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ABSTRACT 

This paper presents an overview of the characteristics of the intensity-curvature term with 

applications in image processing and also in Magnetic Resonance Imaging (MRI) of the human 

brain. The intensity-curvature term is the key concept that merges together the value of the 

signal with the value of the classic-curvature, which is the sum of the second order partial 

derivatives of the model function fitted to the signal. The model function fitted to the signal 

needs to have the property of second order differentiability, and also to have at least one non 

null second order partial derivative calculated at the origin of the coordinate system of the pixel. 

The mathematical meaning of the intensity-curvature term is the mapping of the signal into a 

novel domain where each value of the signal is multiplied by the arctangent of the angle 

subtended with the horizontal, by the tangent to the first order derivative of the model function. 

The mapping merges the value of the signal intensity and the classic-curvature of the signal. 

Hence, the resulting intensity-curvature term embeds information about both signal intensity 

and concavity-convexity of the model function. In addition to the classic-curvature, and 

consequential to the mapping, the intensity-curvature term allows the calculation of three 
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supplementary intensity-curvature measurement approaches (ICMAs): (i) the intensity-

curvature functional, (ii) the signal resilient to interpolation, and (iii) the resilient curvature. 

This paper reviews the implications of the intensity-curvature term with specific focus on the 

meaning and the nature of the ICMAs, which provide additional imaging of the human brain 

MRI. 
 

Keywords: Intensity-curvature term; Intensity-curvature measurement approaches; Classic-

curvature; Intensity-curvature functional; Signal resilient to interpolation; Resilient curvature 

 
 

 

Introduction 
The literature 

Feature extraction from Magnetic 

Resonance Imaging (MRI) data is not new. 

Indeed, a wide array of studies have been 

motivated to process the MRI data with the 

specific purpose to extract characteristics of 

the image intensity. The classification of 

tumor type and grade has been conducted 

using support vector machine automated 

classification paradigms after the extraction 

from MRI data of tumor shape and intensity 

characteristics [1]. MRI feature extraction is 

a useful task also when correlating with the 

complementary information from other 

imaging modalities like Computerized 

Tomography (CT) and Single Photon 

Emission Computerized Tomography 

(SPECT) [2]. Voxel wise comparison of 

multiple MRI data sets is the basis for voxel-

based morphometry (VBM) which has been 

used to select voxels of interest to be used to 

detect Alzheimer's disease [3]. Feature 

extraction is also useful to MRI segmentation 

of specific structures such as the cingulum 

[4]. A support vector machine (SVM) 

approach to the classification of Alzheimer’s 

disease patients, versus normal control 

subjects, made use of features extracted from 

MRI in order to represent gray matter, white 

matter and cerebrospinal fluid [5]. MRI 

signal intensity feature extraction is 

paramount in order to achieve human brain 

tissue recognition and identification [6]. 

Feature extraction from MRI images of the 

human brain can also be attained through the 

use of wavelets [7-9]. In addition to the 

aforementioned literature, also the intensity-

curvature measurement approaches (ICMAs) 

have the capability to perform feature 

extraction from two-dimensional MRI 

images [10]. Using the properties of the 

ICMAs, this paper addresses the task of 

feature extraction from 2D images with 

applications in Magnetic Resonance Imaging 

of the human brain and more generally in 

image processing. The novelty of this 

research consists in reporting for the first 

time the study of the intensity-curvature term 

and also additional evidence related to the 

properties of the intensity-curvature 

measurement approaches. The intensity-

curvature term is the concept that allows the 

calculation of three ICMAs in addition to the 

classic-curvature. On the basis of the 

empirical evidence, the classic-curvature 

(CC) and the intensity-curvature functional 

(ICF) were suggested to be high pass filtered 

MRI signals [11]. Further study is reported 

here to elucidate that the Fourier properties 

of the CC and the ICF are not the same. 

Moreover, this study reports that the Fourier 

properties of the MRI high pass filtered 

signal are different from the Fourier 

properties of the CC and the ICF. The signal 

resilient to interpolation is here confirmed to 

be an alternative filtering technique, and the 

resilient curvature is characterized as the 

image processing tool able to smooth, to 

invert and to magnify the gray scale of the 

image [12]. 

The intensity-curvature term 

The key concept at the basis of the 

theoretical development of the intensity-

curvature measurement approaches (ICMAs) 

is the intensity-curvature term [13]. This 
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paper addresses the explanation of the 

meaning of the intensity-curvature term: the 

product between: (i) the signal intensity and 

(ii) the arctangent of the angle subtended 

with the horizontal by the tangent to the first 

order derivative of the model function fitted 

to the image data. See chapter 1 in [14]. The 

classic-curvature embeds in itself the 

geometrical meaning of the arc subtended by 

the tangent to the first order derivative curve 

of the model function fitted to the signal. For 

simplicity an illustration of the concept in the 

case of unidimensional signal will be 

presented. In Fig. 1, the radius of the circle is 

r, and the value of the signal intensity is 

termed I. The tangent to the first order 

derivative curve is termed τ, the arc 

subtended, with the horizontal, by the tangent 

to the first order derivative curve is termed a. 

