\right\}$ is a sequence in X and $z \in X$ with $r_{G_{b}}\left(x_{n}, z\right) \rightarrow 0$, then $r_{G_{b}}\left(A x_{n}, A z\right) \rightarrow 0$.

Then there exist $z^{*} \in X$ such that the A Picard sequence $\left\{x_{n}\right\}$ with the initial value $x_{0} \in X$ is G^{\prime}-termwise connected and converges to both z^{*} and $A z^{*}$.

Proof. Let $x_{0} \in X$ be such that $A x_{0} \in$ $\left[\mathbf{\Delta} x_{0}\right]_{G^{\prime}}^{l}$ and $A^{2} x_{0} \in\left[\boldsymbol{\Delta} x_{0}\right]_{G^{\prime}}^{m}$, where l, m are odd integers. Define an A-Picard sequence $\left\{x_{n}\right\}$ by $x_{n}=A x_{n-1}$ for all $n \in \mathbb{N}$. Since $A x_{0} \in\left[\boldsymbol{\Delta} x_{0}\right]_{G^{\prime}}^{l}$ and $A^{2} x_{0} \in\left[\boldsymbol{\Delta} x_{0}\right]_{G^{\prime}}^{m}$, there exist a path $\left\{y_{j}\right\}_{j=0}^{l}$ such that $x_{0}=$ $y_{0}, A x_{0}=y_{l}$ and $\left(y_{j-1}, y_{j}\right) \in \mathscr{E}\left(G^{\prime}\right)$ with $y_{j-1} \neq y_{j}$ for all $j=1,2, \ldots, l$ and a path $\left\{w_{j}\right\}_{j=0}^{m}$ such that $x_{0}=w_{0}, A^{2} x_{0}=w_{m}$ and $\left(w_{j-1}, w_{j}\right) \in \mathscr{E}\left(G^{\prime}\right)$ with $w_{j-1} \neq w_{j}$ for all $j=1,2, \ldots, m$. Since A is a Kannan G^{\prime} contraction mapping, by (KGC-1), we get

$$
\left(A y_{j-1}, A y_{j}\right) \in \mathfrak{E}\left(G^{\prime}\right) \text { for } j=1,2, \ldots, l .
$$

Therefore, $\left\{A y_{j}\right\}_{j=0}^{l}$ is a path from $A y_{0}=$ $A x_{0}=x_{1}$ to $A y_{l}=A^{2} x_{0}=x_{2}$ of length l and $x_{2} \in\left[x_{1}\right]_{G^{\prime}}^{l}$. Continuing this process, we obtain $\left\{A^{n} y_{j}\right\}_{j=0}^{l}$ is a path from $A^{n} y_{0}=$ $A^{n} x_{0}=x_{n}$ to $A^{n} y_{l}=A^{n} A x_{0}=x_{n+1}$ of length l and $x_{n+1} \in\left[x_{n}\right]_{G^{\prime}}^{l}$ for all $n \in \mathbb{N}$. Thus, $\left\{x_{n}\right\}$ is a G^{\prime}-termwise connected sequence. Now, we have

$$
\begin{aligned}
& r_{G_{b}}\left(x_{n}, x_{n+1}\right)= r_{G_{b}}\left(A^{n} y_{0}, A^{n} y_{l}\right) \\
& \leq s\left[r_{G_{b}}\left(A^{n} y_{0}, A^{n} y_{1}\right)\right. \\
&+r_{G_{b}}\left(A^{n} y_{1}, A^{n} y_{2}\right) \\
&\left.+r_{G_{b}}\left(A^{n} y_{2}, A^{n} y_{l}\right)\right] \\
& \leq s\left[r_{G_{b}}\left(A^{n} y_{0}, A^{n} y_{1}\right)\right. \\
&\left.+r_{G_{b}}\left(A^{n} y_{1}, A^{n} y_{2}\right)\right] \\
&+s^{2}\left[r_{G_{b}}\left(A^{n} y_{2}, A^{n} y_{3}\right)\right. \\
&+r_{G_{b}}\left(A^{n} y_{3}, A^{n} y_{4}\right) \\
&\left.+r_{G_{b}}\left(A^{n} y_{4}, A^{n} y_{l}\right)\right] \\
& \vdots \\
& \leq s\left[r_{G_{b}}\left(A^{n} y_{0}, A^{n} y_{1}\right)\right. \\
&\left.+r_{G_{b}}\left(A^{n} y_{1}, A^{n} y_{2}\right)\right] \\
&+s^{2}\left[r_{G_{b}}\left(A^{n} y_{2}, A^{n} y_{3}\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.+r_{G_{b}}\left(A^{n} y_{3}, A^{n} y_{4}\right)\right]+\cdots \\
& +s^{\frac{l-1}{2}}\left[r_{G_{b}}\left(A^{n} y_{l-3}, A^{n} y_{l-2}\right)\right. \\
& +r_{G_{b}}\left(A^{n} y_{l-2}, A^{n} y_{l-1}\right) \\
& \left.+r_{G_{b}}\left(A^{n} y_{l-1}, A^{n} y_{l}\right)\right] . \tag{2.13}
\end{align*}
$$

