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Abstract 

The radiative heat transfer performance with viscous dissipation on entropy generation 

in the MHD flow of variable thermal conductivity viscous Cu–water nanofluid through a 

porous parallel channel is investigated in this paper. The governing non-linear differential 

equations are solved using power series for small values of thermal conductivity variation 

parameter, which are then analysed by Hermite- Padé approximation method. The effects of 

the physical governing flow parameters on velocity, temperature and entropy generation are 

discussed extensively both numerically and graphically. A stability analysis has been 

performed for the local rate of heat transfer which signifies that the lower solution branch is 

stable and physically acceptable. The entropy generation of the system increases at the two 

porous plates and also the fluid friction irreversibility is dominant there. 
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1. Introduction 
The flow and heat transfer in porous tubes or 

channels has been studied by a number of 

authors ([1], [2], [3]) because of its various 

applications in biomedical engineering, 

material processing, as well as the food and 

petro-chemical industries. Berman [4] 

described an exact solution of the Navier-

Stokes equation for steady two-dimensional 

laminar flow of a viscous, incompressible 

fluid in a channel with parallel rigid porous 

walls driven by uniform suction or injection 

at the walls. Meanwhile, heat transfer acts a 

significant role in many fields where the 

heating and cooling processes involved. Any 

substance with a temperature above absolute 

zero transfers heat in the form of radiation. 

Thermal radiation always exits and can 

strongly interact with convection in many 

situations of engineering interest. However, 

radiative heat transfer has a key impact in 

high temperature regime. Many 

technological processes occur at high 

temperature and good working knowledge of 

radiative heat transfer plays an instrumental 

Flow 
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role in designing the relevant equipment. In 

Cogley et al. [5], the differential 

approximation for radiative heat transfer in a 

nonlinear equation for gray gas near 

equilibrium was proposed. Chawla and Chan 

[6] studied the effect of radiative heat 

transfer on thermally developing Poiseuille 

flow with scattering. The thermal 

conductivity of the fluid had been assumed to 

be constant in all the above studies. 

However, it is known that this physical 

property may be change significantly with 

temperature. For a liquid, it has been found 

that the thermal conductivity  varies with 

temperature in an approximately linear 

manner in the range from 0 to 4000F, as Kay 

[7]. Pinarbasi et al. [8] investigates the effect 

of variable viscosity and thermal 

conductivity of a non-isothermal, 

incompressible Newtonian fluid flowing 

under the effect of a constant pressure 

gradient at constant temperatures in plane 

Poiseuille flow using Chebyshev 

pseudospectral method.  

In the past few years, several simple flow 

problems associated with classical 

hydrodynamics have received new attention 

within the more general context of 

magnetohydrodynamics (MHD). A survey of 

MHD studies in the technological fields can 

be found in Moreau [9]. Makinde [10] 

analysed magnetohydrodynamic stability of 

Plane Poiseuille flow using multideck 

asymptotic technique. It is observed in his 

analysis that the magnetic field has a 

stabilizing effect on the flow and that this 

stability increases with an increase in 

Hartmann number. Patra et al. [11] examined 

radiation effect on MHD fully developed 

mixed convection in a vertical channel with 

asymmetric heating where they observed that 

an increase in radiation parameter leads to a 

decrease in the fluid temperature in the 

channel.  

Heat transfer efficiency can be improved by 

increasing the thermal conductivity of the 

working fluid as Kwak and Kim [12]. Due to 

heat transfer mostly used fluids such as 

water, ethylene glycol, and engine oil have 

relatively low thermal conductivities 

compared to the thermal conductivity of 

solids. High thermal conductivity of solids 

can be used to increase the thermal 

conductivity of a fluid by adding small solid 

particles to that fluid. The feasibility of the 

usage of such suspensions of solid particles 

with sizes on the order of millimeters or 

micrometers was investigated by various 

researchers and significant advantages were 

observed in Khanafer et al. [13]. Recent 

advances in nanotechnology have allowed 

authors to study the next generation 

nanofluids, a term first introduced by Choi 

[14]. Nanoparticles have unique chemical 

and physical properties and have better 

thermal conductivity and radiative heat 

transfer compared to the base fluid only. 