Thus, the geometrical meaning of the 

intensity-curvature term is the product I · a. 

For values of the angle θ inside the open 

interval | -π/2, π/2 |, the multiplication of a 

times I results either in a reduction of I (when 

a = arc tang (θ) < 1), or in a magnification of 

I (when a = arc tang (θ) > 1), or in the same 

I (when a = 1). It follows that the signal I is 

mapped to the domain I · a. At each time the 

signal is sampled, both I and a do change. To 

make explicit the math formulation of the 

intensity-curvature term we can rely on the 

constraint that I is equal to the radius (r) of 

the circle (see Fig. 1). 

From the constraint it follows the 

generalization, which, for a diverse sampled 

I, considers always I = r. Since a = r · eiθ = r 

cos (θ) + r sin (θ), it follows that I · a = I · [I 

cos (θ) + I sin (θ)]. Thus, the rational flow 

implies that for given I = r and τ, the values 

of the angle θ and the length of the arc a are 

calculated, so to map I to I · [I cos (θ) + I sin 

(θ)]. However, when calculating the product 

I · [I cos (θ) + I sin (θ)] (with θ = 2 · π · CC; 

where CC is the classic-curvature), no 

meaningful image was obtained. 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. The meaning of the intensity-

curvature term: the signal I is mapped to the 

domain I · a.   

 
Thus, the intensity-curvature terms are: (i) 

the intensity-curvature term before 

interpolation E0 [14], which is computed as 

the product of the signal intensity I times the 

classic-curvature calculated at the origin of 

the pixel. And, (ii) the intensity-curvature 

term after interpolation EIN [14], which is 

computed as the product between the model 

function, and the classic-curvature calculated 

at the generic intra-pixel coordinate. Section 

2 reports the formulae of E0 and EIN for the 

three polynomial functions used in this study. 

Theory                                            
The bivariate cubic formula 

 
Let us consider the bivariate formula [10, 11, 

15]:  

 

f(x, y) = f(0, 0) + ϕa (a x2 + y) + ϕb (b y2 - x)  

 

+ ϕab (a x2 y + b y2 x)   (1)  

 

Let us posit:  

 

ϕa = [f(1, 0) - f(0, 0)]    (2) 

ϕb = [f(0, 1) – f(0, 0)]   (3) 

ϕab = [f(1, 1) + f(0, 0) - f(0, 1) - f(1, 0)] (4) 

 

Where f(1, 1), f(0, 1), f(1, 0) are the 

neighboring pixels of f(0, 0), which is the 

pixel to recalculate. The classic-curvature of 

f(x, y) is:  

 

 

 

θ 
a 

I 
x 

f(x) τ 

r 

29 
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ΥC(x, y) = (∂2 f(x, y) / ∂x2) + (∂2 f(x, y) /  

 

∂y2) + (∂2 f(x, y) / ∂x∂y) + (∂2 f(x, y) / ∂y∂x)  

 

= ϕa (2a) + ϕab (2ay) + ϕb (2b) + ϕab (2bx) + 2  

 

ϕab (2a x + 2b y)                                         (5) 

 

The intensity-curvature terms before (E0(x, 

y)) and after (EIN(x, y)) interpolation are 

given by the solution of equations (6) and (7) 

[14]. 

 

E0(x, y) = ∫ ∫ f(0, 0) ∙ [ ΥC(x, y) ](0, 0) dxdy =  

 

f(0, 0) ∙ { ϕa (2a) + ϕb (2b) } ∙ xy  (6) 

 

EIN(x, y) = ∫ ∫ f(x, y) ∙ [ ΥC(x, y) ](x, y) dxdy =  

 

{ f(0, 0) ∙ Η(x, y) } + B(x, y) + C(x, y) +  

 

D(x, y)                  (7) 

 

With the following positions: 

  

Η(x, y) = {ϕa (2a xy) + ϕab (a xy2) + ϕb (2b  

 

xy) + ϕab (b x2y) + 2 ϕab (a x2y + b xy2)}   

                 (8) 

   

B(x, y) = {ϕa (a x3y/3 + xy2/2) ∙ ϕa (2a)} +  

 

{ϕa (a2 x3y2/3 + a xy3 ∙ (2/3)) ∙ ϕab} + {ϕa (a  

 

yx3/3 + xy2/2) ∙ ϕb (2b)} + {ϕa (ab yx4/2 + b  

 

x2y2/2) ∙ ϕab} + {ϕa (a2 yx4/2 + a x2y2/2 + ab  

 

x3y2/3 + b xy3 ∙ (2/3)) ∙ 2 ϕab }   (9) 

