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ABSTRACT 

The present study inspects the effects of three different shapes of Al2O3 and TiO2 

nanoparticles on the two-dimensional heat transfer of steady magnetohydrodynamic 

incompressible water-based nanofluid flow through convergent-divergent channels. The 

governing dimensional partial differential equations are converted into a system of 

dimensionless ordinary differential equations using appropriate transformations. These 

dimensionless governing equations are solved applying power series and the solutions are then 

analysed by Hermite-Padé approximation method. The considered three shapes of nanoparticles 

are platelet, cylinder, and brick for performing the analysis. The influences of governing 

physical parameters such as channel angle, Reynolds number, Hartman number, Prandtl 

number, Eckert number and nanoparticles solid volume fraction on the velocity profiles and 

temperature distributions are investigated. The effects of three different shapes are examined 

for the case of all parameters and it is found that the brick-shaped nanoparticles exhibit higher 

temperature distributions compared to cylinder-shaped and platelet-shaped particles. 

Keywords: Al2O3 and TiO2-nanoparticles; Convergent-divergent channel; Hermite-Padé 

approximation; Magnetohydrodynamic; Shape factors 

1. Introduction
The convergent-divergent channel 

flows have several applications in industrial, 

aerospace, chemical, civil, environmental, 

mechanical and biomechanical engineering. 

Moreover, there are numerous applications 

of this mathematical model in order to 

investigate the flow of rivers and canals, and 

the blood flow in the human body. Jeffery [1] 

and Hamel [2] first examined the two-

dimensional flow in convergent-divergent 

channels, which is known as classical 

Jeffery-Hamel flow in fluid dynamics. Many 

researchers have studied this problem and a 

review of information related to this problem 

can be found in [3]. The principles of Jeffery-

Hamel   flow are based on the concepts that 

this flow is separated by a fixed angle which 

is driven by a source or sink at the apex. 

Different properties related to   this  problem 
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have been investigated by several researchers 

which are available in [4-7]. Depending on 

two dimensionless parameters, the flow 

Reynolds number and channel angular width, 

these flows have the similarity solution of the 

Navier-Stokes Equation [8]. 

Magnetohydrodynamics (MHD) is 

concerned with the mutual interaction of 

fluid flow and magnetic fields. Magnetic 

fields influence many natural and man-made 

flows. They are routinely used in industry to 

heat, pump, stir and levitate liquid metals. 

The theory of MHD states that the presence 

of a magnetic field induced a current in a 

moving conductive fluid. This induced 

current produces the Lorentz force on ions of 

the conductive fluid. The investigation of 

MHD flow through convergent-divergent 

channels is not only interesting theoretically 

but also because of applications in 

mathematical modeling of several industries 

to design cooling system with liquid metals, 

MHD generators, accelerators, pumps and 

flow meters [9-10]. Makinde and Mhone [11] 

investigated the extension of the classical 

Jeffery-Hamel flows to MHD. They 

explained that in solution of the MHD flows, 

the effect of an external magnetic field works 

as a parameter in convergent-divergent 

channels. Makinde and Mhone [12] studied 

the temporal development of small 

disturbances in MHD Jeffery-Hamel flows 

using the Chebyshev spectral collection 

method. Moreover, Makinde [13] presented 

a numerical study on the effect of an arbitrary 

magnetic Reynolds number on steady flow of 

an incompressible conducting viscous liquid 

in a convergent-divergent channel under 

MHD. The solution of the nonlinear equation 

for the MHD Jeffery-Hamel problem was 

found by Mosta et al. [14] by using a novel 

hybrid spectral-homotopy analysis method. 

Another researcher Moghimi et al. [15] also 

solved the Jeffery-Hamel flow problem by 

using the homotopy perturbation method.  

There is a need to develop new types 

of fluids that will be more effective in terms 

of heat exchange performance by taking into 

account the rising demands of modern 

technology, including power stations, 

chemical production and microelectronics. 

