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ABSTRACT 
In this paper, the problem of natural convective heat transfer of kerosene-cobalt 

nanofluid inside a quarter circular enclosure in the presence of oriented magnetic field has been 

studied numerically using two-component non-homogeneous model. The round wall of the 

enclosure is maintained at constant low temperature; the left vertical wall is adiabatic whereas 

the bottom wall is considered as heated uniformly and non-uniformly. The effects of Brownian 

motion and thermophoresis are incorporated into the nanofluid model. The Galerkin weighted 

residual finite element method has been employed to solve the governing partial differential 

equations after converting them into a non-dimensional form using a suitable transformation of 

variables. Comparison with previously published work is performed and excellent agreement is 

obtained. The effects of various model parameters such as Hartmann number, Rayleigh number 

and magnetic field inclination angle on the streamlines, isotherms and isoconcentrations have 

been displayed graphically for both uniformly as well as non-uniformly heated bottom wall. In 

addition, the heat transfer augmentation for various model parameters as well as various thermal 

boundary conditions have been done in light of the average Nusselt number from the bottom 

heated wall. The obtained numerical results show that the average Nusselt number is an 

increasing function of the Rayleigh number, while it is a decreasing function of the Hartmann 

number. 
 

Keywords: Nanofluid; Thermophoresis; Brownian motion; Heat transfer; Finite element 

method 
 

Introduction 
   The problem of natural convection in 

enclosures has many engineering 

applications such as the cooling systems of 

electronic components, the building and 

thermal insulation systems, the built-in-

storage solar collectors, the nuclear reactor 

systems, the food storage industry and the 

geophysical fluid mechanics. Various 

techniques have been proposed to enhance 
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the convection heat transfer performance of 

fluids inside the enclosure. Convective heat 

transfer can be enhanced by changing flow 

geometry, boundary conditions, and by 

enhancing thermal conductivity of the fluid. 

The influence of a magnetic field on 

convective flow and heat transfer inside an 

enclosure has received considerable attention 

because of a wide variety of application in 

engineering areas, such as chemical industry, 

power and cooling industry for drying, 

chemical vapor deposition on surfaces, 

cooling of nuclear reactors, crystal growth in 

liquids, electronic packages, petroleum 

industries, and microelectronic devices.  

Subbarayalu and Velappan [1] 

studied numerically the magnetoconvection 

in a tilted square cavity with differentially 

thermally active vertical walls. The two 

vertical sidewalls of enclosure are hot and 

cold surfaces while the horizontal top and 

bottom walls are adiabatic. Their results 

confirmed that the average Nusselt number 

increases with increase in Grashof number 

but decreases with increase in Hartmann 

number and behaves in a non-linear fashion 

with angles of inclination. The effects of the 

magnetic field on free convection were 

solved for different cavity shapes such as 

trapezoidal, rectangular and square.  

Pirmohammadi and Ghassemi [2] 

investigated the effect of a magnetic field on 

laminar natural-convection flow in a tilted 

enclosure heated from below, cooled from 

the top and filled with liquid gallium. They 

found that at Ra=104, the value of Nusselt 

number depends strongly upon the 

inclination angle for relatively small values 

of Hartmann number. Lo [3] simulated the 

effect of a transverse magnetic field on 

buoyancy-driven magnetohydrodynamic 

flow in a rectangular enclosure. He showed 

at a constant value of Gr, the heat transfer 

rate is maximum for higher Prandtl number 

and in the absence of magnetic field effects. 

Bakhshan and Ashoori [4] analyzed a 2-D 

computational of steady state free convection 

in a rectangular enclosure filled with an 

electrically conducting fluid under the effect 

of a magnetic field. They observed that 

Nusselt number and heat flux will increase 

when increasing Grashof and Prandtl 

numbers and decreasing the slope of the 

orientation of magnetic field. 

Thus, from the above literatures, it is 

observed that the effect of the magnetic field 

on the natural convection inside the 

enclosure decreases the convection effect 

and then reduces the heat transfer. Therefore, 

the addition of nanoparticles to the fluid can 

improve and increase its thermal 

performance (since the thermal conductivity 

of solids is typically higher than that of 

liquids) and enhance the heat transfer 

mechanism in the enclosure (see Kakaç and 

Pramuanjaroenkij [5], Sarit et al. [6], Uddin 

et al. [7]). 