Nanofluids are engineered dilute colloidal 

dispersions of nano-sized (less than 100 nm) 

particles in a base-fluid [15]. Sheikholeslami 

et al. [16] investigated analytically the 

laminar nanofluid flow in a semi-porous 

channel in the presence of transverse 

magnetic field using Homotopy perturbation 

method.  

For any thermal system, as the entropy 

generation increases, the energy decreases. 

Thus, to enhance the efficiency of the 

system, the rate of entropy generation must 

be effectively controlled. The idea of 

thermodynamic irreversibility is central to 

the understanding of entropy. Everyone has 

an intuitive knowledge of irreversibility. The 

second law of thermodynamics states that all 

real processes are irreversible. Entropy 

generation provides a measure of the amount 

of irreversibility associated with real process. 

Bejan [17] studied the entropy-generation for 

forced convective heat transfer due to 

temperature gradient and viscosity effects in 

a fluid. Bejan [18] also presented various 

reasons for entropy-generation in applied 

thermal engineering where the generation of 

entropy destroys the available work of a 

system. The effect of thermal radiation and 

variable viscosity on entropy generation rate 
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in the flow of optically thin fluid through 

channel was analysed by Makinde [19]. 

However, the thermal boundary layer 

equation for variable thermal conductivity 

fluids in the presence of thermal radiation 

construct a nonlinear problem and the 

solution behavior will present a looming into 

physical process of thermal instability in the 

system. Chen et al. [20] studied heat transfer 

and entropy generation in fully-developed 

mixed convection nanofluid flow in vertical 

channel. They analysed the effects of viscous 

dissipation on the entropy generation within 

vertical asymmetrically heated channels 

containing mixed convection flow. Abiodun 

et al. [21] investigated entropy generation in 

a steady flow of viscous incompressible 

fluids between two infinite parallel porous 

plates for two different physical situations 

Couette flow and pressure-driven Poiseuille 

flow. Makinde and Eegunjobi [22] analysed 

the combined effects of convective heating 

and suction/injection on entropy generation 

rate in a channel with permeable walls. 

Taking into account the significance of 

variable thermal conductivity and thermal 

radiation effect on entropy generation rate in 

the flow of MHD conducting viscous 

nanofluid through a porous channel with 

non-uniform wall temperature is studied 

applying Hermite- Padé approximation. A 

stability analysis is also performed to show 

the physically realizable solution in practice 

of local Nusselt number due to thermal 

conductivity criticality. Results for the 

velocity, temperature, volumetric entropy 

generation rate and Bejan number for various 

values of the involved parameters are 

presented. 

 

2. Mathematical Formulation 

The two-dimensional steady, 

incompressible and laminar variable thermal 

conductivity flow of Cu-water nanofluid in a 

porous channel is considered. The lower and 

upper walls of the channel are assumed to be 

porous as injection and suction respectively 

so that )0,,( vuV  where u and v  are the 

horizontal and vertical (injection/suction) 

components of velocity respectively. The 

flow is chosen along the x -direction under 

constant pressure gradient and depends on 

y alone. The top and bottom wall 

temperatures are non-uniform under radiative 

heat transfer and an externally homogeneous 

magnetic field is applied vertically to the 

upper wall. The basic equations of the 

problem considering viscous dissipation and 

buoyancy force are  
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As the velocity is only along x -direction, it 

is assumed that 
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By integrating Eqn (1) reduces to .0vv   

Equations (2) and (3) then take the form 
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Where, the variable thermal 

conductivity
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Fig.1. Geometry of the problem. 

 

Eqs. (4)-(5) are subjected to the boundary 

conditions are: 
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The dynamic viscosity and density of the 

nanofluid are defined as Sheikholeslami et al. 

[16] 
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where   is the solid volume fraction of 

nanoparticles. 

The effective electrical conductivity, thermal 

conductivity and effective heat capacity of 

the nanofluid were presented by 

Sheikholeslami et al. [23] as:  
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The radiative heat flux according to Cogley 

et al. [5] is given by  
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where aK is the radiation absorption 

coefficient,  is the wave length and be  is 

the Planks’ function. 