Since $\left(y_{j-1}, y_{j}\right) \in \mathscr{E}\left(G^{\prime}\right)$, we have $\left(A^{n} y_{j-1}, A^{n} y_{j}\right) \in \mathfrak{F}\left(G^{\prime}\right)$ for all $j=$ $1,2, \ldots, l$ and for all $n \in \mathbb{N}$. By using Lemma 2.7, the inequality (2.13) becomes

$$
\begin{align*}
r_{G_{b}}\left(x_{n}, x_{n+1}\right) \leq & \frac{\lambda^{n}}{1-\lambda}\left\{s\left[\psi\left(y_{0}, y_{1}\right)+\psi\left(y_{1}, y_{2}\right)\right]\right. \\
& +s^{2}\left[\psi\left(y_{2}, y_{3}\right)+\psi\left(y_{3}, y_{4}\right)\right]+\cdots \\
& +s^{\frac{l-1}{2}}\left[\psi\left(y_{l-3}, y_{l-2}\right)\right. \\
& \left.\left.+\psi\left(y_{l-2}, y_{l-1}\right)+\psi\left(y_{l-1}, y_{l}\right)\right]\right\} \tag{2.14}
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
r_{G_{b}}\left(x_{n}, x_{n+2}\right)= & r_{G_{b}}\left(A^{n} w_{0}, A^{n} w_{m}\right) \\
\leq & s\left[r_{G_{b}}\left(A^{n} w_{0}, A^{n} w_{1}\right)\right. \\
& \left.+r_{G_{b}}\left(A^{n} w_{1}, A^{n} w_{2}\right)\right] \\
& +s^{2}\left[r_{G_{b}}\left(A^{n} w_{2}, A^{n} w_{3}\right)\right. \\
& \left.+r_{G_{b}}\left(A^{n} w_{3}, A^{n} w_{4}\right)\right]+\cdots \\
& +s^{\frac{m-1}{2}}\left[r_{G_{b}}\left(A^{n} w_{m-3}, A^{n} w_{m-2}\right)\right. \\
& +r_{G_{b}}\left(A^{n} w_{m-2}, A^{n} w_{m-1}\right) \\
& \left.+r_{G_{b}}\left(A^{n} w_{m-1}, A^{n} y_{m}\right)\right] . \tag{2.15}
\end{align*}
$$

Since $\left(w_{j-1}, w_{j}\right) \in \mathfrak{E}\left(G^{\prime}\right)$, we have $\left(A^{n} w_{j-1}, A^{n} w_{j}\right) \in \mathscr{E}\left(G^{\prime}\right)$ for all $j=$ $1,2, \ldots, m$ and for all $n \in \mathbb{N}$. By using Lemma 2.7, the inequality (2.15) becomes

$$
\begin{aligned}
r_{G_{b}}\left(x_{n}, x_{n+2}\right) \leq & \frac{\lambda^{n}}{1-\lambda}\left\{s \left[\psi\left(w_{0}, w_{1}\right)\right.\right. \\
& \left.+\psi\left(w_{1}, w_{2}\right)\right] \\
& +s^{2}\left[\psi\left(w_{2}, w_{3}\right)\right. \\
& \left.+\psi\left(w_{3}, w_{4}\right)\right]+\cdots \\
& +s^{\frac{m-1}{2}}\left[\psi\left(w_{m-3}, w_{m-2}\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& +\psi\left(w_{m-2}, w_{m-1}\right) \\
& \left.+\psi\left(w_{m-1}, w_{m}\right)\right] \tag{2.16}
\end{align*}
$$