Nanofluids, a name conceived by 

Choi [8] at Argonne National laboratory, are 

fluids consisting of solid nanoparticles with 

size less than 100 nm suspended with solid 

volume fraction typically less than 4%. 

Nanofluids can be used to improve thermal 

management systems in many engineering 

applications such as transportation, 

micromechanics and instrument, HVAC 

system and cooling devices. Recently, many 

investigators have studied nanofluid 

convective heat transfer in different 

geometries both numerically and 

experimentally. For numerical simulation, 

two approaches have been adopted in the 

literature to investigate the heat transfer 

characteristics of nanofluids, the one-

component model and the two-component 

model. In the one-component model, a 

uniform volume fraction distribution is 

assumed for nanofluids. In other words, the 

viscosity and thermal conductivity of 

nanofluids are formulated by volume fraction 

and nanoparticle size, and then continuity, 

momentum and energy equations are solved 

for nanofluids. In the two-component model, 

the volume fraction distribution equation is 

added to other conservation equations. 

Buongiorno [9] suggested a two-component 
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model based on the mechanics of 

nanoparticles/base-fluid relative velocity. He 

took the absolute velocity of nanoparticles to 

be the sum total of the base-fluid velocity and 

a relative velocity, (which he calls a slip 

velocity). Considering seven slip 

mechanisms, namely inertia, Brownian 

diffusion, thermophoresis, diffusophoresis, 

Magnus effects, fluid drainage and gravity 

settling, he concluded that in the absence of 

turbulent effects, Brownian diffusion and 

thermophoresis are dominant. Based on these 

two effects, he derived the conservation 

equations for nanofluids. Recently, Sheremet 

and Pop [10] studied free convection in a 

triangular cavity filled with a porous medium 

saturated by a nanofluid using the 

mathematical model proposed by 

Buongiorno. Their results revealed that the 

average Nusselt number is an increasing 

function of the Rayleigh and Lewis numbers 

and decreasing function of the Brownian 

motion, buoyancy-ratio and thermophoresis 

parameters. Very recently, Rahman et al. 

[11] studied Buongiorno's mathematical 

model for hydromagnetic free convection 

flow in an isosceles triangular cavity filled 

with alumina-water nanofluid having 

different thermal boundary conditions on the 

bottom wall. Their obtained numerical 

results indicate that the variable thermal 

boundary conditions have significant effects 

on the flow and thermal fields. As per 

authors' knowledge, the literature review 

revealed that uniform and non-uniform 

thermal boundary conditions taking into the 

Buongiorno’s mathematical model in a 

quarter circular-shapes enclosure which is 

filled with kerosene-cobalt nanofluid in the 

presence of oriented magnetic field has not 

been studied yet. Therefore, in this paper, a 

finite element simulation has been performed 

for a quarter circular-shaped enclosure which 

is filled with kerosene-cobalt nanofluid with 

uniformly and non-uniformly heated bottom 

wall in the presence of an oriented magnetic 

field using Buongiorno's mathematical 

model.  

 

Mathematical Modeling  
A two-dimensional steady laminar 

natural convective heat transfer and fluid 

flow inside a quarter circular enclosure filled 

with kerosene-cobalt nanofluid has been 

considered. The domain and boundary 

conditions for the buoyancy-driven heat 

transfer in the quarter circular enclosure are 

shown in Fig. 1, where x  and y  are the 

Cartesian coordinates, L  is the bottom wall 

length and height of the quarter circular 

enclosure. A well-defined coordinate system 

has been fixed, and the gravity worked along 

the negative y  axis. It is assumed that the 

bottom wall is considered as hT T or

     / 1 /  cc hT TT T x L x L   . The 

temperature of the round wall is kept at cT  

so that h cT T  while the left vertical wall is 

kept insulated. Due to the uniformly 

distributed nanoparticles inside the base 

fluid, the nanoparticle volume fraction on the 

entire domain has been taken uniform. 

Thermophoresis and Brownian motion 

effects are included in this study in the 

absence of chemical reaction. The base fluid 

(kerosene) and the solid nanoparticles 

(cobalt) are in thermal equilibrium. The 

enclosure is permeated by a uniform 

magnetic field 
x x y yB e B e B  of constant 

magnitude 
2 2

0 x yB B B  , where xe , 
ye  

are the unit vectors along the coordinate axis. 

