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ABSTRACT

This paper aims to rectify the recent fixed point results on graphical rectangular b-
metric spaces due to Mudasir Younis et al. (J. Fixed Point Theory Appl., doi:10.1007/s11784-
019-0673-3, 2019). Moreover, we also give the answer of some open problem in the men-
tioned research related to the Kannan contraction mapping in the space described above with

its fixed point theorems.
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1. Introduction

Throughout this paper, unless other-
wise specified, let the diagonal of X X X be
denoted by A for a nonempty set X. Fur-
thermore, let G = (U(G),E(G)) be a di-
rected graph possessing no parallel edges,
where U(G) is the set of all vertices such
that 2(G) C X and €(G) is the set of all the
edges of G containing all loops, that is, A C
€(G). A path (or directed path) of length m
between points v,w € U(G) is defined as a
sequence {xj};”zo of (m + 1) vertices with
vV = X9, W = X, and (x;j_1,x;) € €(G) for
all j = 1,2,...,m. Consistent with Shukla
[[1], we denote

[u]IG = {v € X : J a path directing from u

v having length /}.

In addition, a relation P on X is such
that (uPv)g if there exists a path directing
from u to v in G and the notion w € (uPv)G
is used whenever w is contained in the path
(uPv)g. A sequence {x,} in X is called a
G-termwise connected (briefly, G-TWC) if
(x4, Pxy+1)G foralln € N.

To avoid repetition, we assume the
same terminology, notations and basic facts
as having been utilized in [2]. For more de-
tails, one can also refer to [[I,B-5]. The idea
of a graphical rectangular b-metric space is
a generalization of a rectangular H-metric
space.

Definition 1.1 ([6]). Let X be a non-empty
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setand d : X X X — [0,00) be a function.
If d satisfies the following conditions:

() dx,y) =0iff x =y,
(ii) d(x,y) =d(y,x) forall x,y € X;

(iii) for each x,y € X and distinct points
u,v € X\ {x,y}, we have

d(x,y) < d(x,u) + d(u,v) + d(v,y),

then d is called a rectangular metric on X
and (X,d) is called a rectangular metric
space (briefly, a RMS).

Definition 1.2 ([[7, 8]). Let X be a non-
empty set, d : X x X — [0, 0) be a function
and s > 1. If d satisfies the following con-
ditions:

(1) d(x,y)=0iff x =y,
(ii) d(x,y) =d(y,x) forall x,y € X;

(iii) for each x,y € X and distinct points
u,v € X\ {x,y}, we have

d(x,y) < sld(x,u)+du,v)+d(v,y)],

then d is called a rectangular b-metric on X
and (X,d) is called a rectangular b-metric
space (briefly, a R,MS).

Definition 1.3 ([[l]]). Let X be a non-empty
set, G be a graph endowed with X, and dg :
X XX — [0,00) be a function satisfying the
following conditions:

(i) dg(x,y) =0iff x = y;
(ii) dg(x,y) = dg(y,x) forall x,y € X;

(iii) for each x,y € X with (xPy)g and
7 € (xPy)g, we have

dG(x,)’) < dG(.X, Z) + dG(Z’y)'

Then dg is called a graphical metric on
X and (X, dg) is called a graphical metric
space (briefly, a GMS).

Definition 1.4 ([2]). Let X be a non-empty
set, G be a graph endowed with X, s > 1,
and rg, : X x X — [0,00) be a function
satisfying the following conditions:

(GRyM —1) rG,(x,y) =0 iff x =y,

(GRyM - 2) rg,(x,y) = rG,(y,x) forall
x,y € X;

(GRpM — 3) foreach x,y € X and distinct
points u,v € X \ {x,y} with (xPy)g
and u,v € (xPy)g, we have

er(x’y) < s[er(x,u) +er(M,V)

+76, (v, )]

Then rg, is called a graphical rectangu-
lar b-metric on X and (X,rg,) is called
a graphical rectangular b-metric space
(briefly, a GR, M S).