Introduce the following transformations to 

seek for a similarity solution of Eqs. (4)-(5) 
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Equations (4)-(5) in non-dimensional form 

are 
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Because of simplicity in calculation, the 

dimensionless numbers in Eqs (9)-(10) are 

rescaled as 
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The dimensionless Eqs (9)-(10) get the form 
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The local Nusselt number Nu and heat 

transfer rate are 
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From equations (8) and (15), the Nusselt 

number results in the following form 
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3. Series analysis 

The power series expansions are 

considered in terms of the parameter  as 

equations (13) and (14) are non-linear for 

velocity field and temperature distribution 
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The non-dimensional governing equations 

(13) and (14) are then solved into series 

solutions by substituting the Eq. (17) and 

equating the coefficients of powers of . 
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The above power series solutions are valid 

for very small values of . Therefore, the 

series are analysed applying Hermite- Padé 

approximation method, as demonstrated in 

the following section. 

 

4. Hermite-Padé approximants. 
The idea of thermal conductivity 

criticality or non-existence of steady-state 

solution to nonlinear thermal boundary layer 

equations for certain parameter values is 

extremely important from physical point of 

view. This typifies the thermal stability 

conditions of the materials under 

consideration and the onset of thermal 

runaway characteristics. To compute the 

criticality conditions in the system, we shall 

employ a very efficient solution method, 

known as Hermite-Padé approximants, which 

was first introduced by Padé [24] and 

Hermite [25]. 

We say that a function is an approximant for 

the series 
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if it shares with S the same first few series 

coefficients at 1 . Thus, the simplest 

approximants are the partial sums of the 

series S . When the series converges rapidly, 

such polynomial approximants can provide 

good approximations of the sum.  
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Because of the continuation of analytical 

solution and dominating singularity behavior, 

the bifurcation study is performed using the 

partial sum of (19). The dominating behavior 

of the function  S  represented by a series 

(19) may be written as  
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as ,c  where A and B are some 

constants and c is the critical point with the 

critical exponent .    
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Expanding the left hand side of equation (22) 

in powers of   and equating the first N 

equations of the system equal to zero, we get 

a system of linear homogeneous equations. 

To calculate the coefficients of the Hermite-

Padé polynomials it requires some sort of 

normalization, such as 
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It is important to emphasize that the only 

input required for the calculation of the 

Hermite-Padé polynomials are the first N 

coefficients of the 

series )(.......,),........(),( 10  dSSS . The 

equation (23) simply ensures that the 

coefficient matrix associated with the system 

is square. One way to construct the Hermite-

Padé polynomials is to solve the system of 

linear equations by any standard method such 

as Gaussian elimination or Gauss-Jordan 

elimination.  In practice, one usually finds 

that the dominant singularities as well as the 

possibility of multiple solution branches for 

the nonlinear problem are located at zeroes 

of the leading polynomial 

coefficients )(][ d
NP  of the equation (22). If 

the singularity is of algebraic type, then the 

exponent   may be approximated by  
  
  Nc
d

N

Nc
d

N
N

DP

P
d

,

,
1

2







 .                         (25) 

Drazin –Tourigney Approximants [26] is a 

particular kind of algebraic approximants and 

Khan [27] introduced High-order differential 

approximant (HODA) as a special type of 

differential approximants. More information 

about the above mentioned approximants can 

be found in the respective references. 

5. Entropy Generation   

The characteristics of the flow field 

inside a porous channel with isothermal walls 

in the presence of thermal radiation with 

viscous dissipation and MHD effect are 

irreversible. The exchange of energy and 

momentum within the fluid and at the 

boundaries causes inequilibrium conditions 

which leads to continuous entropy 

generation. Following Bejan [17] the 

volumetric entropy generation rate is given 

as 
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Where the first term on the right side of 

equation (26) is the irreversibility due to heat 

transfer and the second term is the 

irreversibility due to viscous dissipation. The 

entropy generation number can be expressed 

in dimensionless form as, 
2

5.2

2

2
0

22
0

)1()(

























dy

duBr

dy

d

TT

EbT
N

a

G
S







                                          (27) 

Where 
0

0)(

T

TTa  is the temperature 

difference parameter and 
2

1 









dy

d
N


,  

2

5.22
)1(













dy

duBr
N


 

In general, the entropy generation number 

sN given in Eq. (27) provides a useful means 

of producing entropy generation profiles. 

However, it gives no indication as to the 

relative contributions of the fluid heat 

transfer and fluid friction effects. Thus, the 

parameter, Bejan number Be is commonly 

used in its place. 