The direction of the magnetic field makes an 

angle   with the positive x -axis. The 

magnetic Reynolds number of the flow is 

taken to be small enough so that induced 

magnetic field is assumed to be negligible in 

comparison with applied magnetic field.
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Fig. 1.  Physical model of the problem. 

 

The Boussinesq approximation has been 

applied to consider the density variation. 

Within the framework of the above-noted 

assumptions, the governing equations for this 

model can be written as: 

Continuity equation: 0
u v

x y

 
 

 
            (1)    

Momentum equation in x  -direction: 
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Energy equation: 
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               (4)  

Conservation equation of nanoparticles: 

2 2T
B

c

DC C
u v D C T

x y T

 
    

 
            (5)                                                                                                       

where 
2 2

2

2 2x y

 
  

 
 is the Laplacian 

operator and other quantities are defined in 

the nomenclature. In equations (4)-(5), BD is 

the Brownian diffusion coefficient and TD is 

the thermophoretic diffusion coefficient. The 

detailed calculations of these two 

coefficients are given in the works of Uddin 

et al. [7]. 

 

Boundary Conditions 
The appropriate boundary conditions 

for the above stated model are as follows: 

(i) On the round wall:  

0u v  , cT T , hC C
                      

(6)
                                                                                

 

(ii) On the bottom wall:  

 Case-I: 0u v  , hT T , hC C         (7a)                                                                                                     

 Case-II: 0u v 

    / 1 /cT T T x L x L    , hC C      (7b)                                                            

 (iii) On the left vertical wall: 

 0u v  , 0
T

x





, hC C                     (8)                                                                

Dimensional Analysis 

  Dimensional analysis is one of the 

most important mathematical tools in the 

study of fluid mechanics. To describe several 

transport mechanisms in nanofluids, it is 

meaningful for the conservation equations to 

be in non-dimensional form. The advantages 

of non-dimensionalization are as follows: (i) 

non-dimensionalization gives freedom to 

analysis for any system irrespective of its 

material properties, (ii) one can easily 

understand the controlling flow parameters 

of the system, (iii) make a generalization of 

the size and shape of the geometry, and (iv) 

before doing an experiment one can get 

insight of the physical problem. These aims 

can be achieved through the appropriate 

choice of scales. As a scale of distance, we 
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choose the length of the cavity of the region 

under consideration measured along the x -

axis. Thus, in order to reduce the 

dimensionless form of the governing 

equations (1)-(5) with boundary conditions 

(6)-(8), we incorporate the following 

dimensionless variables: 

2

0

2

0

, , , ,

, ,

f f

c

f f h c h

x y uL vL
X Y U V

L L

T T C CpL
P

T T C C

 

 
 


    




    
  

     

(9)

  

Introducing the relation (9) into equations 

(1)-(5), the governing dimensional equations 

can be written in the following dimensionless 

form: 

0
U V

X Y

 
 

 
                                         (10)                                                                                                            
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 (13)                                              

2 21 Nt
U V

X Y Le Le Nb

 
 

 
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 
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The dimensionless forms of the boundary 

conditions are as follows: 

 (i) On the round wall: 

 0U V  , 0  , 1 
                        

 (15)
                                                                    

     
    

 

(ii) On the bottom wall:  

Case-I: 0U V  , 1  , 1 
          

(16a)
                                                                                                  

 

Case-II: 0U V  ,  1 , 1X X      (16b)
                                                                                       

 

 (iii) On the left vertical wall:  

0U V  , 0
X





, 1                         

(17)
                                                                  

 

The parameters introduced in the above 

equations (11)-(14) are as follows: 

Pr
f

f f



 
  is the Prandtl number, 

0

f

f
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 

 
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Rayleigh number, 
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f f h c
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buoyancy ratio parameter, 

 
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c fp f

c D T T
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Tc






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thermophoresis parameter, 

 

 
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p p B h

fp f

c D C C
Nb

c






  is the Brownian 

motion parameter and 
f

B

Le
D


  is the Lewis 

number. 

 

Average Nusselt Number 

   The average Nusselt number for the bottom 

heated wall is calculated from the following 

expression: 
1

0
Nu dX

Y


 


                                      (18)    

 

Thermophysical Properties of the 

Nanofluid 
Kerosene-Cobalt nanofluid has been 

studied for the present work. The 

thermophysical properties of kerosene and 

cobalt are presented in Table 1. 
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Table 1. Thermophysical properties of 

kerosene and solid nanoparticle (cobalt). 