Definition 1.5 ([2]). If's = 1 in Definition
4, we call the resultant space a graphical
rectangular metric space (briefly, GRMS)
and denote it by (X, rg), which is the graph-
ical version of a rectangular metric space.

Remark 1.6. Itiseasytoseethata GR, M S
isa GRMS with s = 1.

Definition 1.7 ([2]). Let (X,rg,) be a
graphical rectangular b-metric space. A se-
quence {x,} in X is said to be

i) a Cauchy sequence if for given € > 0,
there exists ng € N such that

rGy, (Xn, Xm) < € for all n,m > ng

i.e., limy m—eo Gy, (Xn, Xm) = 0.
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ii) convergesto x € X if for given € > 0,
there exist m € N such that

rG, (Xn,Xx) < € for alln > m
i.e., hmn—>oo er (xl’h x) =0.

Definition 1.8 ([2]). Let (X,rg,) be a
graphical rectangular b-metric space en-
dowed with a graph G = (U(G),€(G)) and
G’ be a sub-graph of G with W(G') = X.

i) X is said to be complete if every
Cauchy sequence in X converges in
X.

ii) X is said to be G’-complete if ev-
ery G'-termwise connected Cauchy
sequence in X converges in X.

Definition 1.9 ([2]). Let A be a self-
mapping on a graphical rectangular b-
metric space (X, rg, ) endowed with a graph
G and the coefficient s > 1, and G’ be a
subgraph of G with A C €(G’). Then A is
called a (G,G")-contraction on X if it satis-
fies the following conditions:

(GC-1) for each (x,y) € €(G’), we have
(Ax, Ay) € €(G');

(GC-2) there exists A € [0, %) such that

rGg, (AX,A)’) < /erb(xa y)
for all x,y € X with (x,y) € €(G").

Definition 1.10 ([2]). Let A be a self-
mapping on a graphical rectangular b-
metric space (X, rg, ) endowed with a graph
G and the coefficient s > 1, and G’ be a
subgraph of G with A C €(G’). A graph
G’ is said to satisfy the property (P), if a
G’-termwise connected A-Picard sequence
{xn} converges in X, then there exist a limit
& € X of {x,} and ny € N such that
(xn,&) € C(G') or (¢,x,) € C(G) for all
n > nop.

Theorem 1.11 ([2]). Let (X,rg,) be a
graphical rectangular b-metric space en-
dowed with a graph G and the coefficient
s = 1 and G’ be a subgraph of G with
A C €(G’). Suppose that X is G'-complete,
A : X — X is a (G,G’)-contraction map-
ping and the following conditions hold:

() G’ satisfies the property (P),

(1l) there exist xo € X such that Axg €
[xo]l(;, for some | € N,

Then there exist 7* € X such that the A-
Picard sequence {x,} with the initial value
xo € X is G'-termwise connected and con-
verges to both z* and Az".

Definition 1.12 ([2]). Let (X,rg,) be a
graphical rectangular metric space and A :
X — X be a (G,G")-contraction mapping.
The quadruple (X,rg,,G’, A) is said to have
the property S* if for each G’-termwise con-
nected A-Picard sequence {x,,} in X has the
unique limit.

In [2], authors also posed the follow-
ing question.

* Question: Is it possible to estab-
lish analogous results of Edelstein
[9], Hardy-Roger [[10], Kannan [[11]
, Meir-Keeler [[12], and Reich []13]
type contractions in GR, M S.

In this paper, we show that the condi-
tions of Theorem 4.2 in [2] are not sufficient
to prove the Cauchyness of the G’-termwise
connected A-Picard sequence and hence it
doesn’t ensure the existence of fixed points
in GRp,MS. In fact, we show that the in-
equality (4.4) of Theorem 4.2 in [2] (page
9-10) doesn’t hold for even values [ € N.
To remedy this, we propose suitable condi-
tions on the mentioned theorem (see condi-
tion (II) in Theorem R.3 given below) and
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provide a corrected proof. Moreover, we
provide a positive answer to the question
of the existence of a fixed point for Kan-
nan contraction mappings in the aforesaid
space.