The Bejan number is given as  
SN

N
Be 1  

It is noteworthy that the Bejan number 

ranges from 0 to 1 and 0Be is the limit 

where the irreversibility is dominated by 

fluid friction effects. 1Be is the limit where 

the irreversibility due to heat transfer 

dominates the flow system because of finite 

temperature differences. The contributions of 

heat transfer and fluid friction to entropy 

generation are equal when 
2

1Be .In the 

present work, second law analysis is 

investigated between a porous channel. 

6. Results and Discussion 

The influences of thermal radiation 

and temperature dependent variable thermal 

conductivity on the entropy generation of 

nanofluid flow through a porous channel 

under viscous dissipation effect in the 

presence of uniform magnetic field is studied 

in this paper. The numerical computation of 

series (18) subject to the boundary conditions 

(11) are carried out for various values of the 

physical parameters Pr, R, Br, Gr, Re, Pe, Ha 

and  to obtain the condition under which 

the dual (upper and lower branch) solutions 

may exist. The minimum entropy conditions 

provide the possibility of achieving the 

maximum available work.  

In the present study, the 

nanoparticles volume fraction is specified in 

the range of %5%0  to keep the physical 

properties of nanofluid stable, where a value 

of 0 indicates the pure base fluid. In 

addition, the thermal conductivity variation 

parameter is assigned in the range 

of 2.01.0   due to the convergence of 

the series, Reynolds number (porosity 

parameter) 8Re0  to control the intensity 

of porosity as physically stable and 

realizable, the radiation parameter 100  R , 

the Brinkman number 1001  Br , the 

Hartmann number 40 Ha  which is 

physically applicable as discussed in the 

available literature. The Grashof number and 

dimensionless pressure gradient are kept 

fixed at .1,1  NGr  

Table 1 shows the comparison of our results 

with those of Makinde and Eegunjobi [22] 

with 1,1Re,0,0,0  NGrHaBr for 

pure base fluid. The results in Table 1 imply 

that there is a good agreement of the values 

of velocity profile between the present study 

and Makinde and Eegunjobi [22] from the 

lower injected wall ( 1y ) towards the 

centerline ( 0y ) and then to upper 

suctioned wall ( 1y ) of the channel. 
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Table 1. Comparison of numerical values for 

velocity with available literature when 
1,1Re,0,0,0,0  NGrHaBr   

 
y Present Study Makinde and 

Eegunjobi [22] 

Differen

ce 

-1.0 0 0  

-0.8 0.03894655 0.03879297 0.4% 

-0.6 0.07258247 0.07114875 1.3% 

-0.4 0.09765518 0.09639032 2% 

-0.2 0.11658237 0.11376948 2.4% 

0 0.12939390 0.12245933 5.3% 

0.2 0.12553130 0.12154600 3.2% 

0.4 0.11508405 0.11001953 4.4% 

0.6 0.09134248 0.08676372 5% 

0.8 0.05172775 0.05054498 2.3% 

1.0 0 0  

 

6.1 Stability analysis 

 

Table 2. Numerical calculations showing 

thermal conductivity criticality for different 

parameter values using High-order 

Differential Approximants at 

1,1,0,1,1  NHaGrBr   for .3d  

 

Table 2 displays that the critical values of 

thermal conductivity variation parameter 

c increase with a positive increase in the 

values of radiation parameter R in absence of 

suction/injection parameter and the values of 

  indicates that c is a branch point. On the 

other hand, the presence of porosity 

parameter )3(Re  increases c positively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. Approximate bifurcation diagrams of 
 in the ))1(,( Nu plane for different 

values of R obtained by Drazin-Tourigny 

method (1996) 

at

0Re,1,1,1,1,0,5  BrGrHaNd  . 

 

Therefore, it is significant to notice from the 

table that the progress of thermal runaway 

diminishes and develops thermal stability in 

the system when radiation effect enhances in 

porous wall. Moreover, the rate of heat 

transfer Nu enhances as R increases. Finally 

the values of c in Table 2 give an idea about 

the onset of thermal instability and its nature 

numerically. A segment of bifurcation 

diagram for different values of R in the 

),( Nu plane is noticed in Fig. 2 using 

Drazin-Tourigny Approximants at 0Re . It 

is interesting to notice that there are two 

solution branches (I and II) of Nusselt 

number when ,c  one solution 

when ,c  and no solution when 

,c  where c is the critical value of 

 for which the solution exists. The stability 

analysis indicates that the lower solution 

branch (II) is stable and physically realizable. 