 

C(x, y) = {ϕb (b xy3/3 - yx2/2) ∙ ϕa (2a)} +  

 

{ϕb (ab xy4/2 - a x2y2/2) ∙ ϕab} + {ϕb (b xy3/3  

 

– x2y/2) ∙ ϕb (2b)} + {ϕb (b2 x2y3/3 - b yx3 ∙  

(2/3)) ∙ ϕab} + {ϕb (ab x2y3/3 - a yx3 2/3 +  

 

b2 xy4/2 - b x2y2/2) ∙ 2 ϕab}              (10) 

D(x, y) = {ϕab (a x3y2/6 + b y3x2/6) ∙ ϕa (2a)}  

 

+ {ϕab (a2 x3y3 2/9 + ab y4x2/4) ∙ ϕab} + {ϕab  

 

(a x3y2/6 + b y3x2/6) ∙ ϕb (2b)} + {ϕab (ab  

 

x4y2/4 + b2 y3x3 2/9) ∙ ϕab} + {ϕab (a2 x4y2/4 +  

 

ab y3x3 ∙ (2/9) + ab x3y3 2/9 + b2 y4x2/4) ∙ 2  

 

ϕab}                                        (11) 

 

The bivariate cubic Lagrange 

polynomial 

 
Let us consider the bivariate cubic Lagrange 

interpolation formula [10, 12]: 

 

g4(x, y) = f(0, 0) + α2 · a [(x + y)3 + (1/2) (x  

 

+ y)2 + (1/4) (x + y) + 1] + α3 · a [(x + y)2 +  

 

2 (x + y) + 1]                                         (12) 

 

Where α2 and α3 group together the pixels in 

the neighbor of f(0, 0), which is the pixel to 

recalculate. 

 

α2 = [f(1/2, 1/2) + f(-1/2, -1/2) + f(2/3, 2/3)  

 

+ f(-2/3, -2/3) + f(-1, -1) + f(1, 1) + f(3/2,  

 

3/2) + f(-3/2, -3/2)]                (13) 

 

α3 = [f(1/2, 1/2) + f(-1/2, -1/2) + f(-1, -1) +  

 

f(1, 1)]                (14) 

 

The classic-curvature of g4(x, y) is: 

 

ΩC(x, y) = 4 · {α2 · a [6 (x + y) + 1] + 2 α3 ·  

 

a}                          (15) 

 

The intensity-curvature terms before (E0(x, 

y)) and after (EIN(x, y)) interpolation are 

given by the solution of equations (16) and 

(17) [10, 12, 14]. 
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E0(x, y) = ∫ ∫ f(0, 0) ∙ [ ΩC(x, y) ](0, 0) dxdy =  

 

f (0, 0) · 4 · { α2 · a + 2 α3 · a } · xy       (16) 

 

EIN(x, y) = ∫ ∫ g4(x, y) ∙ [ ΩC(x, y) ](x, y) dxdy  

 

= 4 · { f (0, 0) { α2 · a [6 (yx2 /2 + xy2 /2) +  

 

xy] + 2 α3 · a xy} + 6 φ4 (α2 a)2 + φ3 [4 (α2  

 

a)2 + 8 α3 α2 a2] + φ2 [2 (α2 a)2 + 14 α3 α2 a2 +  

 

2 (α3 a)2] + φ1 [(25/4) (α2 a)2 + (17/2) α3 α2  

 

a2 + 4 (α3 a)2] + [(α2 a)2 + 3 α3 α2 a2 + 2 (α3  

 

a)2] xy}                                        (17) 

 

With the following positions: 

 

φ1 = [(1/2) yx2 + (1/2) xy2]             (18) 

 

φ2 = [(1/3) yx3 + (1/2) x2y2 + (1/3) xy3]  (19) 

 

φ3 = [(1/4) yx4 + (1/2) x3y2 + (1/2) x2y3 +  

 

(1/4) xy4)]                                                (20) 

 

φ4 = [(1/5) yx5 + (1/2) x4y2 + (2/3) x3y3 +  

 

(1/2) x2y4 + (1/5) xy5]                              (21) 

 

The signal resilient to interpolation f(0, 0) is 

calculated solving the equation Eo (x, y) = EIN 

(x, y) in f(0, 0) hereto follow. 