Now, we will show that the G^{\prime}-termwise connected A-Picard sequence $\left\{x_{n}\right\}$ is a Cauchy sequence i.e., for $p \geq 1$, $r_{G_{b}}\left(x_{n}, x_{n+p}\right) \rightarrow 0$ as $n \rightarrow \infty$. If $x_{n}=x_{n+1}$ for some $n \in \mathbb{N} \cup\{0\}$, then $r_{G_{b}}\left(x_{n}, x_{n+p}\right) \rightarrow$ 0 as $n \rightarrow \infty$. So we may assume that $x_{n} \neq x_{n+1}$ for all $n \in \mathbb{N} \cup\{0\}$.

Case-I. If p is an odd integer, then

$$
\begin{aligned}
r_{G_{b}}\left(x_{n}, x_{n+p}\right) \leq & s\left[r_{G_{b}}\left(x_{n}, x_{n+1}\right)\right. \\
& \left.+r_{G_{b}}\left(x_{n+1}, x_{n+2}\right)\right] \\
& +s^{2}\left[r_{G_{b}}\left(x_{n+2}, x_{n+3}\right)\right. \\
& \left.+r_{G_{b}}\left(x_{n+3}, x_{n+4}\right)\right]+\cdots \\
& +s^{\frac{p-1}{2}}\left[r_{G_{b}}\left(x_{n+p-3}, x_{n+p-2}\right)\right. \\
& +r_{G_{b}}\left(x_{n+p-2}, x_{n+p-1}\right) \\
& \left.+r_{G_{b}}\left(x_{n+p-1}, x_{n+p}\right)\right] .
\end{aligned}
$$

From inequality (2.14), we can say that

$$
\begin{equation*}
r_{G_{b}}\left(x_{n}, x_{n+p}\right) \rightarrow 0 \text { as } n \rightarrow \infty \tag{2.17}
\end{equation*}
$$

Case-II. If p is an even integer, then

$$
\begin{aligned}
r_{G_{b}}\left(x_{n}, x_{n+p}\right) \leq & s\left[r_{G_{b}}\left(x_{n}, x_{n+1}\right)\right. \\
& \left.+r_{G_{b}}\left(x_{n+1}, x_{n+2}\right)\right] \\
& +s^{2}\left[r_{G_{b}}\left(x_{n+2}, x_{n+3}\right)\right. \\
& \left.+r_{G_{b}}\left(x_{n+3}, x_{n+4}\right)\right]+\cdots \\
& +s^{\frac{p-2}{2}}\left[r_{G_{b}}\left(x_{n+p-4}, x_{n+p-3}\right)\right. \\
& +r_{G_{b}}\left(x_{n+p-3}, x_{n+p-2}\right) \\
& \left.+r_{G_{b}}\left(x_{n+p-2}, x_{n+p}\right)\right] .
\end{aligned}
$$

From inequality (2.14) and (2.16), we have

$$
\begin{equation*}
r_{G_{b}}\left(x_{n}, x_{n+p}\right) \rightarrow 0 \text { as } n \rightarrow \infty . \tag{2.18}
\end{equation*}
$$

From Case-(I) and Case-(II), one can say that $\left\{x_{n}\right\}$ is a Cauchy sequence. Since X is G^{\prime}-complete, there exist $z^{*} \in X$ such that $x_{n} \rightarrow z^{*}$ as $n \rightarrow \infty$. Since A is sequentially continuous, we obtain $x_{n+1}=A x_{n} \rightarrow A z^{*}$ as $n \rightarrow \infty$. This completes the proof.

Theorem 2.9. Assume that all hypotheses of Theorem 2.8 hold and further suppose that the quadruple $\left(X, r_{G_{b}}, G^{\prime}, A\right)$ has the property S^{*}. Then A has a fixed point in X.