2. Main Results

We begin this section with the fol-
lowing example showing that the inequal-
ity (4.4) of Theorem 4.2 in [2] (page 9-10)
doesn’t hold for even values / € N.

Example 2.1. Let X = {0} U {3 : n € N}
and G = (U(G),€(G)) be a graph associ-
ated with X, where W(G) = X and €(G) :=
AU{(S%,:S,%) € XX X : n e N} Definea
Sunctionrg, : X x X — [0,00) by

1G, (%, y) = 0 iff x =y,

1 1 1
G, (0,3—n) =rG, ( 0) =3 foralln € N,

3_11’

1 1
rG, (3_m’3_n) =1 forallm,n € N with

m # n and 2 divides |m — n|,
1 1 1 .
G, 3 3m = Fnrm otherwise.

Then (X,rg,) is a graphical rectangular
metric space (i.e., GR,MS with s = 1). De-
fine a mapping A : X — X by

% ifx=0
Ax =
X otherwise.

Then A is a (G, G’)-contraction mapping on
X with A = %andG’zG.

Now, we will prove that for any xy €
X such that Axg € [xo]lo for some | € N,
the A-Picard sequence {x,} is not a Cauchy
sequence. Note that the Property (P) is not
required to prove the Cauchyness of a a se-
quence {x,} (see the proof of Theorem 4.2
in [2]).

Case-I If xy = 0, then Axg = % But
there is no path from 0 to % Then Axg ¢

[xo]l(;, for alll € N. So we don 't consider
this case.

Case-II If xy € {Sin : n € N}, then
Axg € [xo]é,. Suppose that xy = % Then
Axg = x1 = 3% and there exists a sequence
%7 yi =
3%, y2 = 3% y3 = 3% 4 = Axpg = %With
(vj-1,¥;) € €(G’) forall j = 1,2,3,4. This
implies that Axy € [x0]4G,. Since A is an
edge preserving mapping, we can show that
the sequence {x,} is a G'-termwise con-
nected A-Picard sequence.

Now, we will show that the inequality
(4.4) of Theorem 4.2 in [2] (page 9-10) is
not true for m = 0:

{yJ};lzo such that Yo = X =

G, (X0, x1) = G, (Yo, y4)

(11
= |35

=1

1 1 1 1
Emt iyt
=rG, (Y0, y1) + G, (V1,¥2)

+7G,(¥2,¥3) + 16, (3, y4).

Also, for any n = 0,1,2,..., we have

1 1
er(xn’xn+l):er ﬁa% =

This implies that {x,} is not a Cauchy se-
quence.

Remark 2.2. The above example demon-
strates the technical difficulties in utilizing
the path of even length between x,, and Ax;,.

To prove the next result, the follow-
ing symbol is needed: for a graph G =
U(G),€(G)) and u € U(G), we denote

[Au]lG ={veX:3 apath{xj}ﬁ.zofrom u to

vwithxj1 #x;Vj=12,...,1}.
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Theorem 2.3. Let (X,rg,) be a graphical
rectangular b-metric space endowed with a
graph G and the coefficient s > 1 and G’ be
a subgraph of G with A € €(G’). Suppose
that X is G'-complete, A : X — X is a one-
to-one (G, G’)-contraction mapping and the
following conditions hold:

() G’ satisfies the property (P);

(II) There exists xg € X such that Axg €
[Axo]lC;, and A%xq € [Ax0]l, where
[,m are odd positive integers.

Then there exist 7* € X such that the A-
Picard sequence {x, } with the initial value
xo € X is G'-termwise connected and con-
verges to both 7* and Az".