 

f(0, 0) = ΔLGR / ΘLGR                 (22) 

 

ΛLGR = 6 φ4 (α2 a)2 + φ3 [4 (α2 a)2 + 8 α3 α2  

 

a2] + φ2 [2 (α2 a)2 + 14 α3 α2 a2 + 2 (α3 a)2] +  

φ1 [(25/4) (α2 a)2 + (17/2) α3 α2 a2 + 4 (α3  

a)2] + [(α2 a)2 + 3 α3 α2 a2 +2 (α3 a)2] xy  (23) 

 

 

ΘLGR = [α2 a + 2 α3 a] xy - {α2 · a [6 (yx2 /2 +  

xy2 /2) + xy] + 2 α3 · a xy}                       (24) 

The resilient curvature [12, 14] is calculated 

as the sum of second order partial derivatives 

of the signal resilient to interpolation: 

 

RC(x, y) = (∂2 ( f(0, 0) )  /∂x2) + (∂2 ( f(0, 0)) 

 

/∂y2) + (∂2 ( f(0, 0) )  /∂x∂y) + (∂2 ( f(0, 0) )   
 

/∂y∂x)                                                      (25) 

 

The bivariate linear function 

 
Let h be a continuous function that takes the 

form [11, 13, 15, 16].  

 

h(x, y) = f(0,0) + x θx + y θy + xy ωf        (26)  

 

Where: f(0,0), f(1,0), f(0,1) and f(1,1) are the 

values of intensity at the four corners of the 

pixel. Such h(x, y) is the bivariate linear 

interpolation function. Let us posit:  

 

θx = [f(1,0) - f(0,0)]                                 (27) 

θy = [f(0,1) - f(0,0)]              (28) 

ωf  = [f(1,1) + f(0,0) - f(0,1) - f(1,0)]       (29) 

 

The classic-curvature of h(x, y) is: 

 

ΨC(x, y) = 2 ωf                 (30) 

 

The intensity-curvature terms before 

interpolation (E0(x, y)) and after interpo-

lation (EIN(x, y)) are given in equations (31) 

and (32) [11, 15, 16]. 

 

E0(x, y) = ∫ ∫ f(0, 0) ∙ [ ΨC(x, y) ](0, 0) dxdy =  

 

f (0, 0) 2 x y ωf                           (31) 

 

EIN(x, y) = ∫ ∫ h(x, y) ∙ [ ΨC(x, y) ](x, y) dxdy  

 

= 2 ωf  Hxy (x, y)                 (32) 

With the position: 

 

Hxy (x, y) = f(0,0) xy + yx2/2 θx + xy2/2 θy +  

 

y2x2/4 ωf                 (33) 

 

 31 
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The intensity-curvature functional of h(x, y) 

is:  

 

ΔE(x, y) = Eo(x, y) / EIN(x, y)             (34) 

Results 
Study of the intensity-curvature 

terms of theoretical images 

This section of the paper presents the 

images of the intensity-curvature terms 

calculated using theoretical images. The 

terminology: ‘before interpolation’, and 

‘after interpolation’ does not imply that the 

images were re-sampled. Indeed, when the 

image is modelled by the bivariate cubic 

polynomial, the images of the intensity-

curvature terms: (i) before interpolation, and 

(ii) after interpolation; are calculated using 

equations (6) and (7), respectively. When the 

image is modelled with the bivariate cubic 

Lagrange polynomial, the intensity-

curvature terms: (i) before interpolation, and 

(ii) after interpolation; are calculated using 

equations (16) and (17), respectively. When 

the image is modelled with the bivariate 

linear function, the intensity-curvature terms 

are calculated using equations (31) and (32). 

The intensity-curvature terms were able to 

highlight and to reproduce the intensity-

curvature structure of the images. Indeed, the 

main property of the theoretical images in 

Fig. 2: (a.1) light source; (a.2) sampled 

signal; (a.3) cross image; is to show varying 

pixel intensity structures. The intensity-

curvature terms (b.1), (c.1), calculated from 

the light source image in (a.1), do reproduce 

the intensity-curvature image structures. 

Likewise the intensity-curvature terms (b.2), 

(c.2) (which were calculated from the 

sampled signal image in (a.2)) and the 

intensity-curvature terms (d.1), (e.1), (d.2), 

(e.2) do map the exponential decay of the 

light source image and the sampled signal 

image respectively. The most effective 

intensity-curvature image structure and 

detail reproduction is revealed through the 

intensity-curvature terms in (b.3), (c.3), (d.3) 

and (e.3). All of the intensity-curvature terms 

images presented in Fig. 2 were brightness-

contrast enhanced so to reach the level of 

potency of the image which is capable to 

reproduce the image structure. The three 

theoretical images presented in Fig. 2(a.1), 

2(a.2), 2(a.3) were also brightness-contrast 

enhanced in order to remove the confound 

factor which might be introduced in the 

analysis when the level of contrast 

enhancement is not the same for all of the 

images. Indeed, because of the remarkable 

difference between the pixel intensity values 

of the theoretical images and the intensity-

curvature term images, the brightness-

contrast enhancement cannot be set to be the 

same unless the potency of the images is 

negatively affected. Thus, the brightness-

contrast enhancement of the theoretical 

images was adjusted to the level judged to be 

such to highlight the details of the image 

structure. Brightness-contrast enhanced 

theoretical images are presented in Fig. 