Proof. From the proof of Theorem 2.8 and Property S^{*}, we get this result.

Theorem 2.10. Assume that all hypotheses of Theorem 2.9 hold and further suppose that $\left(z^{*}, w^{*}\right) \in \mathfrak{E}\left(G^{\prime}\right)$ for all $z^{*}, w^{*} \in$ Fix (A), where Fix (A) is the set of all fixed points of A. Then A has the unique fixed point.

Proof. From Theorem 2.9, A has a fixed point. Now, we will show the uniqueness of a fixed point. Assume that z^{*} and w^{*} are two fixed points of A. By the assumption, we obtain $\left(z^{*}, w^{*}\right) \in \mathfrak{E}\left(G^{\prime}\right)$. By (KGC-1), we have $\left(A z^{*}, A w^{*}\right) \in \mathscr{E}\left(G^{\prime}\right)$. Now, by (KGC2), we have

$$
\begin{aligned}
r_{G_{b}}\left(z^{*}, w^{*}\right)= & r_{G_{b}}\left(A z^{*}, A w^{*}\right) \\
& \leq \lambda\left[r_{G_{b}}\left(z^{*}, A z^{*}\right)\right. \\
& \left.+r_{G_{b}}\left(w^{*}, A w^{*}\right)\right]=0 .
\end{aligned}
$$

This implies that $z^{*}=w^{*}$. Hence, A has the unique fixed point.

3. Conclusion

In this work we presented an example of a graphical rectangular b-metric space in which a A-Picard sequence in the sense of Mudasir Younis et.al.[2] is not Cauchy. To overcome this drawback, we formulated suitable conditions and made appropriate corrections to Theorem 4.2 given in [2]. Moreover, we provided a positive answer to the question of the existence of a fixed point for Kannan contraction mappings in the aforesaid space.

Acknowledgements

The authors are grateful to Referees and Editor-in-Chief of Science \& Technology Asia for their constructive suggestions, which greatly helped us to improve the paper significantly

References

[1] Shukla, S., Radenović, S., Vetro, C. Graphical metric space: a generalized setting in fixed point theory. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 2017;111(3): 641-655.
[2] Younis, M., Singh, D. and Goyal, A. A novel approach of graphical rectangular b-metric spaces with an application to the vibrations of a vertical heavy hanging cable. Journal of Fixed Point Theory and Applications 2019;21(1):33.
[3] Baradol, P., Gopal, D. and Radenovic', S. Computational fixed points in graphical rectangular metric spaces with application. Journal of Computational and Applied Mathematics 2020;112805.
[4] Chuensupantharat, N., Kumam, P., Chauhan, V., Singh, D. and Menon, R. Graphic contraction mappings via graphical b-metric spaces with applications. Bulletin of the Malaysian Mathematical Sciences Society 2018;1-17.
[5] Shukla, S., Mlaiki, N. and Aydi, H. On $\left(G, G^{\prime}\right)$-Prešić -Ćirić Operators in Graphical Metric Spaces. Mathematics 2019;7(5):445.
[6] Branciari, A. A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. Debrecen 2000;57(1-2):31-37.
[7] George, R., Radenovic, S., Reshma, K.P. and Shukla, S. Rectangular b-metric spaces and contraction principle. J. Nonlinear Sci. Appl. 2015;8(6):1005-1013.
[8] Roshan, J.R., Parvaneh, V., Kadelburg, Z. and Hussain, N. New fixed point results in b-rectangular metric spaces. Nonlinear Anal. Model. Control 2016;21(5):614634.
[9] Edelstein, M. An extension of Banach contraction principle. Proc. Am. Math. Soc. 1961;12:7-10.
[10] Hardy, G.E., Rogers, T.D. A generalization of a fixed point theorem of Reich. Canadian Mathematical Bulletin 1973;16(2):201-206.
[11] Kannan, R. Some results on fixed points. Bull. Cal. Math. Soc. 1960;60: 71-76.
[12] Meir, A. and Keeler, E. A theorem on contraction mappings. Journal of Mathematical Analysis and Applications 1969;28(2):326-329.
[13] Reich, S. Some remarks concerning contraction mappings. Canadian Mathematical Bulletin 1971;14(1):121-124.