 

Physical 

properties 

kerosene cobalt 

 pc J/kgK  2090 420 

3ρ kg/m    780 8900 

 k W/mK  0.149 100 

2μ Ns/m    0.00164 - 

 β 1/K  9910-5 1.310-5 

 W/mK  610-10 16.02106 

2m /s     9.1410-8 2.6710-5 

Pr  23.004 - 

 

Numerical Procedure 

The finite element method is an 

efficient numerical and computational 

method for solving a variety of engineering 

and real world problems. The basic concept 

of the finite element method is to divide the 

domain or region of the problem into small 

connected patches, called finite elements. 

The collection of elements is called the finite 

element mesh. These finite elements are 

connected in a non overlapping manner, such 

that they completely cover the entire space of 

the problem. The advantages of finite 

element method are that it has ability to deal 

with complex 2D or 3D domains, and has 

higher accuracy and rapid convergence. 

Thus, the governing dimensionless equations 

(10)-(14) along with the boundary conditions 

(15)-(17) have been solved numerically by 

employing Galerkin weighted residual finite 

element method. The detail of this method is 

well described by Zienkiewicz and Taylor 

[12] and Uddin [13]. The six node triangular 

elements are used in this work for the 

development of the finite element equations. 

All six nodes are associated with velocities, 

temperature as well as isoconcentration; only 

the corner nodes are associated with 

pressure. This means that a lower order 

polynomial is chosen for pressure and is 

satisfied through the continuity equation. 

Then the nonlinear governing partial 

differential equations (i. e. conservation of 

mass, momentum and energy equations) are 

transferred into a system of integral 

equations by applying the Galerkin weighted 

residual method. The integration involved in 

each term of these equations is performed by 

using Gauss's quadrature method. The 

nonlinear algebraic equations so obtained are 

modified by imposition of boundary 

conditions. To solve the set of the global 

nonlinear algebraic equations in the form of 

a matrix, the Newton-Raphson iteration 

technique has been adapted through partial 

differential equation solver with MATLAB 

interface. The convergence criterion of the 

numerical solution along with error 

estimation has been set to 
1 510 ,m m     , where   is the general 

dependent variable ( , , , )U V    and m is the 

number of iteration.  
Mesh generation 

In the finite element method, the 

mesh generation is the technique to subdivide 

a domain into a set of sub-domains, called 

finite element, control volume, etc. The 

discrete locations are defined by the 

numerical grid, at which the variables are to 

be calculated. It is basically a discrete 

representation of the geometric domain on 

which the problem is to be solved. Meshing 

the complicated geometry makes the finite 

element method a powerful technique to 

solve the boundary value problems occurring 

in a range of engineering applications. Fig. 2 

displays mesh configuration of the present 

physical domain with triangular finite 

elements. 

Code validation 

In order to check the accuracy of the 

numerical technique employed for the 

solution of the considered problem, the 

present numerical code was validated with 

the published study of Kent et al. [14]. 
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Fig. 2. Mesh generation of the quarter 

circular shape enclosure. 

 

The physical problem studied by Kent et al. 

[14] was steady laminar natural convection 

inside a right triangular enclosure. The 

comparison of the results obtained by the 

present numerical code with those of Kent et 

al. [14] with respect to isotherms for different 

Rayleigh number is shown in Fig. 3. The 

computed results are in excellent agreement 

with the Kent et al. [14] solution. This 

validation boosts the confidence in the 

numerical outcome of the present study. 

 