6(b.1), 6(b.2) and 6(b.3) and the comparison 

with their intensity-curvature terms 

presented in Fig. 2, shows that the intensity-

curvature structures of the theoretical images 

can be fairly reproduced into the intensity-

curvature terms. Moreover, through the 

visual inspection of the theoretical images 

and the intensity-curvature images, is also 

possible to identify in the intensity-curvature 

term images, details of the theoretical images 

which are hidden into the image structures 

(compare for instance Fig. 2(a.3) with Fig. 

2(b.3), 2(c.3), 2(d.3), 2(e.3)). Worth 

reporting that the properties of the intensity-

curvature term images presented in this 

section were investigated also using 9 

additional theoretical images and their 

behavior was found consistent with the 

faithful reproduction of the intensity-

curvature structures.
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The intensity-curvature terms of 

MRI images 

The intensity-curvature terms are E0 

and EIN [13]. Their ratio (ΔE = E0 / EIN) is 

called intensity-curvature functional (ICF) 

[14].

 
Fig. 2. Theoretical images in (a.1), (a.2) and (a.3). The intensity-curvature terms before 

interpolation (b.1), (b.2), and (b.3), and after interpolation (c.1), (c.2), and (c.3) were calculated 

using the bivariate cubic polynomial. The intensity-curvature terms before interpolation (d.1), 

(d.2) and (d.3), and after interpolation (e.1), (e.2) and (e.3) were calculated using the bivariate 

cubic Lagrange polynomial. 

 

 

  
 

 

 

 

 

 

 

Fig. 3. (a) MRI. (b) Intensity-curvature term before interpolation E0 of (a), calculated using the 

bivariate cubic polynomial. (c) Intensity-curvature term after interpolation EIN of (a), calculated 

using the bivariate cubic polynomial. (d) Intensity-curvature term before interpolation E0 of (a), 

calculated using the bivariate cubic Lagrange polynomial. (e) Intensity-curvature term after 

interpolation EIN of (a), calculated using the bivariate cubic Lagrange polynomial.  

 

 

 

 

 

      

              

     

(a.1) (b.1) (c.1) (d.1) (e.1) 

(a.2) (b.2) (c.2) (d.2) (e.2) 

(a.3) (b.3) (c.3) (d.3) (e.3) 

(a) (b) (c) (d) (e) 

 33 
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Fig. 4. MRI in (a). (b), (d) Intensity-curvature tem before interpolation E0 of (a). (c), (e) 

Intensity-curvature term after interpolation EIN of (a). (b), (c) were calculated when fitting the 

bivariate cubic model function to the MRI. (d), (e) were calculated when fitting the bivariate 

cubic Lagrange model function to the MRI. 

 

 

 
 

Fig. 5. (a) MRI. (b) Intensity-curvature functional calculated using the bivariate linear model 

function. (c), (e) Intensity-curvature terms before interpolation, and (d), (f) intensity-curvature 

terms after interpolation; calculated using the bivariate cubic polynomial ((c) and (d)), and the 

bivariate cubic Lagrange polynomial ((e) and (f)). 

 

This section of the paper shows the 

characteristics of the two intensity-curvature 

terms with MRI applications. Fig. 3, 4 show 

intensity-curvature term images calculated 

from the MRI seen in (a). The emphasis, as 

indicated by the arrows, is on the highlight of 

selected vasculature of the human brain. Fig. 

5 presents a comparison between the ICF 

calculated using the bivariate linear function 

(b), and the intensity-curvature terms 

calculated using the bivariate cubic 

polynomial ((c) and (d)), and using the 

bivariate cubic Lagrange polynomial ((e) and 

(f)). The vessels seen in the ICF (b) become 

prominent in the images in (c) and (d) and 

they change color in the images in (e) and (f). 

 

 

(a) (b) (c) (d) (e) 

 

  

          

(a) (b) (c) 

(d) (e) (f) 
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It is due to comment on the similarity 

between the images in (c) and (d), and the 

images in (e) and (f). In such cases the ICF, 

which is the ratio between the two intensity-

curvature terms, is a flat image without any 

particular significance. This means that 

although the formulation of the two intensity-

curvature terms: before interpolation ((c) and 

(e)) and after interpolation ((d) and (f)) is 

different, the appearance of the two terms is 

similar and consistently their ratio is close to 

one (‘1’), making the ICF not useful. This 

detail was never reported and adds value to 

the intensity-curvature terms of those 

polynomials for which the ICF is a flat 

image.  

Study of the CC and the ICF 

This section of the paper reports on 

the behavioral difference between the 

classic-curvature and the intensity-curvature 

functional and also presents the k-space of 

the two aforementioned ICMAs when they 

are calculated using theoretical images and 

MRI images. 