Proof. Let xp € X be such that Axg €
[Axo]l(;, and A%x € [ax0](s, where [,m
are odd integers. Define an A-Picard se-
quence {x,} by x, = Ax,—1 foralln € N.
Since Axg € [axolL, and A%xg € [axo],
there exist a path {yj}j.:o such that xg =
Y0, Axg = yrand (yj-1,y;) € €(G’) with
yj-1 # yj forall j = 1,2,...,] and a path
{w;}L, such that xo = w, A%xg = Wi
and (wj_1,w;) € €(G") with w;_; # w; for
all j = 1,2,...,m. Since A is a (G,G’)-
contraction mapping, by (GC-1), we have

(Ayj-1,Ay;) € €(G') forall j = 1,2,...,1.

Therefore, {ij}j.:0 is a path from Ayg =
Axg = x1 to Ay; = A2xo = xo of length
[ and xy € [xl]l(;,. Continuing this pro-
cess, for all n € N, we obtain {A”yj}j.:0
is a path from A"y, = A"xy = x, to
A'y; = A"Axp = xu41 of length [ and
Xns1 € [xn]%,. Thus, {x,} is a G’-termwise
connected sequence.

Since (A"y;_1,A"y;) € €(G’) for j =
1,2,...,l and n € N. By (GC-2), for each
j=12,...,1, we have

rG, (A"yj-1,A"y;) < Arg, (A" tyj_1, A" y))

< A"rG, (yj-1,¥))-

2.1)

Similarly, we can show that
{A”wj}_;.’io is a path from A"wy =
Axy = x, to A"w,,, = A"A%xp = Xxp4o Of
length m and x;,,12 € [xn]'é‘, for all n € N.

Since (A"wj_1,A"wj) €
C(G’) for j = 1,2,....mand n € N,
By (GC-2), for each j = 1,2,...,m, we
have

TGy, (AnWj_1, AnWj) < Arg, (An_le_l, An_le)

< /lnl”Gb (Wj_l, Wj).
(2.2)

Now, we obtain

rG, (%0, x1) < s[rg, (yo,y1) + G, (1, y2)
+716G,(y2, y1)]
< slrG, (Yo, y1) + 16, (y1,¥2)]
+ 52[rG, (y2,¥3) + G, (3, y4)
+ 716, (y1, y1)]

< slrg, (o, 1) + rG, (y1, y2)]
+ 5°[rG, (y2.¥3) + 1G, (3, y4)]
+oot S%[er (Y1-3,y1-2)
+ 1, (Vi-2,Y1-1) + G, (Vi-1, y1)]
=: Dy 2.3)

and

rG, (x0,x2) < s[rg, (wo,w1) +rg, (W1, w2)
+71G, (Wa, W)}

< slrg, (wo, w1) + rG, (w1, wa)]

+ 52[rG, (Wa, w3) + G, (W3, w4)

+ er (W49 Wm)]
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< slrg, (wo, w1) + G, (w1, wa)]
+ 5°[rG, (wa, w3) + G, (W3, ws)]
+ -+ smTA[er (Win—3, Win—2)
+ 16, (Wm-2, Win-1)
+7G, Win-1,Wm)]

=: Dy (2.4)

By using (GRp,M — 3) and (GC-1) and in-
equalities (2.1)) and (2.3), we have

Gy, (Xn, Xn+1) = 1G, (A" x0, A" x1)

=rG, (A"yo, A" y1)

< s[rg, (A" yo, A" y1)
+76,(A"y1,A"y2)
+71G, (A" y2, A" yi)]

< s[rg, (A" yo, A" y1)
+76,(A"y1, A" y2)]
+ 5%[rG, (A" y2,A"y3)
+76,(A"y3, A" y4)
+7G, (A" ys, A"y1)]