For different values of R, the upper solution 

R Re 
c    Nu 

1 0 -0.5356572 0.464278 0.18643029 

2 0 -0.3773321 0.449667 0.55615580 

5 0 -0.2164193 0.456544 1.13072342 

1 3 0.0080012 0.456654 5.92068925 

5

 

3 0.0072068 0.448767 6.01417978 
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branch (I) is unstable and physically 

unacceptable shown in Fig. 2. Meanwhile, 

the positive variation of thermal conductivity 

parameter slowly decreases the rate of heat 

transfer and as R increases the bifurcating 

point increases and produces more instability 

to the upper solution branch (I). The 

numerical values in Table 2 are also 

consistent with the lower solution branch of 

Nu as R increases in Fig.2. 

6.2 Effect of Reynolds number 

Figures 3(a, b), 4(a, b) describes the 

effect of Reynolds number on flow 

characteristics with entropy generation 

within the channel. Figure 3(a) reveals that 

the velocity decreases with an increase in 

injection parameter as Re near the lower 

wall )1( y  and the maximum velocity also 

develops towards the upper wall when Re 

increases due to suction. In absence of 

suction/injection parameter )0(Re , the 

velocity profile is parabolic and 

symmetrically distributed inside the channel; 

it however becomes skewed with increase in 

suction/injection parameter. Meanwhile, 

there occur backflow at the lower porous 

wall for large values of Re.  Fig.3(b) 

demonstrates a significant reduction in fluid 

temperature inside channel when Re 

increases. This is physically true since 

injection of fluid increases the fluid velocity 

around centerline thereby increases the heat 

transfer rate within the channel.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Generally, the value of 2N i.e., the entropy 

generated by fluid friction is larger than that 

of 1N i.e., the entropy produced by fluid heat 

transfer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. Effect of Reynolds number on (a) 

velocity profiles and (b) temperature 

distributions respectively 

at
.1,1,1.7Pr,1,1.0,1,1.7  RHaNGrBr 

 

As a result, SN  is contributed mainly by 

2N throughout the entire flow field. However, 

in the areas of the flow field characterized by 

a faster flow rate, the velocity gradient is 

reduced, and thus 2N also reduces. In the 

present porous channel, SN gradually 

reduces to zero at 0y as shown in Fig. 

4(a).
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Fig.4. Effect of Reynolds number on (a) 

entropy generation rate and (b) Bejan profiles 

respectively at 
.1.0,1,1,1,1.7,1,1.7Pr  HaRNBrGr

 

In this particular region of the flow field, 

fluid friction effects play only a minor role, 

and thus SN  is contributed mainly by 1N .The 

figure reveals a minor decrease in sN when 

Re increase near the cold porous wall, 

whereas SN increases rapidly in base fluid 

and further in nanofluid in the region above 

the centerline to the upper hot porous wall. 

Since the dominant effect of heat transfer 

occurs at the upper hot wall. Figure 4(b) 

displays the distribution of the Bejan number 

(Be) versus the channel width for Reynolds 

number. It is noticed that Be has a value of 

zero at the lower cold wall and close to zero 

at the upper hot wall of the channel since, as 

discussed previously, the velocity gradient is 

increased at the walls due to 

suction/injection, and hence SN  is 

contributed mainly by 2N . In the central 

region of the flow field, Be increases to a 

maximum value of 1 due to the reduction in 

the velocity gradient and the corresponding 

increase in the contribution of 1N to the 

overall entropy generation. It is to be seen 

that the heat transfer irreversibility dominates 

the flow process within the channel 

centerline region, while the influence of fluid 

friction irreversibility can be observed at the 

two porous walls. 