 

     

     

     

    
 

Fig. 6. Theoretical images in (a.1), (a.2) and (a.3). The three theoretical images presented in 

Fig. 2(a.1), 2(a.2), 2(a.3) were also brightness-contrast enhanced (see (b.1), (b.2) and (b.3)). 

The classic-curvature images of the theoretical images are presented in (c.1), (c.2) and (c.3), 

and they were calculated using the bivariate cubic polynomial. The intensity-curvature images 

of the theoretical images are presented in (d.1), (d.2) and (d.3), and they were calculated using 

the bivariate linear model function. 

 

 

 

 

 

 

(a.1) (a.2) 

(c.1) (c.2) 

(d.1) (d.2) 

(b.1) (b.2) 

(a.3) 

(c.3) 

(d.3) 

(b.3) 
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The effect of combining together the 

intensity of the signal with the second order 

partial derivatives of the model function 

fitted to the signal is illustrated in Fig. 6(c.1), 

6(c.2), 6(c.3) (classic-curvature images) and 

Fig. 6(d.1), 6(d.2), 6(d.3) (intensity-

curvature functional images). The classic-

curvature images highlight the details of the 

theoretical images, whereas the intensity-

curvature functional images present the same 

behavior and, in addition to it, they sharpen 

the details of the theoretical images. Recent 

research [11] reports the empirical evidence 

that both the classic-curvature and the 

intensity-curvature functional are suggested 

to be high pass filtered signals when 

calculated while fitting to the MRI images 

the bivariate cubic polynomial and the 

bivariate linear function (see equations (5) 

and (34) respectively). Fig. 7 shows the k-

space of the two aforementioned ICMAs and 

presents the evidence that the Fourier 

properties of the CC and the ICF are 

different, as shown in Fig. 7(e), 7(f), 7(g) (k-

space of the CC images presented in  Fig. 

6(a.1), 6(a.2), 6(a.3) respectively) and in Fig. 

7(h), 7(i), 7(j) (k-space of the ICF images 

presented in Fig. 6(d.1), 

 

(a)  (b)  (c)  

 (e)   (f)  (g)  

 (h)   (i)   (j)  
 

Fig. 7. (a), (b), (c) K-space of the theoretical images presented in Fig. 2(a.1), 2(a.2) and 2(a.3) 

respectively. (e), (f), (g) K-space of the classic-curvature images presented in Fig. 6(c.1), 6(c.2) 

and 6(c.3) respectively. (h), (i), (j) K-space of the intensity-curvature functional images 

presented in Fig. 6(d.1), 6(d.2) and 6(d.3) respectively. 

 

6(d.2), 6(d.3) respectively). In addition, the 

CC and the ICF images have Fourier 

properties different from those of the high 

pass filtered signal. Indeed, when comparing 

the k-space of the MRI high pass filtered 

signal (see Fig. 8(f), 8(l)) to the k-space of 

the CC of the MRI signal (see Fig. 8(e)) and 

the k-space of the ICF of the MRI signal (see 

Fig. 8(k)), it is possible to discern that the CC 

and the ICF are not the same as high pass 

filtered signals. 
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The filtering properties of the CC 

and the ICF 

It is possible to treat the classic-

curvature images and the intensity-curvature 

functional images as filter masks [11]. Fig. 9 

shows the MRI in (a), the CC of the MRI in 

(b), the ICF of the MRI in (c), the result of 

the convolution between the MRI and the CC 

in (d), and the result of the convolution 

between the MRI and the ICF in (e). The 

images in (d) and (e), in Fig. 9, likewise 

presented in Fig. 10, show the filtering 

capabilities of the CC and the ICF images. In 

Fig. 9 the emphasis is on the vasculature of 

the human brain, whereas in Fig. 10 the 

emphasis is on the human brain cortex. The 

use of the classic-curvature and the intensity-

curvature functional as filter masks makes it 

possible to filter the MRI so to observe 

details of interest and to suppress what is not 

the object of study. As an example of the 

aforementioned usage, Fig. 9(d) and Fig. 9(e) 

highlight the human brain vasculature. The 

vessels seen in dark color inside the ellipses 

in Fig. 9(d) and 9(e) can also be seen in the 

CC image in (b) and in the ICF image in (c),  

 

(a)  (b)  (c)  

(d)  (e)  (f)  

                          (g)  (h)  (i)  

 (j)  (k)  (l)  

Fig. 8. (a), (g) T2-weighted MRI images. (b) Classic-curvature of (a). The MRI images in (a) 

and (g) are high pass filtered and presented in (c) and (i) respectively. (d), (e) and (f) Are the k-

space magnitude images of (a), (b) and (c) respectively. (h) Intensity-curvature functional of 

(g). (j), (k) and (l) Are the k-space magnitude images of (g), (h) and (i) respectively.  
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Fig. 9. (a) MRI image. (b) Classic-curvature of (a) calculated using the bivariate cubic 

polynomial. (c) ICF of (a) calculated using the bivariate linear function. (d) Result of the 

convolution of the MRI with the image in (b). (e) Result of the convolution of the MRI with the 

image in (c). The highlight of the pictures is on samples of the vasculature of the human brain 

(see vessels inside the ellipses). 