< s[rG, (A"yo, A"y1)
+76,(A"y1,A"y2)]
+ 5%[rG, (A"y2, A"y3)
+76,(A"y3, A"y + - - -
5 [rG, (A" yiss, A" yi2)
+7G,(A"y1—2,A"yi1-1)
+7G,(A"yi-1,A"y1)]

< "Dy 2.5)

Similarly, by using (GRp M —3) and (GC-1)
and inequalities (2.2) and (2.4), we have

rg, (Xn, Xpnt2) = G, (A" x0, A" x2)
=rg,(A"wo, A"wp,)
< s[rg, (A"wo, A"w1)
+ 76, (A"wi, A"wa)
+7G, (A" wa, A"wp,)]

< slrg, (A"wo, A"wy)
+ 716, (A" w1, A"wo)]
+ s2[er (A"wo, A"ws3)
+ 76, (A" ws, A"wy)

+ G, (AnW4, A”wm)]

< s[rg, (A"wo, A"w1)
+76,(A"w1, A wo)]
+ s2[er (A"wq, A"w3)
+7G, (A"ws, A"wy)] + - - -
+ smT_l [er (AnWm—?n Anwm—2)
+7rG, (Anwm_Q,AnWm_l)
+7G, (A" Wi—1, A" W)
= A"D,,. (2.6)
Now, we show that the sequence {x,} is
a Cauchy sequence i.e., for all p > 1,
Gy (Xn, Xnsp) — 0asn — oco. If x,, = X441
forsome n € NU{0}, thenrg, (x4, Xp4p) —
0 asn — oo. So we may assume that

Xp # Xp4q foralln € N U {0}.
Case-I: If p is odd integer, then

er (xn’xn+p) < S[er (xn’xn+1)
+7G, (Xn+15Xn+2)]
+ 57 [’"Gb (Xn+2, Xn+3)
+71G, (xn+3’ xn+4)] +--
p-1
+s 2 [er (xn+p—3’ xn+p—2)
+7G, (xn+p—2a xn+p—1)
+rG, (xn+p—l, yn+p)]-

By using inequality (2.3), we have

er(-xn,-xn+p) < S[/lnDl + /1n+1Dl]
+ SQ[AIH—QDZ + /ln+3Dl] I
p-l
2

+ [/ln+p_3Dl

S
+ AMP2p, 4 AP

A D,
1-2

s

p-

N‘

<s
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— Oasn — oo,
Case-1I: If p is even integer, then

rG, (xn, xn+p) < s[er (X, Xn+1)
+7rG, (Xn+15 Xn4+2)]
+ 52 [er (xn+2’ xn+3)

+7G, (Xn+3, Xn+a)] + -+ -
P2
t+5 2 [er (xn+p—4a xn+p—3)

+71G, (xn+p—3, xn+p—2)

+ rGg, (xn+p—2’ yn+p)]-
By using inequality (2.3) and (2.6), we have

rG, (Xn, Xnip) < s[A" Dy + A7D
+ SQ[/VHQDZ + /ln+3Dl] + -

L+ sP A,
+/1n+p—3Dl +/ln+p—2Dm]
< spTi2 ( A
- 1-4

— 0as n — oo.

n

) (Dl + Dm)

From Case-1 and Case-II, we can say that
{x,} is a Cauchy sequence. Since X is G'-
complete, {x,} is a convergent sequence.
By our assumption, there exist z* € X and
no € N such that x,, — z* asn — oo and
(xn,2") € €(G’) or (2%, x,) € €(G’) for all
n > ng. Suppose that (x,,z*) € €(G’) for
all n > ng. By (GC-2), we have

G, (Axn, AZ") < Arg, (x4, 2°%)
for all n > ng. This implies that
rG, (Axp, Az") > 0asn — oo

1.e., Xxp+1 — AzZ". So, Az" is also a limit of
{xn}

Similarly, we can prove this for the
case (z%,x,) € €(G’) for all n > ng. This
completes the proof. O

Theorem 2.4. Assume that all hypotheses
of Theorem hold and further suppose
that the quadruple (X,rg,,G’, A) has the
property S*. Then A has a fixed point in X.