Presently, it is noticeable that the interest of 

the researchers is increasing in the analysis of 

nanofluids which have high thermal 

conductivity. A dilute suspension of solid 

nanoparticles with a base fluid was first 

named nanofluid by Choi [16]. Nanoparticles 

have unique chemical and physical 

properties [17] and have better thermal 

conductivity and radiative heat transfer 

compared to the base fluid only. Nanofluids 

are engineered dilute colloidal dispersions of 

nanosized (less than 100 nm) particles in a 

base fluid [18]. These nanoparticles behave 

as good conductors of heat and enable the 

base fluids to enhance their thermal 

properties. Sheikholeslami et al. [19] studied 

the effects of magnetic field and 

nanoparticles on the Jeffery-Hamel flow 

using a powerful analytical method which is 

known as the Adomian decomposition 

method. Moradi et al. [20] studied the effects 

of heat transfer and viscous dissipation on the 

Jeffery-Hamel flow of nanofluids. Moreover, 

the combined free and forced convection 

MHD flow in a rotating channel with 

perfectly conducting walls was investigated 

by Seth and Singh [21]. Alam et al. [22-23] 

and Alam and Khan [24] studied MHD 

Jeffery-Hamel nanofluid flow for different 

nanoparticles and the inherent irreversibility 

of the flow. Finally, Syed et al. [25] analyzed 

a study of velocity and temperature slip 

effects on the flow of water based nanofluids 

in converging and diverging channels. 

The aim of this study is to show the 

effects of three different shapes; platelet, 

cylinder and bricks; of the 32OAl   and 2TiO  

solid nanoparticles on velocity profiles and 

temperature distributions of the MHD 

Jeffery-Hamel flow. The influences of 

nanoparticles solid volume friction  , 

channel angle  , Reynolds number Re, and 

Hartmann number Ha , Eckert number Ec, 

Prandtl number Pr on velocity profiles and 

temperature distributions are also examined.  
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2. Materials and Methods  
A two-dimensional steady income-

pressible laminar flow of conducting water 

based 32OAl  and 2TiO -nanofluids from a 

source or sink between two non-paralleled 

channels walls with radius r intersect at an 

angle 2  is considered as seen in Fig. 1. The 

cylindrical coordinate system ( ), ,r z  is 

used and the velocity is supposed to be purely 

radial which depends on r and   only, hence 

the flow controlling parameters have no 

variation along the z direction. An external 

magnetic field is considered to be enacted 

vertically downward to the top wall. Let   

be the semi-angle and the domain of the flow 

be   −   . The continuity equation, 

momentum equations and energy equation 

considering viscous dissipation and Joule 

heating in reduced polar coordinates are 
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It is supposed that the flow is symmetrically 

radial, i.e., 0=v . The volumetric flow rate 

through the channel then becomes 

.Q urd






−

=      (5) 

 

The corresponding boundary conditions are 
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hTT =    at   , =   and 

cTT =    at   ,= −                  (6) 
 

where, 0B  is the electromagnetic induction, 

p  is the fluid pressure and u is the radial 

velocity, nf  is the effective density, nf  is 

the effective dynamic viscosity, nf  is the 

electrical conductivity, and nf  is the 

kinematic viscosity of the nanofluid. 
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The corresponding effective thermal 

conductivity and heat capacity of nanofluid 

are 
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Here,   is the solid volume fraction 

for both the nanoparticles and m is the shape 

factor. The thermophysical properties of the 

two nanoparticles and water are given in 

Table 1 and the shape factors with sphericity 

of nanoparticles are presented in Table 2. 
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Fig. 1. Geometry of the problem.

 

 

The three different shapes of the 

nanoparticles are shown in Fig. 2. 

 
   Fig. 2. Three different shapes of nanoparticles. 
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Eliminating the pressure term p from Eq. (2-

3) and substituting Eq. (9) into Eq. (2-4), the 

velocity profiles and temperature profiles 

reduce to the following non-linear ordinary 

differential equations  
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The reduced boundary conditions are  
 

1,0,1 ' === FF       at    1, =  

0,0,1 ' ==−= FF   at  1, = −         (12) 

 

where, 
f

Q


=Re  is Reynolds number, 
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U
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2
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f B
Ha



 2
02 =  is the square of Hartmann 

number and   is the channel angle. 

Table 1. Thermophysical properties of water, 

32OAl and 2TiO  nanoparticles [23, 26]. 

Physical properties Water 32OAl  2TiO  

( )3/ mkg  997.1 3970 4250 

( )kgKJCp /  4179 765 686.2 

( ))/ mKW  0.613 40 8.9538 

( )m  0.05 3.5 x 107 1.798 x 106 

Table 2. Sphericity and shape factor of 

different nanoparticles [27].  
Nanoparticle 

shapes 
Aspect ratio Sphericity Shape factor 

Platelet 1:1/18 0.52 5.7 

Cylinder 1:8 0.62 4.9 
Brick 1:1:1 0.81 3.7 
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Moreover,  
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3. Series Analysis 
To solve the non-linear differential Eq. 