 
Fig. 10. (a) T2-weighted MRI image. (b) Classic-curvature of (a). (c) Result of the convolution 

of the T2-weighted MRI with the image in (b). (d) FLAIR MRI. (e) Classic-Curvature of (d). 

(f) Result of the convolution of the FLAIR MRI with the image in (e). (g) Intensity-curvature 

functional of the T2-weighted MRI in (a). (h) Result of the convolution of the T2-weighted MRI 

with the image in (g). (i) Intensity-curvature functional of the FLAIR MRI image in (d). (j) 

Result of the convolution of the FLAIR MRI with the image in (i). 

 

however they do not appear distinct from the 

rest of the brain matter as they appear in the 

filtered images shown in (d) and (e). In Fig. 

9(d) and 9(e) is also observable clear and neat 

distinction between gray and white matter of 

the cortex. Fig. 10(c), 10(f), 10(h), and 10(j) 

highlight the human brain cortex.   There are 

differences visible in the four 

aforementioned pictures. The CC (b) and the 

ICF (g) of the T2-weighted MRI filter out to 

the images in (c) and (h) respectively. In (c) 

and (h) it is possible to discern clearly the 

structure of the human cortex, gray and white 

matter, the sulci and the gyri, and the 

ventricles. The CC (e) and the ICF (i) of the 

FLAIR MRI filter out to the images in (f) and 

(j), respectively. And in such images the 

emphasis is on the distinction between gray 

 

(a) (b) (c) (d) (e) 
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Fig. 11. (a) MRI image. (b) K-space of 

(a). (c) SRI of (a). (d) K-space of the 

SRI. (e) Low pass filtered MRI image. 

(f) K-space of (e). (g) High pass 

filtered MRI image. (h) K-space of (g). 

(i) Band pass filtered MRI image. (j) 

K-space of (i). 

 

 

 

             
 

 

 

 

 

 

 
 
Fig. 12. T2-weighted MRI in (a) and (e). The inverted MRI is in (b) and (f) so to show the main 

characteristic of the resilient curvature which is to invert the gray scale of the image, to smooth 

the image and also to magnify the gray scale of the image (see (c) and (g)). The histograms of 

the frequency distribution of the MRI and the resilient curvature are presented in (d) and (h) 

and they show that the resilient curvature is not the exact mirrored opposite of the MRI. 
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and white matter, although sulci, gyri and 

ventricles are still distinguishable. In MRI 

tumor studies we have observed that the 

FLAIR MRI, when filtered with the CC and 

the ICF, presents details of the tumor with 

finer level of details, which cannot be 

otherwise observed [15]. 

The signal resilient to 

interpolation (SRI) and the resilient 

curvature (RC) 
Fig. 11 shows the comparison of the 

MRI images versus the filtered images, the 

filtered images versus the SRI images, and 

additionally, the K-space of each of the three 

filters versus the K-space of the SRI. 

Through visual inspection of the data 

presented in the pictures, it can be inferred 

that the SRI is also a filter [12] (see the 

smoothing in (c) versus the smoothing in (e), 

which is a low pass filtered image). Fig. 12 

shows the main property of the resilient 

curvature which is to smooth, invert and 

magnify the gray scale of the MRI [12]. 

 

Discussion  
Image intensity based MRI 

processing includes Deformation-based 

Morphometry (DBM) [17] and Voxel-based 

Morphometry (VBM) [18] methods. DBM 

and VBM were used to extract features from 

Alzheimer MRI data [19] provided by the 

OASIS dataset [20]. Voxel-based 

Morphometry feature extraction was found 

to be best performing when compared to a 

large array of algorithms within the context 

of the diagnosis of dementia from MRI [21]. 

Edge detection of human brain MRI 

structures is another area of application of 

image intensity based methods which use 

filtering techniques [22], and it is a 

preprocessing technique within the context 

of MRI image feature extraction [23]. Region 

growing techniques combined with shape 

based difference images were used to extract 

features from Magnetic Resonance 

Angiography [24]. Segmentation is another 

area of MRI research which uses image 

intensity based algorithms, region growing 

algorithms and morphological operators for 

the extraction of human brain structures [25]. 