Proof. From the proof of Theorem R.3 and
Property S*, we get this result. O

Theorem 2.5. Assume that all hypothe-
ses of Theorem hold and further sup-
pose that (7*,w*) € C€(G’) for all 7*,w* €
Fix(A), where Fix(A) is the set of all fixed
points of A. Then A has the unique fixed
point.

Proof. From Theorem R.4, A has a fixed
point. Now, we will show the uniqueness
of a fixed point. Assume that z* and w* are
two distinct fixed points of A. By the as-
sumption, we obtain (z*,w*) € €(G’). By
(GC-1), we have (Az*, Aw*) € €(G’). Now,
by (GC-2), we have

rG, (Az", Aw®) < Arg, (2, w")
= rg, (2", w") < Arg, (", w")
=1>1,

which is a contradiction to 4 < 1. Hence, A
has the unique fixed point. O

Now, in order to provide a positive
answer to the question of the existence of
fixed points for Kannan contraction map-
pings in GRy M S, we first define the follow-
ing definition:

Definition 2.6. Let A be a self-mapping
on a graphical rectangular b-metric space
(X,rg,) endowed with a graph G and the
coefficient s > 1, and G’ be a subgraph of
G with A € €(G’). Then A is called a Kan-
nan G’-contraction on X if it satisfies the
following conditions:

(KGC-1) for each (x,y) € €(G’), we have
(Ax, Ay) € €(G).
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(KGC-2) thereexists 4 € [0, ﬁ) such that

rG, (Ax,Ay) < A[rg, (x, Ax)
+ rGg, (y’ A)’)]

for all x,y € X with (x,y) € €(G’).

Lemma 2.7. Let (X,rg,) be a graphical
rectangular b-metric space endowed with a
graph G and the coefficient s > 1 and G’
be a subgraph of G with A € €(G’). Sup-
pose that A : X — X is a Kannan G’-
contraction mapping. If (x, Ax) € €(G’) for
every x € X, then

n

-1 [rG, (x,Ax)
+1G,(y,Ay)]

rG, (A"x,A"y) <

for all n € N whenever (x,y) € €(G).

Proof. Let (x,y) € €(G’). By (KGC-1), we
have
(A"x,A"y) € €(G') 2.7

for all n € N. Define ¢(x,y) :=
rG, (X, Ax) + rg,(y,Ay) for each (x,y) €
€(G’). Then
Y (Ax, Ay) = rg, (Ax, A2x) +76, (Ay,AQy)
< Alrg, (x,Ax) + rg, (Ax, Azx)]
+ ﬂ[er(y,AY) + er(Ay’AQy)]
= Ay (x,y) + ¥ (Ax, Ay)].

This implies that

A
W(AxAY) S TU(ey). 28)
By repeating this process, we have
n
Y(A"x, A"y) < T—(ey) - (29)

forall n € N. By the Kannan G’-contractive
condition, we get

rG, (Ax,Ay) < Alrg, (x,Ax) + rg, (y, Ay)]

= Ay(x,y). (2.10)

Now, we obtain

r, (A*x,A%y) < Alrg, (Ax,A%x) + rg, (Ay, A%y)]
< YAlrg, (x,Ax) + rg, (Ax, A2x)]
+ A[er(y’Ay) + er(Ay’AQy)]}
= P[y(x,y) + ¥(Ax, Ay)]

A
2
SAYlny) + ¥ (xy)

2

P
= T Y)-

In the same way, one can show that

n

rG, (A"x,A"y) < -1

Y(xy), (2.11)

that is,
/'ln
er(Anxa An}’) < m[er(xan) + rGg, ()’,A)’)]
2.12)

This completes the proof. O

The following theorem ensures the
existence of fixed points for Kannan con-
traction mappings in GR, M S.