Numerical Results and Discussion 
In this section, the obtained 

numerical results for natural convective heat 

transfer of cobalt-kerosene nanofluid in a 

quarter circular shape enclosure with 

uniform and non-uniform heated bottom wall 

cases are discussed. The parameters of the 

flow are calculated by their definition with 

the thermophysical properties of the 

nanoparticles and base fluid. The values of 

the Prandtl number is calculated for kerosene 

as 23.004 .  Let us consider 10KT  ,

0.01C  , 300KcT  , 50nmpd  . With 

these values, the physical parameters entered 

into the equations (11)-(14) for cobalt-

kerosene nanofluid can be calculated as 

follows: 17062Le , 125.3569 10 ,BD  

128.9548 10 ,TD  
61.3439 10Nb    and 

67.5387 10 .Nt    As the thermophysical 

properties of nanofluids depend on the 

thermophysical properties of nanoparticles 

and base fluids, the values of the above stated 

parameters will be different for each 

nanofluid. It is important to note that as the 

Brownian and thermophoretic diffusions 

strongly depend on the diameters of 

nanoparticles, the Brownian diffusion 

coefficient ( )BD  and the thermal diffusion 

coefficient ( )TD  changes with the size of the 

nanoparticles. The details concerning 

calculation of these parameter's values can be 

found in the works of Uddin et al. [7]. The 

other parameters such as the Rayleigh 

number ( )Ra , the Hartmann number ( )Ha  

and magnetic field inclination angle ( ) are 

varied to analyze the flow and thermal 

characteristics of cobalt-kerosene nanofluid. 

Also, the values of the parameters especially 

,Le Nband Nt
 
will change according to the 

size of the particles, nanoparticles volume 

fraction and thermo physical properties of 

nanofluids. Streamlines, isotherms, and 

isoconcentrations as well as average Nusselt 

number are presented for a wide range of the 

controlling parameters for two different 

cases.  

  The effects of Rayleigh number Ra

 4 710 10Ra   on the streamlines have 

been displayed in Fig. 4(a)-(b) respectively 

when the bottom wall is heated uniformly as 

well as non-uniformly. The buoyancy-driven 

circulating flows within the enclosure are 

evident for all values of the Rayleigh number 

with two different cases. From this figure we 

see that the strength of these circulations 

increases as the Rayleigh number increases 

and this is due to the dominance of the 

natural convection. It is important to note that 

the vortex structure of the cell is circular at 

the center, but it turns to an elliptic as the 

Rayleigh number  Ra increases to 107. 
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Another important change in the streamline 

pattern in case-II is that two counter-rotating 

circulation cells are present in the enclosure 

at 410Ra  . The convective streamline 

pattern is due to the different thermal 

boundary conditions which have been 

applied to the enclosure. 

Fig. 5(a)-(b) display isotherm contours for 

Rayleigh number 4 710 10Ra   with two 

different thermal boundary conditions at the 

bottom heated wall. From these figures, it is 

interesting to note that isotherms are more 

compressed near the right corner of the 

bottom wall. The close packing of isotherms 

tells us that at those regions, conduction is 

the primary mode of heat transfer. For higher 

values of Rayleigh number, the density of 

isotherms is less at the middle of the 

enclosure, which indicates relatively weaker 

convective heat transfer. As seen in Fig. 5(a) 

for case-I, the uniform heating of the bottom 

wall causes a finite discontinuity in Dirichlet 

type of the boundary conditions for the 

temperature distribution at the right edge of 

the bottom wall. 
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Ra Fig. 3(a). Kent et al. [14] 

isotherms. 
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Ra Fig. 3(b). Present study isotherms. 

 

(a) Case-I:  θ =1 
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Fig. 4(a). Streamlines for different Ra. 
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  (b) Case-II:  θ =X (1-X) 
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Fig. 4(b). Streamlines for different Ra. 

(a) Case-I:  θ =1 
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Fig. 5(a). Isotherms for different Ra. 
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  (b) Case-II:  θ =X (1-X) 
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Fig. 5(b). Isotherms for different Ra. 

(a) Case-I:  θ =1 
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Fig. 6(a). Isoconcentration for different 

Ra. 
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  (b) Case-II:  θ =X (1-X) 
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Fig. 6(b). Isoconcentration for different 

Ra. 

(a) Case-I:  θ =1 
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Fig. 7(a). Streamlines for different γ. 
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  (b) Case-II:  θ =X (1-X) 
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Fig. 7(b). Streamlines for different γ. 

(a) Case-I:  θ =1 
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Fig. 8(a). Isotherms for different γ. 
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  (b) Case-II:  θ =X (1-X) 
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Fig. 8(b). Isotherms for different γ. 

(a) Case-I:  θ =1 
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Fig. 9(a). Isoconcentration for different γ. 
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  (b) Case-II:  θ =X (1-X) 
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Fig. 9(b). Isoconcentration for different γ. 

(a) Case-I:  θ =1 
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Fig. 10(a). Streamlines for different Ha. 
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  (b) Case-II:  θ =X (1-X) 
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Fig. 10(b). Streamlines for different Ha. 