6.3 Effect of Thermal Conductivity 

variation parameter 

The influences of thermal 

conductivity variation parameter on 

temperature distribution, entropy generation 

rate sN and distribution of Bejan number Be 

are depicted in Figs. 5(a, b, c). A decrease in 

the fluid temperature around the central 

region of the channel is observed in Fig. 5(a) 

due to the positive escalating values of 
. The temperature profile is further 

decreased in nanofluid than base fluid as 
 increases. The increases of thermal 

conductivity variation parameter produce 

more heat transfer within the channel 

centerline region and reduce dimensionless 

temperature distribution. Furthermore, due to 

the higher thermal conductivity coefficient of 

the nanofluid, the heat is more keenly 

transferred. Fig. 5(b) indicates the effect of 

thermal conductivity variation parameter on 

entropy generation number inside the 

channel. From this figure, it is observed that 

near the cold porous wall, sN decreases 

slightly with the increase of  while it 

increases with the increase of  toward the 

hot porous wall. The influence of thermal 

conductivity variation parameter on Bejan 

profile is seen in Fig. 5(c). 
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Fig.5. Effect of thermal conductivity 

variation parameter on (a) temperature 

profile, (b) entropy generation rate and (c) 

Bejan profiles respectively at 
.1,1,1Re,1,1.7,1,1.7Pr  RHaNBrGr  

It can be noted from this figure that fluid 

friction irreversibility dominates entropy 

generation near the porous walls while heat 

transfer irreversibility is the dominant 

contributor near the channel centerline. It is 

observed that as  increases, the dominance 

of heat transfer irreversibility near the hot 

wall increases especially for nanofluid while 

the dominance of fluid friction irreversibility 

near the cold porous wall is insensitive to 

change in . 

 

 6.4 Effect of Radiation parameter 

Figures 6(a, b, c) represent the flow 

characteristics with entropy generation due to 

the effect of Radiation parameter. The effect 

of Radiation parameter R on fluid 

temperature in Fig. 6(a) shows that 

temperature near the channel centre line 

reduces uniformly by the positive increase of 

R due to radiative heat loss. Also nanofluid 

enhances the rate of heat transfer which leads 

to more reduction in temperature as reflect in 

Fig. 6(a).Entropy generation due to the effect 

of radiation parameter R is shown in Fig. 

6(b). The figure reveals a small decrease in 

sN when R increase near the cold porous 

wall, whereas sN
 

increases significantly 

toward the hot porous wall because of the 

sole contribution of heat transfer effect. 

Figure 6(c) displays the distribution of Bejan 

number for different values of Radiation 

parameter R. The figure instructed that as R 

increases, there is enhanced dominance of 

heat transfer irreversibility near the hot 

porous wall where nanofluid exhibits the 

maximum. There is an absolute dominance 

of heat transfer irreversibility )1( Be for 

varying values of R near the centerline of the 

channel while there absolute dominance of 

fluid friction irreversibility )0( Be near the 

cold porous wall. 
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Fig.6. Effect of Radiation parameter on (a) 

temperature profile, (b) entropy generation 

rate and (c) Bejan profiles respectively at 
.1.0,1,1Re,1,1.7,1,1.7Pr  HaNBrGr  

6.5 Effect of Prandtl number 

The effects of Prandtl number on temperature 

distribution, entropy generation rate sN and 

distribution of Bejan number Be are depicted 

in Figs. 7(a, b, c). The temperature of fluid 

inside the channel decreases rapidly for base 

water and further in Cu-water nanofluid than 

air or other gases due to higher thermal 

conductivity coefficient as observed in Fig. 

7(a). The effect of Prandtl number Pr on 

entropy generation rate is noticed in Fig. 

7(b). The figure reveals an increase in sN as 

Pr increases near the porous walls. This is 

due to the increase in temperature gradient as 

Pr increases which is also further in 

nanofluid. In Fig. 7(c) Bejan number is 

represented for various values of Prandtl 

number Pr. It is noticed from the figure that 

the dominance effect of both fluid friction 

and heat transfer irreversibility near the two 

walls almost similar. On the other hand, the 

dominance effect of fluid friction 

irreversibility is absolute near the porous 

walls and the dominance of heat transfer 

irreversibility decreases as Pr increases for 

base water and Cu-water nanofluid. The 

conjecture of Figs 7 (b, c) has a good 

agreement with those results of Abiodun et 

al. [21]. 
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Fig.7. Effect of Prandtl number on (a) 

temperature profile, (b) entropy generation 

rate and (c) Bejan profiles respectively 

at .1.0,1,1Re,1,1.7,1,1  HaNBrGrR  

 6.6 Effect of Hartmann number 

Figure 8 represents that in absence of 

magnetic field velocity achieves its 

maximum value, while increasing values of 

Ha produces reduction of the velocity near 

the channel centerline region. The variation 

of Ha leads to the variation of the Lorentz 

force due to magnetic field and the Lorentz 

force produces more resistance to the fluid 

velocity. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8. Effect of Hartmann number on 