(10-11) for stream function and temperature 

profile, the power series expansions are 

considered in terms of the parameter   as 

follows. 
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By substituting Eq. (13) into Eq. (10) and Eq. 

(11) along with the boundary conditions (12) 

and then equating the coefficient of powers 

of  , the first 12 coefficients of the series for 

stream function ( )F  and temperature ( )  
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4. Numerical Computation: Hermite-

Padé Approximation 
In this present work, a very efficient 

solution method, known as Hermite-Padé 

approximants, which was first introduced by 

Padé [28] and Hermite [29] has been 

employed. According to this method, a 

function is an approximant for the series 
 

( ) 
−

=

− =
1

0
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N

n

n
nN aS     as    1,             (16) 

 

if it shares with S the similar first few series 

coefficients for 1 . Hence, the simplest 

approximants are the partial sums of the 

series S. When this series converges rapidly, 

such polynomial approximants can provide 

good approximations of the sum.  

Consider the ( )1+d  tuple of polynomials, 

where d is a positive integer, 
 

[0] [1] [d]

N N NP ,P ,...,P ,  
 

where,   
 

NdPPP d
NNN =++++ ][]1[]0[ deg...degdeg                                                                                            

                                                    (17) 
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is a Hermite-Padé form of these series if 
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where ( ) ( ) ( ) dSSS ,...,, 10  may be an 

independent series or different form of a 

single series. Now it is required to find the 

polynomials ][i
NP  that satisfy the Eq. (17-18). 

These polynomials are totally determined by 

their coefficients. So, the total number of 

unknowns in Eq. (18) is 
 

d
[i]

N
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=
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Expanding the left-hand side of Eq. (18) in 

powers of  and equating the first N 

equations of the system equal to zero, a 

system of linear homogeneous equations can 

be found. To compute the coefficients of the 

Hermite-Padé polynomials requires some 

kind of normalization, such as  
 

( ) 10][ =i
NP   for some integer 0 . i d    (20) 

 

It is essential to highlight that the only input 

required for the calculation of the Hermite-

Padé polynomials are the first N coefficients 

of the series ( ) ( ) ( ) dSSS ,...,, 10  Eq. (19) 

simply confirms that the coefficient matrix 

related to this system is square. In order to 

build the Hermite-Padé polynomials, the 

system of linear equations need to be solved 

by any standard method such as Gaussian 

elimination or Gauss-Jordan elimination. 

Drazin-Tourigney [30] Approximants are a 

particular kind of algebraic approximants 

and Khan [31] introduced a High-order 

differential approximant (HODA) as a 

special type of differential approximant. 

High-order partial differential approximants 

(HPDA) discussed in Rahman [32] are a 

partial differential approximant.  

 

5. Results and Discussion 
The influence of three different shapes 

of nanoparticles namely platelet, cylinder 

and bricks on velocity profiles and 

temperature distributions for varying values 

of physical parameters; nanoparticles solid 

volume friction  , channel angle  , 

Reynolds number Re , Hartmann number 

Ha , Eckert number Ec  and Prandtl number 

Pr  is investigated in the present study. The 

effects of 32OAl - and 2TiO -nanoparticles 

solid volume fraction is examined at the 

range of 15.00   for 1=Ha . 

The dominating singularity behavior 

of the function ( )S  represented by the 

series (16) may be written as  
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As 
c

 →  where A  and B  are some 

constants and 
c

 is the critical point with the 

critical exponent  . In order to compute the 

critical points, the center line axial velocity 

at 5.0=  is obtained by differentiating the 

series (15) in the following functional form. 
 