Other segmentation applications include: (i) 

an algorithm for the measurement and the 

extraction of the hippocampus from human 

brain MRI images [26]; (ii) a genetic 

algorithm search which is used to gather the 

features for the representation of human 

brain MRI tumor data [27]. As can be seen 

from the literature, the intensity-curvature 

terms are original techniques. And, as shown 

in this paper, the intensity-curvature terms 

are able to perform feature extraction as well 

as to set the grounding theory for the 

calculation of the ICMAs. The ICMAs are 

image re-sampling techniques which depend 

on the second order partial derivatives of the 

image. The methodological approach is 

mathematically well defined because the 

calculation of the second order partial 

derivatives of the image is performed once a 

model function is fitted to the image on a 

pixel-by-pixel basis [28]. The literature 

offers several methods of calculation of the 

derivatives of an image: the Sobel operator 

[29], compact finite differences [30], and 

gradient operators [31]. The benefits of 

fitting a polynomial model to the image data 

[28] are immediately granted by the variety 

of re-sampling techniques that are made 

available [14]. What can be argued, though, 

is that model fitting is arbitrary. Thus, the 

effort of this paper is geared towards the 

presentation of results obtained modelling 

the image data with three different 

polynomial functions. The implications, the 

novelty and the contribution provided by this 

paper shall be discussed in the next sections. 

The implications of the intensity-

curvature terms 

The idea of the intensity-curvature 

terms in image processing is to map the 

image intensity to the image intensity-

curvature. The intensity-curvature content of 

the image is characterized through the image 

processing technique that merges the pixel 

intensity of an image with the sum of second 

order partial derivatives (the classic-
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curvature) of the model function fitted to the 

image data. The technique is able to extract 

features from the images and this has been 

studied in this paper through the use of 

theoretical images and MRI images of the 

human brain. The results indicate that the 

intensity-curvature terms are able to 

highlight and reproduce the intensity-

curvature structure of the images as well as 

to extract vasculature features from the 

human brain MRI images. Following the 

inception of the intensity-curvature terms, 

this paper reports another of their 

implications, which is that of the feasibility 

to extend the mathematical procedure up to 

the calculation of three additional intensity-

curvature measurement approaches 

(ICMAs). The ICMAs are: (i) the intensity-

curvature functional (ICF), (ii) the signal 

resilient to interpolation (SRI), and (iii) the 

resilient curvature (RC). The intensity-

curvature functional has been studied within 

the context of the tumor contour line 

detection [16], and it was later suggested to 

be a high pass filtered signal [11]. This paper 

clarifies that the CC, the ICF and the high 

pass filtered signal are not the same because 

of the difference existing between the k-

space of the CC, the k-space of the ICF, and 

the k-space of the high pass filtered signal. 

The signal resilient to interpolation and the 

resilient curvature have been studied and 

characterized within the context of the study 

of human brain MRI images [12]. This paper 

summarizes and confirms earlier findings 

[12] which define the signal resilient to 

interpolation as an alternative filter. And this 

paper also confirms the properties of the 

resilient curvature as an alternative image 

inversion technique which moreover 

smooths and magnifies the gray scale of the 

image. 

The novelty 

The novelty reported in this paper is 

to report for the first time the behavior of the 

intensity-curvature terms calculated when 

the bivariate cubic polynomial and the 

bivariate cubic Lagrange polynomial are 

fitted as model functions to the image data. 

The behavior was studied on theoretical 

images and it was found that the intensity-

curvature terms of the two aforementioned 

model polynomial functions allow the 

reproduction of the intensity-curvature 

structure and structural details of the 

theoretical images (see Fig. 2). An additional 

novelty is presented in Fig. 7, 8, where it is 

shown that the Fourier properties of the 

classic-curvature and the intensity-curvature 

functional are different, and they are also 

different when compared to the Fourier 

properties of the high pass filtered signal. 

Samples of the vasculature of the human 

brain MRI [32] have been studied in Fig. 3, 

4, 5, 9, and the results show that the intensity-

curvature terms can highlight the 

vasculature. Additionally, the results 

obtained convolving the MRI with the CC 

and the ICF images, in Fig. 10, confirm the 

filtering capabilities of the two 

aforementioned ICMAs. Overall, the 

contribution to image processing is the 

characterization of the intensity-curvature 

structure of an image which is possible 

through the calculation of the intensity-

curvature terms. Finally, the procedural and 

methodological contribution of the paper is 

the extension of the mathematical procedure 

to the calculation of three ICMAs: (i) the 

intensity-curvature functional, (ii) the signal 

resilient to interpolation and (iii) the resilient 

curvature; which are found to have useful 

signal processing characteristics.   

 

Conclusion 
The intensity-curvature terms are 

able to characterize the reproduction of the 

image structure and the image details of 

theoretical images. And, also to highlight the 

vasculature of the human brain from MRI 

images. The role of the intensity-curvature 

term in image processing of the human brain 

MRI is to make it possible to calculate the 

ICF, the SRI and the RC images, and also the 

two intensity-curvature term images. 

Therefore, the intensity-curvature term is the 
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foundation of five imaging domains, where it 

is possible to collect complementary and/or 

additional information about the MRI of the 

human brain anatomy and structure, and also 

to perform feature extraction.  
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