(a) Case-I:  θ =1 
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Fig. 11(a). Isotherms for different Ha. 
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  (b) Case-II:  θ =X (1-X) 
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Fig. 11(b). Isotherms for different Ha. 

(a) Case-I:  θ =1 
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Fig. 12(a). Isoconcentration for different 

Ha. 



Thammasat International Journal of Science and Technology                                               Vol.22, No.1, January-March 2017 

 62 

  (b) Case-II:  θ =X (1-X) 
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Fig. 12(b). Isoconcentration for different 

Ha. 

 

 

Fig. 13. Average Nusselt number for Ra. 

 

 

 

 

 

 

 

Fig. 14. Average Nusselt number for Ha. 

 

                                                                                  

In contrast, the non-uniform heating removes 

the singularity at the right edge of the bottom 

wall as observed in Fig. 5(b) for case-II. For 

relatively higher values of Rayleigh number, 

the isotherms are quite dispersed throughout 

the enclosure. According to Fig. 5(a) for 

case-I, isotherms are uniformly distributed 

which shows that the conduction heat 

transfer is dominant. By increasing the 

Rayleigh number Ra , the isotherms become 
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more distorted due to the stronger convection 

effects. An increase in the Rayleigh number 

intensifies the convection regime which 

leads to the enhancement of the heat transfer 

rate. 

The effects of the Rayleigh number 

Ra on the isoconcentrations or concentration 

distribution of nanoparticles in the quarter 

circular enclosure have been  displayed in 

Fig. 6(a)-(b)  for two different thermal 

boundary conditions on the bottom heated 

wall. As seen, the concentration of 

nanoparticles in the vicinity of the bottom 

heated wall is low, and in contrast, it is high 

in the vicinity of the round cold wall for 

higher values of Rayleigh number. This 

distribution of concentration of nanoparticles 

is due to the thermophoresis forces, which 

tend to move the nanoparticles from the hot 

wall toward the cold one. In addition, Fig. 

6(a)-(b) clearly show that the concentration 

gradient of nanoparticles near the walls is 

high, but the concentration of nanoparticles 

in the core region of the enclosure is almost 

uniform. Therefore, 50 nm size nanoparticles 

are uniform and stable in the solutions. The 

high concentration gradients next to the hot 

and cold walls are due to the high values of 

Rayleigh number. It is also interesting to note 

that the pattern of isoconcentrations in a 

quarter circular enclosure is almost similar to 

that of streamlines. This kind of outcome is 

very rare in other types of enclosure. This 

clearly indicates that the quarter circular 

shape enclosure plays a very important role 

to obtain full-bodied flow and uniform 

concentration of nanoparticles. 

The influence of magnetic field 

inclination angle   on streamlines, 

isotherms and isoconcentrations is displayed 

in Fig. 7-9 respectively for both uniformly 

and non-uniformly heated bottom wall cases. 

The magnetic field inclination angle has been 

varied from 00 to 0180 . At a first glance, it 

can be observed that the magnetic field 

controls the flow pattern of the nanofluid. 

From Fig. 7(a)-(b), we observe that the 

patterns of streamlines do not change 

significantly but the strength of the vortices 

increases. Streamlines spread in the entire 

enclosure with the increase of the magnetic 

field inclination angle. The flow direction 

changes with the magnetic field inclination 

angle. But for case-II, two opposite rotational 

vortices change their position according to 

the direction of magnetic field which clearly 

shows that using magnetic field, the flow 

direction as well as heat transfer can be 

controlled. Again from Fig. 8(a)-(b), we see 

that, unlike the flow field, the temperature 

field is not affected much by the orientation 

of the magnetic field. The isotherms are 

almost equally spaced between the hot and 

cold walls. The thermal boundary layer 

becomes slightly thick and the isotherms are 

more concentrated for the uniformly heated 

wall than the non-uniformly heated wall. 

From Fig. 9 (a)-(b), it is clearly seen that the 

magnetic field inclination angle significantly 

affects the loops of the isoconcentration 

curves. The loops of the isoconcentration 

curves elongates according to the direction of 

the magnetic field. This happens because 

motion or traces of nanoparticle are 

controlled by the magnetic intensity. 