( )0; ,Re, , , , .F Ha A D   =            (22) 

 

The High-order differential approximant 

method is applied to the series (22) to 

compute the critical values of channel angle

C
 and then to represent the comparison 

between present results and the published 

data. Table 3 shows the critical values
C

  

with different values of   for 32OAl -

nanoparticles. At 0= , it is seen that the 

present value of 
C

  agrees well with the 

value of Alam and Khan [33] considering 

3=d  and .12=N In addition, the present 

value of 
C

  also matches with Fraenkel [34] 

and Makinde [13] by a minor deviation for 

0= . On the other hand, 
C

 decreases as 

increases from 0 to 0.05 and when ,1.0

C
 increases again slightly.   
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Table 3. Estimated values of critical angle 

C  at 20Re =  and 1=Ha  with different 

values of   for Al2O3-nanoparticles. 
 Present 

results 
Alam and 
Khan [33] 

Fraenkel 
[34] 

Makinde 
[13] 

  
C  C  C  C  

0 0.271769 0.271769 0.269 0.269162 

0.05 0.269055 - - - 

0.1 0.271226 - - - 
0.2 0.294968 - - - 

5.1 Velocity profiles 

The effect of channel angle  on the 

velocity profiles for 32OAl -water nanofluid 

in the divergent channel is demonstrated in 

Fig. 3. It is noticed from Fig. 3 that as the 

values of   increases, the velocity along the 

centerline increases and there occurs 

backflow near the channel walls. At a large 

value of 030= , the velocity at the 

centerline increases rapidly and a major 

backflow is produced near the walls. For a 

diverging channel, if the channel opening 

enlarges, then the fully developed flow 

produces at the centerline and as a 

consequence, a major reverse flow occurs 

near the walls. 
 

 
Fig. 3. Velocity profiles of 32OAl -water 

nanofluid with different values of   at 

05.0,1,10Re === Ha . 

 
                                 

Fig. 4. Velocity profiles of 32OAl -water 

nanofluid for different values of Re  at 
010 ,Ha 1, 0.05 = = = . 

 

The conjecture of Fig. 3 agreed well with the 

results of Alam et al. [22]. Fig. 4 illustrates 

the influence of Reynolds number on 

velocity profiles for the 32OAl -water 

nanofluid. It is consistently observed that as 

Re increases the centerline velocity 

increases, whereas backflow arises at the 

walls. The higher values of Reynolds number 

create more inertia forces for 
32

OAl -water 

nanofluid, and these forces produce fully 

developed flow at the centerline and a 

significant reverse flow at the channel walls. 

According to Fraenkel [34] and 

Makinde [13], the critical Reynolds number 

for Jeffery-Hamel convergent-divergent 

channel flow is 44.54Re 
c

. It indicates that 

there is an onset of instability for this channel 

flow before .44.54Re 
c

 For this reason, the 

range of Re is considered between 2 and 30 

for the consistency of the results.   

Fig. 5 show the effect of Hartmann 

number Ha on the velocity profile for a 

divergent channel. It is seen that the 

increasing values of Ha reduces the velocity 

along the centerline ( )5.05.0 −   and 

enlarges the velocity near the left wall 

( )5.00.1 −−   and right wall ( )0.15.0   

uniformly. The increasing of Ha tends to 

increase the Lorentz force due to the 

magnetic field and this Lorentz force 
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suppresses the velocity along the centerline. 

Figs. 6 (a-c) display the effects of 32OAl  and 

2TiO -nanoparticles solid volume fraction on 

velocity profiles. It is seen in large scale from 

Fig 6(a) that for 32OAl -nanofluid, the 

velocity decreases when the volume fraction 

  increases. The nanofluids density 

increases when the volume fraction

increases and this increasing density reduces 

the fluid flow significantly. Fig 6(b) displays 

the effect of two 
32

OAl - and 2TiO -

nanoparticles on velocity profiles at fixed 

05.0= . It is found in large scale that fluid 

velocity declines for 
32

OAl -nanoparticles 

compared to 2TiO -nanoparticles. The 

combined effects of 
32

OAl - and 2TiO -

nanoparticles with various values of   on 

velocity profiles are depicted in Fig. 6(c). It 

is interestingly and clearly seen in large scale 

that at each value of  , the velocity curve 

consistently decreases for 
32

OAl -

nanoparticles compared to 2TiO -

nanoparticles. 

 

 
 

Fig. 5. Variation of velocity profiles for 32OAl -

water nanofluid for different values of Ha  at 

05.0,10Re,100 ===  . 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Variation of velocity profiles (a) for 32OAl

-water nanofluid at different values of  , (b) for 

32OAl - and 2TiO -water nanofluids with 

05.0= , and (c) for both 32OAl - and 2TiO -

water nanofluids with different values of   at 

1,10Re,100 === Ha . 
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5.2 Temperature profiles 

The effect of different parameters’ 

variation on the temperature profiles using  

32OAl  and 2TiO  nanoparticles and consider-

ing three different shapes of these solid 

particles are discussed in this section. 
 