Theorem 2.8. Let (X,rg,) be a graphical
rectangular b-metric space endowed with a
graph G and the coefficient s > 1 and G’
be a subgraph of G with A C €(G’). Sup-
pose that X is G'-complete, A : X — X is
a one-to-one Kannan G’-contraction map-
ping and the following conditions hold:

(1) there exist xo € X such that Axy €
[Axo]g, and A%x € [Ax0]l, where
I,m are odd positive integers,

(1) (x,Ax) € €(G’) for every x € X;

(Illl) A is sequentially continuous, i.e.,
if {x,} is a sequence in X and
z € X with rg,(xp,2) — 0, then
rG, (Ax,, Az) — 0.
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Then there exist z* € X such that the A-
Picard sequence {x,} with the initial value
xg € X is G'-termwise connected and con-
verges to both 7* and Az".

Proof. Let xg € X be such that Axg €
[Axo]lc;, and A%x € [Ax0](s,, where [,m
are odd integers. Define an A-Picard se-
quence {x,} by x, = Ax,,—1 foralln € N.
Since Axo € [Axo]L, and A%xo € [axo]Z,
there exist a path {yj}j.zo such that xo =
Yo, Axo = y; and (y;-1,y;) € €(G’) with
yj-1 # yjforall j = 1,2,...,1 and a path
{wj}J’.”:0 such that xog = wg, A%xg = w,, and
(wj—1,wj) € €(G’) with w;j_; # w; for all
j =12,...,m. Since A is a Kannan G’-
contraction mapping, by (KGC-1), we get

(Ay;_1,Ay;) € €(G’) for j = 1,2,.. ., 1.

Therefore, {ij}j.:0 is a path from Ayg =
Axyg = x1 to Ay; = AZX() = xy of length [
and xg € [xl]’(;,. Continuing this process,
we obtain {A"yj}j.:0 is a path from A" yg =
Axg = x, to Ay, = A"Axg = xu41 of
length [ and x,,41 € [xn]l(;, for all n € N.
Thus, {x,} is a G’-termwise connected se-
quence. Now, we have

1Gy, (Xn, Xn+1) = 1G,, (A" yo, A" y1)

< s[rg, (A" yo, A" y1)
+7G,(A"y1,A"y2)
+76,(A"y2, A"y1)]

< slrg, (A" yo, A" y1)
+76,(A"y1,A"y2)]
+ 5%[rG, (A" ya, A" y3)
+71G, (A" y3, A"y4)
+7G, (A" ys, A"y1)]

< s[rg, (A" yo, A" y1)
+rG,(A"y1, A" yo)]
+5%[rG, (A"ya, A™ys3)

+rg, (A"y3, A"yg)] + - - -

-1
+52 [rg, (A" y1-3,A"y12)
+ 76, (A" yi—2, A"yi_1)
+rG, (A"yi_1, A"y)].
2.13)

Since (yj-1,y;) € €(G’), we have
(A"yj_1,A"y;) € €G’) for all j =
1,2,...,1 and for all n € N. By using
Lemma 2.7, the inequality (2.13)) becomes

n

- A{S[w(yo,yﬁ +¥(y1,y2)]
+ 2 (W (2, y3) + ¥ (y3, ya)] + - -

+ 57 [W(yi-3 yio2)
+ ¥ (Vi-2, yi-1) + ¥ (-1, y0)1}-
(2.14)

er (-xn’ -xn+1) S

Similarly, we have

1Gy, (Xns Xn+2) = 1G,, (A"wo, A"wi,)

< s[rg, (A"wo, A"w1)
+ 76, (A"wi, A"wa)]
+ s2[r(;b (A"wq, A"w3)
+7G, (A"ws, A"wy)] + - - -
45" [rG, (A" W3, A" Wp_2)
+7G, (A" W2, A"Wp_1)
+7G, (A"Win-1,A" ym)].