  The influence of the Hartmann number Ha

 0 100Ha   on the streamlines, isotherms 

and isoconcentrations is shown in Fig. 10-12, 

respectively, for both uniformly and non-

uniformly heated bottom wall cases. As the 

value of the Hartmann number is increased 

(stronger magnetic field is applied), strength 

of the flow inside the cavity decreases. This 

outcome is supported by many previous 

researches. Physical reasoning behind this 

result is that, an externally applied magnetic 

field imposes a strong field over moving 

fluid that has magnetic susceptibility. It 

results in generating a Lorentz force field 

which has a nature to oppose the movement 

of fluid. This force field weakens the 

streamlines inside the cavity as observed in 

Fig. 10(a)-(b). From Fig. 11(a)-(b), the effect 

of the Hartmann number (Ha) is more 

prominent which gives indication of the 
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mode of heat transfer. As it can be observed 

that for 0Ha  and 30Ha  , the isotherms 

pattern are more compressed near the bottom 

heated wall which is an indication of strong 

convection. But when the values of Ha are 

increased  60 or 100Ha Ha  , isotherms 

are almost parallel which means that a raising 

Hartmann number is acting against 

convection inside the cavity. From Fig. 12 

(a)-(b), we see that the isoconcentration 

curves are almost uniformly distributed in the 

entire enclosure for 0 30Ha   , but for 

higher values of Ha, isoconcentration curves 

are clustered near the cold round wall of the 

enclosure. This is due to thermophoresis 

effect of the nanoparticles inside the 

enclosure. 

Average Nusselt number for 

different values of Rayleigh number  Ra

and Hartmann number  Ha for both 

uniform and non-uniform heating bottom 

wall are shown in Fig. 13, and Fig. 14, 

respectively. General observation is that the 

average Nusselt number increases with the 

increasing values of Rayleigh number, it 

decreases with the increasing values of the 

Hartmann number, and it is utilized to 

represent the overall heat transfer rate within 

the domain. But the highest heat transfer rate 

is observed for the uniformly bottom heated 

wall case. 

 

Conclusions 
In this paper, the problem of steady 

laminar natural convective flow and heat 

transfer of cobalt-kerosene nanofluid inside a 

quarter circular enclosure under the influence 

of an oriented magnetic field is studied using 

a two-component non-homogeneous 

mathematical model. The governing 

nonlinear partial differential equations are 

transformed into the dimensionless form 

using suitable non-dimensional quantities. 

The Galerkin weighted residual based finite 

element method has been used to solve the 

governing dimensionless equations. The 

numerical results of the flow, thermal and 

concentration behaviors are displayed 

graphically in terms of the streamlines, 

isotherms and isoconcentrations All 

numerical results are discussed from the 

physical point of view. From the numerical 

simulations, the major outcomes are listed 

below: 

 
1. Variation of average Nusselt number is 

directly proportional to the variation of 

Rayleigh number (Ra) for both uniformly 

and non-uniformly heated bottom wall cases.  

 2. Variation of average Nusselt number is 

inversely proportional to the variation of 

Hartmann number (Ha) for both uniformly 

and non-uniformly heated bottom wall cases. 

3. The uniform heating of the bottom wall of 

the enclosure exhibits a higher heat transfer 

rate. 

4. A quarter circular shape enclosure plays a 

very important role to obtain a full-bodied 

flow and uniform concentration of 

nanoparticles.
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Nomenclature 
 

0B  magnetic field strength 

pc  specific heat at constant pressure  

C  nanoparticle volume fraction 

BD  Brownian diffusion coefficient 

TD  thermophoretic diffusion 

coefficient  
g  gravitational acceleration 

Ha  Hartmann number 

k  thermal conductivity  

L  length of the cavity  

Le  Lewis number 

Nb  Brownian motion parameter 

Nr  buoyancy ratio parameter 

Nt  thermophoresis parameter 

Nu  Average Nusselt number 
p  dimensional pressure  

P  dimensionless pressure 

Pr  Prandtl number 

Ra Rayleigh number 

T  temperature  
,u v  dimensional velocity 

components  

,U V  dimensionless velocity 

components 
,x y  dimensional coordinates  

,X Y  dimensionless coordinates 

  thermal diffusivity  

  coefficient of thermal expansion  

  magnetic inclination angle  

  electric conductivity  

  dimensionless temperature 

  normalized nanoparticle volume 

fraction  
  dynamic viscosity  
  density  

 pc  heat capacity 

Subscripts 

c condition at cold wall 

f base fluid 

h condition at heated wall 

p solid nanoparticle 
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