 
(a) 

 
(b) 

 

Fig. 7. Temperature profiles of 32OAl  and 2TiO  

for (a) 05.0=  and (b) 10.0= at ,100=

,1.7Pr,10Re,1 ===Ha .1.0=Ec  
 

Figs. 7(a-b) exhibit the variation of 

temperature distributions with effect of two 

nanoparticles 32OAl  and 2TiO   as well as 

their different shapes very significantly for 

05.0=  and 10.0= . In Fig. 7(a) for

05.0= , it is noticed that the temperature 

values of 2TiO -nanoparticles are higher than 

32OAl -nanoparticles. The hydrophilicity of 

32OAl -nanoparticles is stronger than the 

2TiO -nanoparticles. On the other hand, the 

superficial roughness in the 2TiO -

nanoparticles was greater than 32OAl -

nanoparticles. The TiO2-nanoparticles 

showed a greater degree of homogeneity than 

the 32OAl -nanoparticles, however 32OAl -

nanoparticles possessed higher mechanical 

resistance than the 2TiO -nanoparticles. 

Hence the heat transfer rate of 2TiO -

nanoparticles is greater than 32OAl -

nanoparticles. Moreover, among the three 

shapes, brick shape nanoparticles have the 

highest temperature values. It is clear that the 

shape of platelet and cylinder have larger 

viscosity due to which these shapes have the 

lowest temperature, whereas brick shape has 

the highest temperature due to the least 

viscosity. This is due to the shear thinning 

behavior of the nanoparticles with 

temperature. 
 

 
(a) 

 
(b) 

Fig. 8. Temperature profiles of (a) 32OAl -

nanoparticles and (b) 2TiO -nanoparticles with 
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different values of   at ,1,05.0 == Ha

.1.0,1.7Pr,10Re === Ec  
 

On the other hand, in Fig. 7(b) for 10.0= , 

similar behavior in temperature profiles is 

seen, but the variation in temperature 

distributions is more significant for the two 

nanoparticles and their different shape 

factors as the nanoparticles volume fraction 

 increases. The influence of increasing 

values of   and Re  on the temperature 

distributions is seen in Figs. 8(a-b) and Figs. 

9 (a-b), respectively. 
 

 
                               (a) 

 
                                  (b)     
 

Fig. 9. Temperature profiles of (a) 32OAl -

nanoparticles and (b) 2TiO -nanoparticles for 

different values of Re  at 
010 , 0.05,= =   

1,Pr 7.1, 0.1Ha Ec= = = . 
 

It is noticed in Fig. 8(a) and Fig. 8(b) in the 

way that the temperature rises massively 

around the channel centerline due to the 

increasing values of channel angle for 32OAl  

and 2TiO nanoparticles, respectively. The 

effect of flow Reynolds number Re  on 

temperature distributions for 32OAl  and 

2TiO -nanoparticles is depicted in Fig. 9(a) 

and Fig. 9(b), respectively.  

 

 
                              (a) 

 
                              (b) 
 

Fig. 10. Temperature profiles of (a) 32OAl -

nanoparticles and (b) 2TiO -nanoparticles at 

different values of Ha  at 
010 , 0.05,Re 10,Pr 7.1, 0.1.= = = = =Ec   

 

An increase in fluid temperature is noticeable 

around the channel centerline for rising 

values of Re. As it is already observed in Fig. 

3 and Fig. 4 that the rising values of   and 

Re  accelerates the fluid velocity around the 

channel centerline, hence these advanced 
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fluid flow produce higher temperature values 

consistently at this region as seen in Figs 8(a-

b) and Figs 9(a-b). Furthermore, it can also 

be noticed that the brick shaped nanoparticles 

have higher temperature compared to 

cylinder shaped and platelet shaped 

nanoparticles in all cases. Figs. 10(a-b) 

demonstrate the impact of Hartmann number 

on the temperature field for the two 

nanoparticles. It is interesting that the 

temperature gets higher around the channel 

centerline for the increasing values of 

Hartmann number Ha  due to Ohmic 

heating. Ohmic heating is a heating process 

in which heat is directly dissipated in the 

reaction medium, and is a high energy‐

efficient way of heating chemical 

reactions.  The progress of ohmic heating 

depends on the electrical conductivity of the 

fluid and magnetic field strength.  