(2.15)

Since (wj_1,w;) € C€(G’), we have
(AnWj_l,AnWj) € (E(G’) for allj =
1,2,...,m and for all n € N. By using
Lemma 2.7, the inequality (.13) becomes

(sl O m)

+y(wi,wo)]

+ 52 [ (wa, w3)
+(ws,wy)] + - -

m-1
+s 2 [w(wm—S,Wm—Q)

rG, (xn’ xn+2) <
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+ (r//(wm—29 Wm—l)

+ YW1, wm)].  (2.16)

Now, we will show that the G’-termwise
connected A-Picard sequence {x,} is a
Cauchy sequence i.e., for p > 1,
rGy (Xn, Xnsp) — 0asn — oco. If x,, = X410
for some n € NU{0}, thenrg, (x4, Xp+p) =
0 asn — oo. So we may assume that
Xp # Xp41 foralln e NU {0}.
Case-1. If p is an odd integer, then

G, (xn’ xn+p) < s[er (xn’ xn+1)
+7rG, (Xn+15 Xn+2)]
+ 52 [er (xn+2’ xn+3)

+rG, (xn+3, xn+4)] +--
p-1
t+s5 2 [er (xn+p—3a xn+p—2)

+71G, (-xn+p—2, -xn+p—1)

+71G, (xn+p—1, xn+p)]-
From inequality (2.14), we can say that
(2.17)

er(-xn,-erp) — O as n — oo,
Case-Il. If p is an even integer, then

rGg, (xn, xn+p) < s[er (xn, xn+1)
+rG, (xn+1, xn+2)]
+ 52[rG, (Xn+2: Xn+3)

+71G, (xn+3v xn+4)] +--

p=2
+5 2 [er (xn+p—4’ xn+p—3)
+ G, (xn+p—3’ xn+p—2)

+rG, (xn+p—2’ xn+p)]-

From inequality (2.14) and (2.16), we have
(2.18)

Gy (Xn, Xn4p) — 0 as n — oo.

From Case-(I) and Case-(Il), one can say
that {x,} is a Cauchy sequence. Since X
is G’-complete, there exist z* € X such that
X, — Z* asn — oo. Since A is sequentially
continuous, we obtain x,.1 = Ax, — AzZ"
as n — oo, This completes the proof. m|

10

Theorem 2.9. Assume that all hypotheses
of Theorem [2.§ hold and further suppose
that the quadruple (X,rg,,G’, A) has the
property S*. Then A has a fixed point in X.

Proof. From the proof of Theorem R.§ and
Property S*, we get this result. O

Theorem 2.10. Assume that all hypothe-
ses of Theorem .9 hold and further sup-
pose that (7*,w*) € C€(G’) for all 7*,w* €
Fix(A), where Fix(A) is the set of all fixed
points of A. Then A has the unique fixed
point.

Proof. From Theorem R.9, A has a fixed
point. Now, we will show the uniqueness of
afixed point. Assume that z* and w* are two
fixed points of A. By the assumption, we
obtain (z*,w*) € €(G’). By (KGC-1), we
have (Az*, Aw*) € €(G’). Now, by (KGC-
2), we have

rG, (25 w") = rg, (AZ", Aw™)
< /l[er (Z*7AZ*)

+rG, (W', Aw")] = 0.

This implies that z* = w*. Hence, A has the
unique fixed point. O

3. Conclusion

In this work we presented an example
of a graphical rectangular b-metric space
in which a A-Picard sequence in the sense
of Mudasir Younis et.al.[2] is not Cauchy.
To overcome this drawback, we formulated
suitable conditions and made appropriate
corrections to Theorem 4.2 given in [2].
Moreover, we provided a positive answer
to the question of the existence of a fixed
point for Kannan contraction mappings in
the aforesaid space.
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