velocity profile at ,1.0,1,1.7  GrBr  

0,1.7Pr,1,1Re  R  

6.7 Effect of nanoparticles volume 

fraction 

The influence of nanoparticles 

volume fraction  on velocity is depicted in 

Fig.9 at 1Re . In Fig.9, a uniform 

reduction in fluid velocity is observed as 

 increases. The equivalent thermal 

expansion coefficient of the nanofluid is less 

than that of base water. As a result, the 

buoyancy force acting on the nanofluid is 

also less than that acting on the pure water, 

and hence the dimensionless velocity is 

reduced. In addition, since the density and 

viscosity of the nanofluid are greater than 

those of base water, the velocity distribution 

within the channel is more uniform. 

 

 

 

 

 

 

 

 

Fig.9. Effect of nanoparticles volume 

fraction on velocity profiles at 
,1.0,1,1.7  GrBr

.1,1.7Pr,1,1Re  HaR  

 

6.8 Effect of Brinkman number 

The dimensionless velocity 

distribution of the flow field has a direct 

effect on the dimensionless temperature 

distribution as the effects of viscous 

dissipation are taken into consideration in the 

present problem. It is noticed from Fig.10 

that the fluid temperature increases with 

increasing parametric values of viscous 

heating parameter Br but a minor reduction is 

(c) 
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seen in presence of nanoparticles. The 

velocity gradient of the pure working fluid is 

greater than that of the nanofluid due to the 

lower viscosity which results in more viscous 

dissipation effect. Furthermore, due to the 

higher thermal conductivity coefficient of the 

nanofluid, the heat is more intensely 

transferred. Hence, the dimensionless 

temperature of the nanofluid is less than that 

of the base fluid in Fig. 10. 

 

 

 

 

 

 

 

 
Fig. 10. Effect of Brinkman number on 

temperature profile 

at 1.7Pr,1,1,1  NGrR .1.0,1,1Re  Ha  

 

7. Conclusion 

In this paper the radiative heat 

transfer on the entropy generation of MHD 

steady variable thermal conductivity flow 

and heat transfer with viscous dissipation of 

Cu-water nanofluid through a porous channel 

is investigated. Applying Hermite- Padé 

approximation method, the dominating 

singularity behaviour of the problem as well 

as the existence of the dual solutions of the 

rate of heat transfer is examined. It is 

observed that suction/injection of fluid exerts 

a significant influence on the velocity and 

temperature distributions, which transitively 

affects the entropy generation within the 

channel. The major conclusions of the 

present problem are 

 For ,c  the solution of rate of 

local heat transfer has two branches, 

namely, an upper branch and a lower 

branch. It is found that at the lower 

solution branch which is physically 

acceptable, the value of Nusselt 

number decreases with the increase 

of radiation parameter.  

 At the lower porous wall, there 

occurs backflow as the porosity 

parameter Re increases. An increase 

in the thermal conductivity variation 

parameter and Radiation parameter 

reduces temperature distribution due 

to faster heat loss. Increasing 

Hartmann number and nanoparticles 

solid volume fraction cause the 

reduction of fluid velocity near the 

centerline uniformly because of the 

acting of Lorentz force and reduction 

of buoyancy force. 

 For regions of the flow field at a 

greater velocity gradient, i.e., 

adjacent to the porous walls, the total 

entropy generation rate is dominated 

by the effects of fluid friction. 

Moreover, in the regions of the flow 

field at a greater and more uniform 

velocity distribution, i.e., the central 

region of the channel, the total 

entropy generation rate is dominated 

completely by the effects of fluid 

heat transfer. 

 

8. Nomenclature 

 

B0 magnetic induction   

b dimensional channel length    

Br Brinkman number   

Cp specific heat  

g gravitational acceleration  

Gr Grashof number 

Ha Hartmann number   

N dimensionless   

 pressure gradient  

Nu local Nusselt number         
p  dimensional pressure  

P  dimensionless pressure      

R Radiation parameter 

T0 ambient temperature         
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T  dimensional temperature                       

Ta hot temperature    

u  velocity component along the xaxes 

u  dimensionless velocity      

v  velocitycomponent along the y axes 
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