Figs. 11(a-b) show the effects of the 

Eckert number on temperature field for 

32OAl - and 2TiO -nanoparticles, respective-

ly. It is found from Figs. 11(a-b) that for both 

nanoparticles, the temperature increases 

along the centerline for increasing values of 

Ec. The consequence due to the presence of 

dissipation term in energy equation is defined 

by the Eckert number. Meanwhile, the Eckert 

number is the ratio of the square of maximum 

velocity and specific heat.  
 

 
(a) 

 
(b) 

 

Fig. 11. Temperature profiles of (a) 32OAl -

nanoparticles and (b) 2TiO -nanoparticles for 

different values of Ec  at 
010 , 0.05,= = 

Re 10,Pr 7.1, 1Ha= = = . 
 

 
(a) 

 
(b) 

 

Fig. 12. Temperature profiles of (a) 32OAl -

nanoparticles and (b) 2TiO -nanoparticles for 

various values of   at 
0

10 , 0.1,Ec = =

Re 10,Pr 7.1, 1Ha= = = . 
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Accordingly, when the value of the Eckert 

number rises, the fluid flow rate along the 

centerline increases and the temperature rises 

at this region. The brick shaped nanoparticles 

display higher temperature than cylinder 

shaped and platelet shaped nanoparticles in 

all cases. The effects of nanoparticles volume 

fraction   with various shape factors for 

32OAl and 2TiO -nanoparticles are shown in 

Figs. 12 (a-b). It is observed that the 

temperature distribution reduces particularly 

along the channel centerline when the values 

of  increases.  
 

 
(a) 

 
(b) 

 

Fig. 13. Temperature profiles of (a) 32OAl -

nanoparticles and (b) 2TiO -nanoparticles at 

various values of Pr  at 
010 , 0.1,Ec = =  

Re 10, 0.05, 1= = =Ha . 

 

It was found in Fig. 6(a) that the 

velocity decreases when the volume fraction

 increases. Consequently, the temperature 

distributions also reduce due to the reduction 

of velocity field around this region. 

Variations of the Prandtl number on 

temperature profiles are observed in Figs. 

13(a-b) for 32OAl  and 2TiO -nanoparticles. It 

can be seen here that for the increasing value 

of Pr, the temperature becomes higher for 

both 32OAl  and 2TiO -nanoparticles. The 

Prandtl number is the ratio of viscous force 

and thermal force. Therefore, increasing 

values of Pr increases viscosity and, hence, 

increases the temperature distributions of the 

fluid near the centerline of the channel.  

6. Conclusions 
The influences of three different 

shapes of 32OAl  and 2TiO -nanoparticles on 

magnetohydrodynamic Jeffery-Hamel flow 

have been investigated in the present study. 

The three shapes of nanoparticles are 

platelet, cylinder, and brick-shaped and 

water is considered as the base fluid. The 

effects of various physical parameters on the 

velocity field and temperature distribution 

are discussed in detail. The main conclusions 

of this study are as follows: 

▪ Around the centerline of the channel, the 

fluid velocity and temperature 

distribution are enhanced as the channel 

angle   and flow Reynolds number Re 

increase. Backflow occurs near the walls 

in a diverging channel as exceeds 100 

(i.e. at 200, 300) and Re surpasses 10 (i.e. 

at 20, 30) respectively. As the critical 

value 57.15C , this backflow 

behaviour arises physically. Hence, it is 

found that there is an onset of instability 

beyond these values of the parameters 

for this flow problem.   

▪ The fluid velocity reduces whereas the 

temperature rises near the channel 

centerline for higher values of Hartmann 

number. Moreover, velocity near the two 

walls increases as Ha increases. 
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▪ Fluid velocity, as well as temperature, 

reduces for increasing values of the 

nanoparticles volume friction. 

▪ Temperature distributions around the 

channel centerline get higher when the 

Eckert number and the Prandtl number 

increases. 

▪ Nanoparticles shape factors have a 

significant influence on the temperature 

field. Brick-shaped nanoparticles exhibit 

higher temperature values compared to 

cylinder-shaped and platelet-shaped 

nanoparticles. Moreover, between the two 

nanoparticles, 2TiO -nanoparticles exhibit 

higher temperature values than 32OAl -

nanoparticles. We have provided a basis for 

guidance regarding nanoparticles and its 

different shapes for MHD Jeffery-Hamel 

flow.  
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